UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :LB Theory and practice of education
Main Author :Wen, PingPing
Title :Effects of ettention guidance in virtual reality lab for digital camera course on students cognitive load, academic performance and experimental time
Place of Production :Tanjong Malim
Publisher :Fakulti Komputeran dan META-Teknologi
Year of Publication :2023
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This research was aimed to analyze the effects of attention guidance in a virtual reality lab on students' cognitive load, experiment time consumption and academic performance. For this purpose, the virtual reality lab with and without attention guidance for the digital camera course was designed and developed. The quasiexperimental design was employed to collect relevant data. The experiment involved 80 students from two universities in China whose major is the digital media art. In each university 40 students were selected as control and experimental groups respectively. The data obtained was analyzed by using ANOVA and linear regression statistical methods. The findings revealed that there were significant differences in cognitive load (F (1, 78) = 33.73, p0.05). Overall, the research findings indicated that students exhibited lower cognitive load and higher academic performance in the virtual reality lab with attentional guidance. Furthermore, the regression analyses revealed that cognitive load can negatively predict learning outcomes (β=-0.41, t=-3.92, p

References

Achuthan, K., Brahmanandan, S., & Bose, L. S. (2015). Cognitive load management in multimedia enhanced interactive virtual laboratories. InEl-Alfy, ES., Thampi, S., Takagi, H., Piramuthu, S., Hanne, T. (Eds.), Advances in intelligent informatics (pp. 143–155). Cham: Springer. 

Achuthan, K., Francis, S. P., & Diwakar, S. (2017). Augmented reflective learning and knowledge retention perceived among students in classrooms involving virtual laboratories. Education Information Technologies, 22(6), 2825–2855. doi:10.1007/s10639-017-9626-x 

Adams,A., Feng, Y., Liu, J. C., & Stauffer, E. (2021). Potentials of teaching, learning, and design with virtual reality: An interdisciplinary thematic analysis. In B. Hokanson, M. Exter, A. Grincewicz, M. Schmidt, & A. A. Tawfik (Eds.), Intersections across disciplines: Interdisciplinarity and learning (pp. 173–186). Cham: Springer International Publishing. 

Adams, R. K. (1989). The virtual scope: An impedance match to the beginning ECE student. Paper presented at IEEE Energy and Information Technologies in the Southeast, Columbia, SC, USA. 

Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics, 36(7), 623–636. doi:10.1016/j.ergon.2006.04.002 

Ainley, M., &Armatas, C. (2006). Motivational perspectives on students’ responses to learning in virtual learning environments.In J. Weiss, J. Nolan, J. Hunsinger, & 

P. Trifonas (Eds.), The International Handbook of Virtual Learning Environments (pp. 365-394). Dordrecht: Springer Netherlands. 

Alaraj, A., Lemole, M. G., Finkle, J. H., Yudkowsky, R., Wallace, A., Luciano, C., . . . Charbel, F. T. (2011). Virtual reality training in neurosurgery: Review of current statusand future applications. Surgical Neurology International, 2. doi:10.4103 / 2152-7806.80117 

Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154. https://doi.org/10.1016/j.compedu.2021.104154 

Alexiou, A., Bouras, C., & Giannaka, E. (2005). Virtual Laboratories in Education, Boston, MA.:Technology Enhanced Learning. 

Ali, N., & Ullah, S. (2020). Review to analyze and compare virtual chemistry 

laboratories for their use in education. Journal of Chemical Education, 97(10), 3563–3574. doi:10.1021/acs.jchemed.0c00185 

Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratory implementations: Observations and findings. Journal of Computers in Education, 3(3), 329–351. doi:10.1007/s40692-016-0068-z 

Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning, Memory, Cognition, 40(6), 1499–1509. doi:10.1037/xlm0000002 

Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2017). Executive and perceptual distraction in visual working memory. Journal of Experimental Psychology: Human Perception Performance, 43(9), 1677–1693. doi:10.1037/xhp0000413 

Allen, R. J.,& Ueno,T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, Psychophysics, 80(7), 1731–1743. doi:10.3758/s13414-018-1543-6 

Alpizar, D., Adesope, O. O., & Wong, R. M. (2020). A meta-analysis of signaling principle in multimedia learning environments. Educational Technology Research and Development, 68(5), 2095–2119. doi:10.1007/s11423-020-09748-7 

Altinpulluk, H., Kilinc, H., Firat, M., & Yumurtaci, O. (2020). The influence of segmented and complete educational videos on the cognitive load, satisfaction, engagement, and academic achievement levels of learners. Journal of Computers in Education, 7(2), 155–182. doi:10.1007/s40692-019-00151-7 

Amadieu, F., Mariné, C., & Laimay, C. (2011). The attention-guiding effect and cognitive load in the comprehension of animations. Computers in Human Behavior, 27(1), 36-40. doi:10.1016/j.chb.2010.05.009 

Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cayé-Thomasen, P., & Sørensen, M. 

S. (2016). The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial. Advances in Simulation, 1(1), 20–28. doi:10.1186/s41077-016-0022-1 

Ansorge, U., & Becker, S. I. (2014). Contingent capture in cueing: The role of color search templates and cue-target color relations. Psychological Research, 78(2), 209–221. doi:10.1007/s00426-013-0497-5 

Atchison, C. J., Bowman, L., Vrinten, C., Redd, R., Pristerà, P., Eaton, J. W., & Ward, 

H. (2020). Perceptions and behavioural responses of the general public during the COVID-19 pandemic: A cross-sectional survey of UK Adults. MedRxiv, 2020.2004.2001.20050039. doi:10.1101/2020.04.01.20050039 

Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning Instruction, 16(5), 389–400. doi:10.1016/j.learninstruc.2006.09.001 

Ayres, P., & Paas, F. (2007). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition, 21(6), 695–700. doi:10.1002/acp.1343 

Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. doi:10.1126/science.1736359 

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839. doi:10.1038/nrn1201 

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47–89).Cambridge, Massachusetts :Academic Press. 

Bailey, J. O., Bailenson, J. N., & Casasanto, D. (2016). When does virtual embodiment change our minds? Presence, 25(3), 222–233. doi:10.1162/PRES_a_00263 

Barbieri, L., Bruno, F., & Muzzupappa, M. (2018). User-centered design of a virtual reality exhibit for archaeological museums. International Journal on Interactive Design Manufacturing, 12(2), 561–571. doi:10.1007/s12008-017-0414-z 

Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memoryspans. Journal of Experimental Psychology. General, 133(1), 83–100. doi:10.1037/0096-3445.133.1.83 

Bautista, N. U., & Boone, W. J. (2017). Exploring the impact of TeachME™ lab virtual classroom teaching simulation on early childhood education majors’ self-efficacy beliefs. Journal of Science Teacher Education, 26(3), 237–262. doi:10.1007/s10972-014-9418-8 

Beer, T., Meisen, T., Reinhard, R., Konovalov, S., Schilberg, D., Kuhlen, T., & Bischof, 

C. (2011). The virtual production simulation platform: From collaborative distributed simulation to integrated visual analysis. In Automation, 

communication and cybernetics in science and engineering 2011/2012 (pp. 383-391). Berlin:Springer. 

Berg, H., & Steinsbekk, A. (2020). Is individual practice in an immersive and interactive virtual reality application non-inferior to practicing with traditional equipment in learning systematic clinical observation? A randomized controlled trial. BMC Med Educ, 20(1), 123–133. doi:10.1186/s12909-020-02030-7 

Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In R.E. Mayer(Eds.), The Cambridge handbook of multimedia learning (pp. 287–296). New York, NY, US: Cambridge University Press. 

Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., & Craig, C. (2009). Using virtual reality to analyze sports performance. IEEE Computer Graphics Application, 30(2), 14–21. doi:10.1109 / MCG.2009.134 

Blum, J., Rockstroh, C., & Göritz,A. S. (2020). Development and pilot test of a virtual reality respiratory biofeedback approach. Applied Psychophysiology, 45(3), 153–163. doi:10.1007/s10484-020-09468-x 

Boboev, L., Soliev, Z. M., & Asrorkulov, F. (2018). The project title: The virtual laboratory and quality of education. In Drummer, J., Hakimov, G., Joldoshov, M.,Köhler,T.,Udartseva, S(Eds.), Vocational teacher education in central Asia (pp. 87–91). Cham: Springer. 

Boucheix, J.-M., & Guignard, H. (2005). What animated illustrations conditions can improve technical document comprehension in young students? Format, signaling and control of the presentation. European Journal of Psychology of Education, 20(4), 369–388. doi:10.1007/BF03173563 

Boucheix, J.-M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123–135. doi:10.1016/j.learninstruc.2009.02.015 

Boucheix, J.-M., Lowe, R. K., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning instructional Science, 25, 71–84. doi:10.1016/j.learninstruc.2012.11.005 

Britton, B. K., Glynn, S. M., Meyer, B. J., & Penland, M. J. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74(1), 51–61. doi:10.1037/0022-0663.74.1.51 

Brucker, B., Scheiter, K., & Gerjets, P. (2014). Learning with dynamic and static visualizations: Realistic details only benefit learners with high visuospatial abilities. Computers in Human Behavior, 36, 330–339. doi:10.1016/j.chb.2014.03.077 

Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61. doi:10.1207/S15326985EP3801_7 

Burdea, G., & Coiffet, P. (2003). Virtual reality technology.Cambridge, Massachusetts: MIT Press. 

Burnham, B. R. (2020). Evidence for early top-down modulation of attention to salient visual cues through probe detection. Attention, Perception, Psychophysics, 82(3), 1003–1023. doi:10.3758/s13414-019-01850-0 

Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning Instruction, 20(2), 155–166. doi:10.1016/j.learninstruc.2009.02.014 

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. doi:10.1016/j.visres.2011.04.012 

Castro-Alonso, J. C., de Koning, B. B., Fiorella, L., & Paas, F. (2021). Five strategies for optimizing instructional materials: Instructor-and learner-managed cognitive load. Educational Psychology Review, 33(4), 1379–1407. doi:10.1007/s10648-021-09606-9 

Cegovnik, T., Stojmenova, K., Tartalja, I., & Sodnik, J. (2020). Evaluation of different interface designs for human-machine interaction in vehicles. Multimedia Tools Applications, 79(29), 21361–21388. doi:10.1007/s11042-020-08920-8 

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151–170. doi:10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U 

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition Instruction 8(4), 293–332. doi:10.1207/s1532690xci0804_2 

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151–170. doi:10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U 

Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993).Aneural basis for visual 

search in inferior temporal cortex. Nature, 363(6427), 345–347. doi:10.1038/363345a0 

Chen, M.-X., & Chen, C.-H. (2020). A study of size effects of overview interfaces on user performance in virtual environments. Paper presented at the International Conference on Human-Computer Interaction. 

Cheung, C.-K. (2016). The future of media literacy education in China: The way forward. In Media Literacy Education in China (pp. 173-179). : Springer. 

Christofi, M., Kyrlitsias, C., Michael-Grigoriou, D., Anastasiadou, Z., Michaelidou, M., Papamichael, I., & Pieri, K. (2018). A tour in the archaeological site of choirokoitia using virtual reality: A learning performance and interest generation assessment. In Advances in digital cultural heritage (pp. 208–217).Cham: Springer. 

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011).Ataxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. doi:10.1146/annurev.psych.093008.100427 

Cimminella, F., Sala, S. D., & Coco, M. I. (2020). Extra-foveal processing of object semantics guides early overt attention during visual search. Attention, Perception, & Psychophysics, 82(2), 655–670. doi:10.3758/s13414-019-01906-1 

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning.Hoboken, New Jersey, U.S.: John Wiley & Sons 

Cohen, J. (2013). Statistical power analysis for the behavioral sciences.Milton Park, Abingdon-on-Thames, Oxfordshire, England, UK: Routledge. 

Costa, N., Costa, S., Pereira, E., &Arezes, P. M. (2019). Workload measures—recent trends in the driving context. In Occupational and environmental safety and health (pp. 419-430).Cham: Springer. 

Cotfas, P. A., Cotfas, D. T., & Gerigan, C. (2015). Simulated, hands-on and remote laboratories for studying the solar cells. Paper presented at the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION). 

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of 

mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. doi:10.1017/S0140525X01003922 

Crooks, S. M., Cheon, J., Inan, F.,Ari, F., & Flores, R. (2012). Modality and cueing in multimedia learning: Examining cognitive and perceptual explanations for the modality effect. Computers in Human Behavior, 28(3), 1063–1071. doi:10.1016/j.chb.2012.01.010 

Csikar, E., & Stefaniak, J. (2021). The use of heuristics in adaptive narratives to inform decision-making practices. TechTrends, 65(1), 90–100. doi:10.1007/s11528-020-00558-5 

Daineko, Y. A., Ipalakova, M. T., & Bolatov, Z. Z. (2017). Employing information technologies based on. NET XNA framework for developing a virtual physical laboratory with elements of 3D computer modeling. Programming Computer Software, 43(3), 161–171. doi:10.1134/S0361768817030045 

Darius, P. S. H., Gundabattini, E., & Solomon, D. G. (2021). A survey on the effectiveness of online teaching-learning methods for university and college students. The Institution of Engineers (India): Series B. doi:10.1007/s40031-021-00581-x 

Darrah, M., Humbert, R., Finstein, J., Simon, M., & Hopkins, J. (2014).Are virtual labs as effective as hands-on labs for undergraduate physics?Acomparative study at two major universities. Journal of Science Education and Technology, 23(6), 803–814. doi:10.1007/s10956-014-9513-9 

de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science, 38(2), 105–134. doi:10.1007/s11251-009-9110-0 

de Jong, T., Linn, M. C., & Zacharia,Z.C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. doi:10.1126 / science.1230579 

De Koning, B. B.,Tabbers, H. K., Rikers, R. M., & Paas, F. (2007).Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition instruction, 21(6), 731–746. doi:10.1002/acp.1346 

De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010a). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111–122. 

doi:10.1016/j.learninstruc.2009.02.010 

De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010b). Learning by generating vs. receiving instructional explanations: Two approaches to enhance attention cueing in animations. Computers Education, 55(2), 681–691. doi:10.1016/j.compedu.2010.02.027 

De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2011). Attention cueing in an instructional animation: The role of presentation speed. Computers in Human Behavior, 27(1), 41–45. doi:10.1016/j.chb.2010.05.010 

De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(2), 113–140. doi:10.1007/s10648-009-9098-7 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. doi:10.1146/annurev.ne.18.030195.001205 

Di, X., & Zheng, X. (2022). A meta-analysis of the impact of virtual technologies on students’ spatial ability. Educational Technology Research and Development, 70(1), 73–98. doi:10.1007/s11423-022-10082-3 

Dick, W., Carey, L., & Carey, J. (2009). The systematic design of instruction, 7th Ed. United States ofAmerica: Pearson Education. 

Dionisio, M., & Nisi, V. (2021). Leveraging transmedia storytelling toengage tourists in the understanding of the destination’s local heritage. Multimedia Tools and Applications, 80(26), 34813-34841. doi:10.1007/s11042-021-10949-2 

Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11(6), 467–473. doi:10.1111/1467-9280.00290 

Du, X., Dai, M.,Tang, H., Hung,J.-L., Li, H., & Zheng, J. (2022).Amultimodal analysis of college students’ collaborative problem solving in virtual experimentation activities: a perspective of cognitive load. Journal of Computing in Higher Education. doi:10.1007/s12528-022-09311-8 

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. 

Edwards, B. I., Bielawski, K. S., Prada,R., & Cheok,A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363–373. doi:10.1007/s10055-018-0345-4 

El Kabtane, H., El Adnani, M., Sadgal, M., & Mourdi, Y. (2020). Virtual reality and augmented reality at the service of increasing interactivity in MOOCs. Education and Information Technologies, 25(4), 2871–2897. doi:10.1007/s10639-019-10054-w 

Eliseu, S., Lopes, M. M., Ribeiro, J. P., & Oliveira, F. (2020). Learning and creativity through a curatorial practice using virtual reality, Cham: Springer. 

Encalada, W. L., Costales, P. M., Machado, S. P. C., & Yungán, J. G. (2020). Virtual laboratories in virtual learning environments. Paper presented at The International Conference onAdvances in Emerging Trends and Technologies. 

Enns, J. T., Austen, E. L., Di Lollo, V., Rauschenberger, R., & Yantis, S. (2001). New objects dominate luminance transients in setting attentional priority. Journal of Experimental Psychology: Human Perception and Performance, 27(6), 1287–1302. doi:10.1037/0096-1523.27.6.1287 

Fei, L. T., Yan, W. H., Yin, Z., Fang, L. F., Tao, C. J., Hua, H. Z., & Qiang, L. (2018). Attentional choice in perceptual scenes and working memory representation:A unified perspective. Advances in Psychological Science, 26(4), 625–635. doi:10.3724/SP.J.1042.2018.00625 

Fernández-Avilés, D., Dotor, D., Contreras, D., & Salazar, J. C. (2016). Virtual labs: A new tool in the education: Experience of Technical University of Madrid. Paper presented at the 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV). 

Fiorini, L., Tabeau, K., D’Onofrio, G., Coviello, L., De Mul, M., Sancarlo, D., . . . Cavallo, F. (2020). Co-creation of an assistive robot for independent living: Lessons learned on robot design. International Journal on Interactive Design Manufacturing, 14(2), 491-502. doi:10.1007/s12008-019-00641-z 

Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22(8), 1126–1141. doi:10.1002/acp.1426 

Fischer, S., & Schwan, S. (2010). Comprehending animations: Effects of spatial cueing versus temporal scaling. Learning and Instruction, 20(6), 465–475. doi:10.1016/j.learninstruc.2009.05.005 

Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37–45. doi:10.1016/j.cognition.2017.12.002 

Foerster, R. M., & Schneider, W. X. (2020). Oculomotor capture by search-irrelevant features in visual working memory: on the crucial role of target–distractor similarity. Attention, Perception, & Psychophysics, 82(5), 2379–2392. doi:10.3758/s13414-020-02007-0 

Foreman, C., Hilditch, M., Rockliff, N., & Clarke, H. (2020). A Comparison of Student Perceptions of Physical and Virtual Engineering Laboratory Classes. In K. Gravett, N. Yakovchuk, & I. M. Kinchin (Eds.), Enhancing Student-Centred Teaching in Higher Education: The Landscape of Student-Staff Research Partnerships (pp. 151-167). Cham: Springer International Publishing. 

Forster, Y., Hergeth, S., Naujoks, F., Krems, J. F., & Keinath, A. (2020). Self-report measures for the assessment of human-machine interfaces in automated driving. Cognition, Technology Work, 22(4), 703–720. doi:10.1007/s10111-019-00599-8 

Frederiksen, J. G., Sørensen, S. M. D., Konge, L., Svendsen, M. B. S., Nobel-Jørgensen, M., Bjerrum, F., &Andersen, S.A. W. (2020). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy, 34(3), 1244–1252. doi:10.1007/s00464-019-06887-8 

Furley, P., & Memmert, D. (2013). “Whom should I pass to?” The more options the more attentional guidance from working memory. PLOS ONE, 8(5), e62278. doi:10.1371/journal.pone.0062278 

Fuxing, W., Zhaohui, D., & Zongkui, Z. (2013). Attention guidance in multimedia learning: The role of cueing. Advances in Psychological Science, 21(8), 1430-1440. 

Gao, S., Yan, S., Zhao, H., & Nathan, A. (2021). User experience evaluation. Touch-based human-machine interaction, 91-108. doi:10.1007/978-3-030-68948-3_6 

Gao, Z., Yu, S., Zhu, C., Shui, R., Weng, X., Li, P., & Shen, M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6(1), 22822. doi:10.1038/srep22822 

Ge, Y.-P., Unsworth, L., & Wang, K.-H. (2017). The effects of explicit visual cues in 

reading biological diagrams. International Journal of Science Education, 39(5), 

605–626. doi:10.1080/09500693.2017.1297549 

Geng, L. (2015). Teaching exploration and reform of program design course for digital media art students. Paper presented at the 2015 10th International Conference on Computer Science & Education (ICCSE). 

Gevins,A., & Smith,M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1-2), 113–131. doi:10.1080/14639220210159717 

Ghergulescu, I., Lynch,T., Bratu, M., Moldovan,A., Muntean, C. H., & Muntean, G. M. (2018). STEM education with atomic structure virtual lab for learners with special education needs. EDULEARN18 Proceedings, 1, 8747–8752. 

Glaser, M., & Schwan, S. (2020). Combining verbal and visual cueing: Fostering learning pictorial content by coordinating verbal explanations with different types of visual cueing. Instructional Science, 48(2), 159–182. doi:10.1007/s11251-020-09506-5 

Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519–532. doi:10.1177/001872088402600504 

Grant, E. R., & Spivey, M. J. (2003). Eye Movements and Problem Solving: Guiding Attention Guides Thought. Psychological Science, 14(5), 462-466. doi:10.1111/1467-9280.02454 

Grecucci, A., Soto, D., Rumiati, R. I., Humphreys, G. W., & Rotshtein, P. (2010). The interrelations between verbal working memory and visual selection of emotional faces. Journal of Cognitive Neuroscience, 22(6), 1189–1200. doi:10.1162/jocn.2009.21276 

Greer, D. L., Crutchfield, S. A., & Woods, K. L. (2013). Cognitive theory of multimedia learning, instructional design principles, and students with learning disabilities in computer-based and online learning environments. Journal of Education, 193(2), 41–50. doi:10.1177/002205741319300205 

Grivokostopoulou, F., Kovas, K., & Perikos, I. (2020). The effectiveness of embodied pedagogical agents and their impact on students learning in virtual worlds. Applied Sciences, 10(5). doi:10.3390/app10051739 

Gunalp, P., Moossaian, T., & Hegarty, M. (2019). Spatial perspective taking: Effects of social, directional, and interactive cues. Memory & Cognition, 47(5), 

1031–1043. doi:10.3758/s13421-019-00910-y 

Guo, P. (2019). The design and implementation of virtual simulation photography laboratory. Education Modernization, 6(28), 115–117. doi:10.16541/j.cnki.2095-8420.2019.28.046 

Harada,Y.,& Ohyama, J.(2022). Quantitative evaluation of visual guidance effects for 360-degree directions. Virtual Reality, 26(2), 759–770. doi:10.1007/s10055-021-00574-7 

Harris, D. J., Hardcastle, K. J., Wilson, M. R., & Vine, S. J. (2021). Assessing the learning and transfer of gaze behaviours in immersive virtual reality. Virtual Reality, 25(4), 961–973. doi:10.1007/s10055-021-00501-w 

Harris, S. R., Kemmerling, R. L., & North, M. M. (2002). Brief virtual reality therapy for public speaking anxiety. Cyberpsychology Behavior, 5(6), 543–550. doi:10.1089/109493102321018187 

Harris, A. M., Becker, S. I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, Psychophysics, 77(7), 2305–2321. doi:10.3758/s13414-015-0927-0 

Harris, D., Wilson, M., & Vine, S. (2020). Development and validation of a simulation workload measure: The simulation task load index (SIM-TLX). Virtual Reality, 24(4), 557–566. doi:10.1007/s10055-019-00422-9 

Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Paper presented at the Proceedings of the human factors and ergonomics society annual meeting. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology (Vol. 52, pp. 139–183): Elsevier. 

Hernández-de-Menéndez, M., Vallejo Guevara, A., & Morales-Menendez, R. (2019). Virtual reality laboratories: A review of experiences. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(3), 947–966. doi:10.1007/s12008-019-00558-7 

Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive science, 30(3), 581-592. doi.org/10.1207/s15516709cog0000_70 

Hew, K. F., & Cheung, W. S. (2010). Use of three-dimensional (3-D) immersive virtual 

worlds in K-12 and higher education settings:A review of the research. British Journal of Educational Technology, 41(1), 33–55. doi:10.1111/j.1467-8535.2008.00900.x 

Hinderks, A., Schrepp, M., Mayo, F. J. D., Escalona, M. J., & Thomaschewski, J. (2019). Developing a UX KPI based on the user experience questionnaire. Computer Standards Interfaces,65, 38–44. doi:10.1016/j.csi.2019.01.007 

Hinojo-Lucena, F.-J., Aznar-Díaz, I., Cáceres-Reche, M.-P., Trujillo-Torres, J.-M., & Romero-Rodríguez, J.-M. (2020). Virtual reality treatment for public speaking anxiety in students. Advancements and results in personalized medicine. Journal of Personalized Medicine, 10(1). doi:10.3390/jpm10010014 

Hitch, G. J., Hu, Y.,Allen, R. J., & Baddeley,A. D. (2018). Competition for the focus of attention in visual working memory: Perceptual recency versus executive control. Annals of the New York Academy of Sciences, 1424(1), 64–75. doi:10.1111/nyas.13631 

Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. doi:10.1002/sce.10106 

Höhner, N., Mints, M. O., Rodewald, J., Pfeiffer, A., Kutzner, K., Burghardt, M., . . . Ferdinand, P. (2020). Integrating virtual reality in a lab based learning Environment. Paper presented at the International Conference on Virtual Reality andAugmented Reality. 

Hollingworth, A., Matsukura, M., & Luck, S. J. (2013a). Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm. Journal of Vision, 13(4), 1-18. doi:10.1167/13.13.4 

Hollingworth, A., Matsukura, M., & Luck, S. J. (2013b). Visual working memory modulates rapid eye movements to simple onset targets. Psychological Science, 24(5), 790–796. doi:10.1177/0956797612459767 

Homer, B. D., Plass, J. L., & Blake, L. (2008). The effects of video on cognitive load and social presence in multimedia-learning. Computers in Human Behavior, 24(3), 786-797. doi:10.1016/j.chb.2007.02.009 

Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 423–442. doi:10.1037/0096-1523.32.2.423 

Hu, J. S., Lu, J., Tan, W. B., & Lomanto, D. (2016). Training improves laparoscopic tasks performance and decreases operator workload. Surgical Endoscopy, 30(5), 1742–1746. doi:10.1007/s00464-015-4410-8 

Iachini,T., Coello, Y., Frassinetti, F., Senese, V. P., Galante, F., & Ruggiero, G. (2016). Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. Journal of Environmental Psychology, 45, 154–164. doi:10.1016/j.jenvp.2016.01.004 

Ibrahim, M., Antonenko, P. D., Greenwood, C. M., & Wheeler, D. (2012). Effects of segmenting, signalling, and weeding on learning from educational video. Learning, Media and Technology, 37(3), 220-235. doi:10.1080/17439884.2011.585993 

Jaafar, W. A., & Nur, S. (2009). Applying virtual rehearsal principle in developing a Persuasive Multimedia Learning Environment (PMLE). Paper presented at the International Visual Informatics Conference. 

Jagodzinski, P., Wolski, R.(2015). Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. Science Education and Technology, 24(1), 16–28. doi:10.1007/s10956-014-9517-5 

Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32, 47–53. doi:10.1016/j.chb.2013.11.013 

Jamet, E., Gavota, M., & Quaireau, C. (2008).Attention guiding in multimedia learning. Learning and Instruction, 18(2), 135–145. doi:10.1016/j.learninstruc.2007.01.011 

Janonis, A., Kiudys, E., Girdžiuna, M., Blažauskas, T., Paulauskas, L., & Andrejevas, 

A. (2020). Escape the lab: Chemical experiments in virtual reality. Paper presented at the International Conference on Information and Software Technologies. 

Jeung, H. J., Chandler, P., & Sweller, J. (1997). The role of visual indicators in dual sensory mode instruction. Educational Psychology, 17(3), 329–345. doi:10.1080/0144341970170307 

Jiang, K., & Bannister, M. (2008). Using a cutting the cake peer assessment method in a leadership in information networking and telecommunications course. Journal of Business Leadership: Research, Practice, Teaching (2005–2012), 4(1), 81–86. 

Jiang, Z. Q., & Lee, D. H. (2010). Exploring new system of China digital media design related undergraduate education. International Journal of Contents, 6(1), 35–40. doi:10.5392/IJoC.2010.6.1.035 

Johnson, A. M., Ozogul, G., Moreno, R., & Reisslein, M. (2013). Pedagogical agent signaling of multiple visual engineering representations:The caseof the young female agent. Journal of Engineering Education, 102(2), 319–337. doi:10.1002/jee.20009 

Johnson, A. M., Ozogul, G., & Reisslein, M. (2015). Supporting multimedia learning with visual signalling and animated pedagogical agent: moderating effects of prior knowledge. Journal of Computer Assisted Learning, 31(2), 97-115. doi.org/10.1111/jcal.12078 

Johnson, D., Damian, D., & Tzanetakis, G. (2020). Evaluating the effectiveness of mixed reality music instrumentlearning with the theremin. Virtual Reality, 24(2), 303–317. doi:10.1007/s10055-019-00388-8 

Johnston, J. C., McCann, R. S., & Remington, R. W. (1995). Chronometric evidence for two types of attention. Psychological Science, 6(6), 365–369. doi:10.1111/j.1467-9280.1995.tb00527.x 

Juliano, J. M., Schweighofer, N., & Liew, S.-L. (2022). Increased cognitive load in immersive virtual reality during visuomotor adaptation is associated with 

decreased  long-term  retention  and  context  transfer.  Journal  of  

NeuroEngineering  and Rehabil itation,  19(1),  106–120.  

doi:10.1186/s12984-022-01084-6  

 

Kahneman, D. (1973). Attention and effort(Vol. 1063, pp. 218-226). Englewood Cliffs, NJ: Prentice-Hall. 

Kailas, G., & Tiwari, N. (2021). An empirical measurement tool for overall listening experience of immersive audio. Paper presented at the 2021 IEEE International Conference on Consumer Electronics (ICCE). 

Kalet, A. L., Song, H. S., Sarpel, U., Schwartz, R., Brenner, J., Ark, T. K., & Plass, J. (2012). Just enough, but not too much interactivity leads to better clinical skills performance after a computer assisted learning module. Medical Teacher, 34(10), 833–839. doi:10.3109/0142159X.2012.706727 

Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351–371.doi:10.1002/(SICI)1099-0720(199908)13:4<351::AID-ACP589>3.0. CO;2-6 Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory Cognition, 13(4), 351-371. doi:10.1002/(SICI)1099-0720(199908)13:4<351::AID-ACP589>3.0.CO;2-6 

Kapici, H. O.,Akcay, H., & de Jong,T. (2019). Using hands-on and virtual laboratories alone or together-Which works better for acquiring knowledge and skills? Journal of Science Education and Technology, 28(3), 231–250. doi:10.1007/s10956-018-9762-0 

Keeney-Kennicutt, W.,& Winkelmann, K. (2013). What can students learn from virtual labs? Committee Comput. Chemical Edu. 

Kehrwald, B. A., & Bentley, B. P. (2020). Understanding and identifying cognitive load in networked learning. In N. B. Dohn, P. Jandric, T. Ryberg, & M. de Laat (Eds.), Mobility, data and learner agency in networked learning (pp. 103–115). Cham: Springer International Publishing. 

Keller, T., Gerjets, P., Scheiter, K., & Garsoffky, B. (2006). Information visualizations for knowledge acquisition: The impact of dimensionality and color coding. Computers in Human Behavior, 22(1), 43–65. doi:10.1016/j.chb.2005.01.006 

Khlaisang, J., & Songkram, N. (2019). Designing a virtual learning environment system for teaching twenty-first century skills to higher education students in ASEAN. Technology, Knowledge and Learning, 24(1), 41–63. doi:10.1007/s10758-017-9310-7 

Kirschner, P.A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning.Learning and Instruction, 12(1), 1-10. doi.org/10.1016/S0959-4752(01)00014-7 

Kim, B.,Yang,E., Choi, N., Kim, S., & Ryu, J. (2020). Effects of auditory feedbackand task difficulty on the cognitive load and virtual presence in a virtual reality dental simulation. The Journal of the Korean Dental Association, 58(11), 670–682. 

Koning, D., Tabbers, H. K., Rikers, R. M., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(2), 113–140. doi:10.1007/s10648-009-9098-7 

Krassmann, A. L., Melo, M., Peixoto, B., Pinto, D., Bessa, M., & Bercht, M. (2020). 

Learning in virtual reality: Investigating the effects of immersive tendencies and sense of presence. Paper presented at the International Conference on Human-Computer Interaction. 

Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65(11), 911–930. doi:10.1016/j.ijhcs.2007.06.005 

Kumar,S. N.,Lenin Fred,A.,Padmanabhan,P.,Gulyas, B.,Dyson, C.,Melba Kani, R., & Ajay Kumar, H. (2021). Multimedia-based learning tools and its scope, applications for virtual learning environment. In A. Deyasi, S. Mukherjee, A. Mukherjee, A. K. Bhattacharjee, & A. Mondal (Eds.), Computational intelligence in digital pedagogy (pp. 47–63). Singapore: Springer Singapore. 

Lamb, R., & Etopio, E. A. (2020). Virtual reality:Atool for preservice science teachers to put theory into practice. Journal of Science Education and Technology, 29(4), 573–585. doi:10.1007/s10956-020-09837-5 

Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. Paper presented at the Symposium of the Austrian HCI and usability engineering group. 

Law, E. L.-C., Roto, V., Hassenzahl, M., Vermeeren, A. P., & Kort, J. (2009). 

Understanding, scoping and defining user experience: A survey approach. 

Paper presented at the Proceedings of the SIGCHI conference on human 

factors in computing systems. 

Lee,G. I., & Lee, M. R. (2018). Can a virtual reality surgicalsimulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Surgical Endoscopy, 32(1), 62–72. doi:10.1007/s00464-017-5634-6 

Lee, H., Jung, J., Lee, H.-K., & Yang, H. S. (2021). Discipline vs guidance: comparison of visual engagement approaches in immersive virtual environments. Multimedia Tools and Applications, 80(20), 31239-31261. doi:10.1007/s11042-020-10267-z 

Leonard, C. J., Balestreri,A., & Luck, S. J. (2015). Interactions between space-based and feature-based attention. Journal of Experimental Psychology: Human Perception Performance, 41(1), 11. doi:10.1037/xhp0000011 

Li, Y., Tennent, P., & Cobb, S. (2018). Appropriate control methods for mobile virtual 

exhibitions. Paper presented at the International Conference on VR 

Technologies in Cultural Heritage. 

Liberatore, M. J., & Wagner, W. P. (2021). Virtual, mixed, and augmented reality: A systematic review for immersive systems research. Virtual Reality, 1–27. doi:10.1007/s10055-020-00492-0 

Lin, D., Zhao, Q., Luan, H., & Hou, Y. (2020).Application of virtual simulation platform in basic medical teaching. InJain, V., Patnaik, S., Popen.iu Vladicescu, F., Sethi, I. (Eds.),Recent trends in intelligent computing, communication and devices (Vol. 1006, pp. 205-211). Singapore: Springer. 

Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650–658. doi:10.1016/j.compedu.2010.10.007 

Linton, P. M., Plamondon, B. D., Dick, A., Bittner, A. C., & Christ, R. E. (1989). Operator workload for military system acquisition. In G. R. McMillan, D. Beevis, 

E. Salas,M. H. Strub,R. Sutton,& L. Van Breda (Eds.), Applications of Human Performance Models to System Design (pp. 21-45). Boston, MA: Springer US. 

Liu, T.-C., Lin, Y.-C., & Kuo, Y.-C. (2019). Using arrow-lines to integrate pictorial and textual information in electronic slideshow assisted lecturing 1. In Tindall-Ford, S.,Agostinho, S.,& Sweller,J. (Eds.), Advances in Cognitive Load Theory (pp. 55-65). UK: Routledge. 

Liu,T.-C.,Lin,Y.-C., Wang,T.-N.,Yeh, S.-C., & Kalyuga, S. (2021). Studying the effect of redundancy in a virtual reality classroom. Educational Technology Research and Development, 69(2), 1183–1200. doi:10.1007/s11423-021-09991-6 

Liu, X. (2013). Construction and management of virtual experiment system. Paper presented at the 2012 International Conference on Information Technology and Management Science (ICITMS 2012) Proceedings, Berlin, Heidelberg. 

Loman, N. L., & Mayer, R. E. (1983). Signaling techniques that increase the understandability of expository prose. Journal of Educational Psychology, 75(3), 402–412. doi:10.1037/0022-0663.75.3.402 

Longo, L., & Orru, G. (2018). An evaluation of the reliability, validity and sensitivity of three human mental workload measures under different instructional conditions in third-level education. Paper presented at the International Conference on Computer Supported Education. 

Lorentz, L., Simone, M., Zimmermann, M., Studer, B., Suchan, B., Althausen, A., . . . 

Lendt, M. (2021). Evaluation of a VR prototype for neuropsychological rehabilitation of attentional functions. Virtual Reality, 1–13. doi:10.1007/s10055-021-00534-1 

Lowe, R., & Boucheix, J.-M. (2011). Cueing complex animations: Does direction of attention foster learning processes? Learning and Instruction, 21(5), 650-663. https://doi.org/10.1016/j.learninstruc.2011.02.002 

Luo, H., Koszalka, T., & Zuo, M. (2016). Investigating the effects of visual cues in multimedia instruction using eye tracking. Paper presented at the International Conference on Blended Learning. 

Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 7-es. doi:10.1145/1132960.1132961 

Mach, S., Gründling, J. P., Schmalfuß, F., & Krems, J. F. (2018). How to assess mental workload quick and easy at work: A method comparison. Paper presented at the Congress of the International ErgonomicsAssociation. 

Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719–735. doi:10.1037/edu0000473 

Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141–1164. doi:10.1007/s11423-018-9581-2 

Makransky, G., & Petersen, G. B. (2021). The cognitive affective model of immersive learning (CAMIL):Atheoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3), 937–958. doi:10.1007/s10648-020-09586-2 

Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. doi:10.1016/j.learninstruc.2017.12.007 

Manouchou, E., Stavroulia, K.-E., Ruiz-Harisiou, A., Georgiou, K., Sella, F., & Lanitis, 

A. (2016). A feasibility study on using virtual reality for understanding deficiencies of high school students. Paper presented at the 2016 18th Mediterranean Electrotechnical Conference (MELECON). 

Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88(1), 49–63. doi:10.1037/0022-0663.88.1.49 

Mason, D. (2013). Design, implementation and evaluation of virtual learning environments. Online Information Review, 37(2), 201-218. doi:10.1108/OIR-04-2013-0071 

Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377–389. doi:10.1037/0022-0663.93.2.377 

Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 99(3), 640–652. doi:10.1037/0022-0663.99.3.640 

Mayer, R. E. (1992). Thinking, problem solving, cognition, 2nd ed. New York, NY, US: W H Freeman/Times Books/ Henry Holt & Co. 

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1–19. doi:10.1207/s15326985ep3201_1 

Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31(7), 611–623. doi:10.1016/S0883-0355(99)00027-0 

Mayer, R. E. (2002). Multimedia learning. In B. H. Ross (Eds.),Psychology of learning and motivation (Vol. 41, pp. 85-139), Cambridge, Massachusetts: Academic Press. 

Mayer, R. E. (2005). The Cambridge handbook of multimedia learning.Cambridge, England: Cambridge University Press. 

Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning instruction, 20(2), 167–171. doi:10.1016/j.learninstruc.2009.02.012 

Mayer, R. E. (2017). Using multimedia for e-learning. Journal of Computer Assisted Learning, 33(5), 403–423. doi:10.1111/jcal.12197 

Mayer, R. E., & Fiore, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning, 2nd ed. (pp. 279–315). New York, NY, US: Cambridge 

University Press. 

Mayer, R. E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43–52. doi:10.1207/S15326985EP3801_6 

Mercer, L., Prusinkiewicz, P., & Hanan, J. (1990). The concept and design of a virtual laboratory. Graphics Interface. Halifax, Nova Scotia, 90, 149–155. doi:10.5555/93267.93304 

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40. doi:10.1016/j.compedu.2013.07.033 

Mihelj, M., Novak, D., & Begus, S. (2014). Interaction with a virtual environment. In M. Mihelj, D. Novak, & S. Beguš (Eds.), Virtual reality technology andaApplications (pp. 205–211). Dordrecht: Springer Netherlands. 

Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education, 56(3), 769–780. doi:10.1016/j.compedu.2010.10.020 

Moofarry, J. F., Cano, K.A. S., Lozano, D. F. S., & García, J. F. C. (2019). Selection of Mental Tasks for Brain-Computer Interfaces Using NASA-TLX Index. Paper presented at the International Conference onApplied Technologies. 

Moon, J., & Ryu, J. (2021). The effects of social and cognitive cues on learning comprehension, eye-gaze pattern, and cognitive load in video instruction. Journal of Computing in Higher Education, 33(1), 39–63. doi:10.1007/s12528-020-09255-x 

Moreno, R., & Mayer, R. E. (1999). Visual presentations in multimedia learning: Conditions that overload visual working memory. Paper presented at the International Conference onAdvances in Visual Information Systems. 

Moro, C., Štromberga, Z., Raikos,A., & Stirling,A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education, 10(6), 549–559. doi:10.1002/ase.1696 

Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87(2), 319–334. doi:10.1037/0022-0663.87.2.319 

Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. doi:10.1016/j.compedu.2019.103618 

Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449–461. doi:10.1016/j.tics.2017.03.010 

Naccache, B., Mesquida, L., Raynaud, J.-P., & Revet, A. (2021). Smartphone application for adolescents with anorexia nervosa: An initial acceptability and user experience evaluation. BMC Psychiatry, 21(1), 1-14. doi:10.1186/s12888-021-03478-7 

Nagy,A. L., & Winterbottom, M. (2000). The achromatic mechanism and mechanisms tuned to chromaticity and luminance in visual search. Journal of the Optical Society of America A, 17(3), 369–379. doi:10.1364/JOSAA.17.000369 

Nikulin, C., Lopez, G., Piñonez, E., Gonzalez, L., & Zapata, P. (2019). NASA-TLX for predictability and measurability of instructional design models: Case study in design methods. Educational Technology Research Development, 67(2), 467–493. doi:10.1007/s11423-019-09657-4 

Norman, D., & Nielsen, J. (2016). The definition of user experience (UX). Nielsen Norman Group Publication, 1, 2.1. 

Nuthmann, A., de Groot, F., Huettig, F., & Olivers, C. N. L. (2019). Extrafoveal attentional capture by object semantics. PLOS ONE, 14(5), e0217051. doi:10.1371/journal.pone.0217051 

O'Donnell, R. D., & Eggemeier,F. T. (1986). Workload assessment methodology. In K. 

R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 2: Cognitive processes and performance. (pp. 1–49). Oxford, England: John Wiley & Sons. 

Ojeda-Castelo, J. J., Piedra-Fernandez, J. A., & Iribarne, L. (2021). A device-interaction model for users with special needs. Multimedia Tools Applications 80(5), 6675–6710. doi:10.1007/s11042-020-10026-0 

Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology, 32(5), 1243–1265. 

Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human 

Behavior, 26(1), 110–117. doi:10.1016/j.chb.2009.09.001 

Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445–453. doi:10.1016/j.compedu.2009.03.002 

Özgen, D. S.,Afacan,Y., & Sürer, E. (2019). Usability of virtual reality for basic design education:Acomparative study with paper-based design. International Journal of Technology Design Education,1–21. doi:10.1007/s10798-019-09554-0 

Özgen, D. S.,Afacan,Y., & Sürer, E. (2021). Usability of virtual reality for basic design education:Acomparative study with paper-based design. International Journal of Technology and Design Education, 31(2), 357–377. doi:10.1007/s10798-019-09554-0 

Paas, F., & Ayres, P. (2014). Cognitive load theory: A broader view on the role of memory in learning and education. Educational Psychology Review, 26(2), 191–195. doi:10.1007/s10648-014-9263-5 

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4. doi:10.1207/S15326985EP3801_1 

Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71. doi:10.1207/S15326985EP3801_8 

Paas, F., & van Merriënboer, J. J. G. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4), 394–398. doi:10.1177/0963721420922183 

Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122–133. doi:10.1037/0022-0663.86.1.122 

Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem-solving skill in statistics:Acognitive-load approach. Journal of Educational Psychology, 84(4), 429–434. doi:10.1037/0022-0663.84.4.429 

Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1993). The efficiency of instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Human Factors, 35(4), 737–743. 

doi:10.1177/001872089303500412 

Paas, F. G. W. C., & Van Merriënboer,J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351–371. doi:10.1007/BF02213420 

Papachristos, N. M., Ntalakas, G., Vrellis, I., & Mikropoulos, T. A. (2018). A virtual environment for training in culinary education: Immersion and user experience. In Mikropoulos, T. (Eds.), Research on e-Learning and ICT in education (pp. 367-380).Cham: Springer. 

Pappa, G., Ioannou, N., Christofi, M., & Lanitis, A. (2018). Preparing student mobility through a VR application for cultural education. In Ioannides, M., Martins, J., Žarnic, R., Lim, V. (Eds.), Advances in digital cultural heritage (pp. 218-227).Cham: Springer. 

Park, L. S., Pan, F., Steffens, D., Young, J., & Hong, J. (2021). Are surgeons working smarter or harder? A systematic review comparing the physical and mental demands of robotic and laparoscopic or open surgery. World Journal of Surgery, 1–15. doi:10.1007/s00268-021-06055-x 

Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785–797. doi:10.1037/edu0000241 

Parong, J., & Mayer, R. E. (2021). Cognitive and affective processes for learning science in immersive virtual reality. Journal of Computer Assisted Learning, 37(1), 226–241. doi:10.1111/jcal.12482 

Parsons, S. (2016). Authenticity in virtual reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138–157. doi:10.1016/j.edurev.2016.08.001 

Pellas, N., Mystakidis, S., & Kazanidis, I. (2021). Immersive virtual reality in K-12 and higher education: A systematic review of the last decade scientific literature. Virtual Reality, 25(3), 835–861. doi:10.1007/s10055-020-00489-9 

Plewan, T., & Rinkenauer, G. (2021). Visual search in virtual 3D space:The relation of multiple targets and distractors. Psychological Research, 1–12. doi:10.1007/s00426-020-01392-3 

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. doi:10.1080/00335558008248231 

Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrovic, V. M., & Jovanovic, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. doi:10.1016/j.compedu.2016.02.002 

Qian, Q., Song, M., Shinomori, K., & Wang, F. (2012). The functional role of alternation advantage in the sequence effect of symbolic cueing with nonpredictive arrow cues. Attention, Perception, & Psychophysics, 74(7), 1430–1436. doi:10.3758/s13414-012-0337-5 

Raskar, R., & Tumblin, J. (2009). Computational photography: Mastering new techniques for lenses, lighting, and sensors. United States:AK Peters, Ltd. 

Rauschenberger,M., Schrepp, M., Pérez Cota, M., Olschner,S., & Thomaschewski, J. (2013). Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version. doi:10.9781/ijimai.2013.215 

Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses:a Systematic review,2009–2019. Journal of Science Education and Technology, 30(1), 16–30. doi:10.1007/s10956-020-09866-0 

Regodic, M., Bárdosi, Z., Diakov, G., Galijaševic, M., Freyschlag, C. F., & Freysinger, 

W. (2021). Visual display for surgical targeting: Concepts and usability study. International Journal of Computer Assisted Radiology Surgery, 1–12. doi:10.1007/s11548-021-02355-8 

Reimers, F. M., & Schleicher,A. (2020). A framework to guide an education response to the COVID-19 pandemic of 2020. OECD. Retrieved Apri, 14(2020), 2020–2004. 

Reisslein, J., Johnson,A. M., & Reisslein, M. (2015). Color coding of circuit quantities in introductory circuit analysis instruction. IEEE Transactions on Education, 58(1), 7-14. doi:10.1109/TE.2014.2312674 

Rizzo, L., Dondio, P., Delany, S. J., & Longo, L. (2016). Modeling mental workload via rule-based expert system: A comparison with NASA-TLX and workload profile. Paper presented at the IFIP International Conference on Artificial Intelligence Applications and Innovations. 

Salomon, G. (1983). The differential investment of mental effort in learning from different sources. Educational Psychologist, 18(1), 42–50. doi:10.1080/00461528309529260 

Salvato, G., De Maio, G., & Bottini, G. (2017). Exploring biased attention towards body-related stimuli and its relationship with body awareness. Scientific Reports, 7(1), 17234. doi:10.1038/s41598-017-17528-2 

Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332–339. doi:10.1038/nrn1651 

Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11-26. doi.org/10.1016/j.learninstruc.2014.11.002 

Schlegel, M. (1995). A handbook of instructional and training program design. New York: ERIC Document Reproduction Service. 

Schneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018). A meta-analysis of how signaling affects learning with media. Educational Research Review, 23, 1–24. doi:10.1016/j.edurev.2017.11.001 

Schnotz, W., & Lowe, R. (2008). A unified view of learning from animated and static graphics. In Schnotz, W., & Lowe, R. (Eds.), Learning with animation: Research implications for design. (pp. 304–356). New York, NY, US: Cambridge University Press. 

Schrepp, M., Hinderks,A., & Thomaschewski, J. (2017). Construction of a benchmark for the user experience questionnaire (UEQ). International Journal of Interactive Multimedia and Artificial Intelligence, 4(4), 40-44. doi:10.9781/ijimai.2017.445 

Schwebel, D. C., Combs, T., Rodriguez, D., Severson, J., & Sisiopiku, V. (2016). Community-based pedestrian safety training in virtual reality:Apragmatic trial. Accident Analysis Prevention, 86, 9–15. doi:10.1016/j.aap.2015.10.002 

Seiler, S. (2013). Current trends in remote and virtual lab engineering. Where are we in 2013? International Journal of Online Biomedical Engineering, 9(6), 12–16. doi:10.3991/ijoe.v9i6.2898 

Senthamarai, S. (2018). Interactive teaching strategies. Journal of Applied Advanced Research, 3(S1), 36–38. doi:10.21839/jaar.2018.v3iS1.166 

Seo, J. H., Malone, E., Beams, B., & Pine, M. (2021). Toward constructivist approach using virtual reality in anatomy education. In Uhl, JF., Jorge, J., Lopes, D.S., Campos, P.F. (Eds.), Digital Anatomy (pp. 343–366). Cham: Springer. 

Seufert, T., & Brünken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology, 20(3), 321-331. doi.org/10.1002/acp.1248 

Shahdloo, M., Çelik, E., & Çukur, T. (2020). Biased competition in semantic representation during natural visual search. NeuroImage, 216, 116383. doi:10.1016/j.neuroimage.2019.116383 

Sharhorodska, O., & Iquira, D. (2019). Interaction of low cost mobile virtual reality environments—Using metaphor in an astronomy laboratory. Paper presented at the International Conference on Human-Computer Interaction. 

Shin, D.,& Park,S. (2019). 3D learning spaces andactivities fostering users’learning, acceptance, and creativity. Journal of Computing in Higher Education, 31(1), 210–228. doi:10.1007/s12528-019-09205-2 

Shin, D.-H. (2017). The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telematics and Informatics, 34(8), 1826–1836. doi:10.1016/j.tele.2017.05.013 

Shin, D.-H., An, H., & Kim, J. H. (2016). How the second screens change the way people interact and learn: The effects of second screen use on information processing. Interactive Learning Environments, 24(8), 2058–2079. doi:10.1080/10494820.2015.1076851 

Shin, D.-H., & Chung, K.-m. (2017). The effects of input modality and story-based knowledge on users' game experience. Computers in Human Behavior, 68, 180–189. doi:10.1016/j.chb.2016.11.030 

Shnai, I. (2018). Digital learning design: From ideation via TRIZ to implementation. In Koziolek, S., Chechurin, L., Collan, M. (Eds.), Advances and Impacts of the Theory of Inventive Problem Solving (pp. 1-16). Cham: Springer. 

Sidhu, M. S. (2014). Integration of visual cues in an augmented reality application for enhancing the learning of engineering concepts. Paper presented at the Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS) 2012. 

Skuballa, I. T., Schwonke, R., & Renkl, A. (2012). Learning from narrated animations with different support procedures: Working memory capacity matters. Applied Cognitive Psychology, 26(6), 840-847. doi.org/10.1002/acp.2884 

Skulmowski, A., & Rey, G. D. (2018). Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cognitive Research: 

Principles and Implications, 3(1), 6. doi:10.1186/s41235-018-0092-9 

Skulmowski, A., & Rey, G. D. (2020a). The realism paradox: Realism can act as a form of signaling despite being associated with cognitive load. Human Behavior and Emerging Technologies, 2(3), 251–258. doi:10.1002/hbe2.190 

Skulmowski, A., & Rey, G. D. (2020b). Subjective cognitive load surveys lead to divergent results for interactive learning media. Human Behavior and Emerging Technologies, 2(2), 149–157. doi:10.1002/hbe2.184 

Skulmowski, A., & Rey, G. D. (2021). Realism as a retrieval cue: Evidence for concreteness-specific effects of realistic, schematic, and verbal components of visualizations on learning and testing. Human Behavior and Emerging Technologies, 3(2), 283-295. doi:10.1002/hbe2.209 

Skulmowski,A., & Xu, K. M. (2022). Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educational Psychology Review, 34(1), 171–196. doi:10.1007/s10648-021-09624-7 

Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549–3557. doi:10.1098/rstb.2009.0138 

Slater,M., & Wilbur, S. (1997).Aframework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603–616. doi:10.1162/pres.1997.6.6.603 

Song, N. (2017). Design and development of virtual experiment platform for photographic technology network. Industrial Design, 7, 40–41. 

Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248. doi:10.1037/0096-1523.31.2.248 

Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348. doi:10.1016/j.tics.2008.05.007 

Soto,D.,Humphreys, G. W.,& Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46(6), 1010–1018. doi:10.1016/j.visres.2005.09.008 

Southgate, E., Smith, S. P., Cividino, C., Saxby, S., Kilham, J., Eather, G., . . . Bergin, 

C. (2019). Embedding immersive virtual reality in classrooms: Ethical, organisational and educational lessons in bridging research and practice. International Journal of Child-Computer Interaction, 19, 19–29. doi:10.1016/j.ijcci.2018.10.002 

Stavroulia, K.-E., Christofi, M., Zarraonandia, T., Michael-Grigoriou, D., & Lanitis, A. (2019). Virtual reality environments (VREs) for training and learning. InDíaz, P., Ioannou, A., Bhagat, K., Spector, J. (Eds.), Learning in a Digital World(pp. 195-211). Singapore: Springer. 

Steinke, M., Huk, T., & Floto, C. (2003). Helping teachers developing computer animations for improving learning in science education. Paper presented at the Society for Information Technology & Teacher Education International Conference. 

Su, C.-H., & Cheng, T.-W. (2019). A sustainability innovation experiential learning modelfor virtualreality chemistrylaboratory:An empirical study with PLS-SEM and IPMA. Sustainability, 11(4). doi:10.3390/su11041027 

Su, K.-W., Chen, S.-C., Lin, P.-H., & Hsieh, C.-I. (2020). Evaluating the user interface and experience of VR in the electronic commerce environment: A hybrid approach. Virtual Reality, 24(2), 241–254. doi:10.1007/s10055-019-00394-w 

Su, Y. (2011). Development and application of the virtual intelligent digital camera teaching system. In Jin, D., Lin, S. (Eds.), Advances in Multimedia, Software Engineering and Computing Vol. 2 (pp. 521–527). Berlin, Heidelberg: Springer. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. doi:10.1016/0364-0213(88)90023-7 

Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In Mayer,R.E(Eds.),The Cambridge Handbook of Multimedia Learning(pp.19-30). Cambridge, England: Cambridge University Press. 

Sweller, J. (2008). Cognitive load theory and the use of educational technology. Educational Technology, 48(1), 32–35. 

Sweller, J. (2011). Chapter two—Cognitive load theory. In J. P. Mestre & B. H. Ross (Eds.), Psychology of learning and motivation (Vol. 55, pp. 37–76): Academic Press. 

Sweller, J. (2021). Instructional design. In T. K. Shackelford & V. A. 

Weekes-Shackelford (Eds.), Encyclopedia of evolutionary psychological 

science (pp. 4159–4163). Cham: Springer International Publishing. 

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional Design. Educational Psychology Review, 10(3), 251–296. doi:10.1023/A:1022193728205 

Tabbers, H. K., & de Koeijer, B. (2010). Learner control in animated multimedia instructions. Instructional Science, 38(5), 441-453. doi:10.1007/s11251-009-9119-4 

Tabbers, H. K., Martens, R. L., & Van Merriënboer, J. J. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74(1), 71–81. doi:10.1348/000709904322848824 

Tan, S. (2019). An analysis of the teaching methods of basic photography courses in colleges and universities. Collection, 1, 165–167. 

Tarng, W., Tsai, C.-F., Lin, C.-M., Lee, C.-Y., & Liou, H.-H. (2015). Development of an educational virtual transmission electron microscope laboratory. Virtual Reality, 19(1), 33–44. doi:10.1007/s10055-014-0253-1 

Taylor, D., Hallett, T., Lowe, P., & Sanders, P. (2015). Digital photography complete course. London, England, U.K: DK Publishing. 

Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi:10.1016/j.actpsy.2010.02.006 

Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 29, 97–101. doi:10.1016/j.copsyc.2018.12.024 

Theeuwes, J., & Burger, R. (1998).Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1342–1353. doi:10.1037/0096-1523.24.5.1342 

Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3(4), 257. doi:10.1037/1076-898X.3.4.257 

Treisman, A. (1988). Feature analysis in early vision: Evidence from search asymmetry. Psychological Review, 95, 15–48. 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010-0285(80)90005-5 

Tugtekin, U., & Odabasi, H. F. (2022). Do interactive learning environments have an effect on learning outcomes, cognitive load and metacognitive judgments? Education and Information Technologies, 27(5), 7019-7058.doi:10.1007/s10639-022-10912-0 

Turatto, M., & Galfano, G. (2000). Color, form and luminance capture attention in visual search. Vision Research, 40(13), 1639–1643. doi:10.1016/S0042-6989(00)00061-4 

Turatto, M., & Galfano, G. (2001). Attentional capture by color without any relevant attentional set. Perception & Psychophysics, 63(2), 286–297. doi:10.3758/BF03194469 

Turatto, M., Galfano, G., Gardini, S., & Mascetti, G. G. (2004). Stimulus-driven attentional capture: An empirical comparison of display-size and distance methods. The Quarterly Journal of Experimental Psychology Section A, 57(2), 297–324. doi:10.1080/02724980343000242 

Tüysüz, C. (2010). The effect of the virtual laboratory on students' achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37–53. 

Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human-Computer Studies, 57(4), 247-262. doi.org/10.1006/ijhc.2002.1017 

Ullah, S., Ali, N., & Rahman, S. U. (2016). The effect of procedural guidance on students’ skill enhancement in a virtual chemistry laboratory. Journal of Chemical Education, 93(12), 2018–2025. doi:10.1021/acs.jchemed.5b00969 

Van Gog, T. (2014). The signaling (or cueing) principle in multimedia learning. In The Cambridge handbook of multimedia learning, 2nd ed. (pp. 263–278). New York, NY, US: Cambridge University Press. 

Van Merriënboer, J. J., & Ayres, P. (2005). Research on cognitive load theory and its design implications for e-learning. Educational Technology Research, 53(3), 5–13. doi:10.1007/BF02504793 

van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177. doi:10.1007/s10648-005-3951-0 

Wallgrün, J. O., Bagher, M. M., Sajjadi, P., & Klippel, A. (2020, 22–26 March). A comparison of visual attention guiding approaches for 360° image-based VR tours.Paper presented atthe 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 

Wang, C. (2020). Application of virtual simulation technology in the field of journalism and communication education in colleges and universities. New Media Research, 1. doi:10.19400/j.cnki.cn10-1407/g2.2020.01.021 

Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students’ inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658–669. doi:10.1016/j.chb.2015.01.043 

Wang, P., Bai, X., Billinghurst, M., Zhang, S., Wei, S., Xu, G., . . . Zhang, J. (2020). 3DGAM: Using 3D gesture and CAD models for training on mixed reality remote collaboration. Multimedia Tools Applications, 1–26. doi:10.1007/s11042-020-09731-7 

Wang, Y., Dang, J., Yong, J., Wang, W., & Yue, B. (2019). Construction of practical teaching system for integration of specialism and innovation based on virtual simulation technology. Paper presented at the National Conference on Computer Science Technology and Education. 

Wattanasin, W., Piriyasurawong, P., & Chatwattana, P. (2019). Engineering project-based learning model using virtual laboratory mix augmented reality to enhance engineering and innovation skills. Paper presented at the International Conference on Interactive Collaborative Learning. 

Wickens, C. D., & Liu, Y. (1988). Codes and modalities in multiple resources: A success and a qualification. Human Factors, 30(5), 599–616. doi:10.1177/001872088803000505 

Wilson, G. F. (1993). Air-to-ground training missions:A psychophysiological workload analysis. Ergonomics, 36(9), 1071–1087. doi:10.1080/00140139308967979 

Wilson, G. F., & Russell, C. A. (2003). Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Human Factors, 45(4), 635–644. doi:10.1518/hfes.45.4.635.27088 

Wilson, T. D. (2015). Role of image and cognitive load in anatomical multimedia. In Chan, L., Pawlina, W. (Eds.), Teaching anatomy (pp. 237-246).Cham: Springer. 

Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345–376. doi:10.1207/s15326985ep2404_2 

Wolf, J., Wolfer, V., Halbe, M., Maisano, F., Lohmeyer, Q., & Meboldt, M. (2021). Comparing the effectiveness of augmented reality-based and conventional instructions during single ECMO cannulation training. International Journal of Computer Assisted Radiology Surgery 1171–1180. doi:10.1007/s11548-021-02408 

Wolf, T. (2009). Assessing student learning in a virtual laboratory environment. IEEE Transactions on Education, 53(2), 216–222. doi:10.1109 / TE.2008.2012114 

Wouters, P., Paas, F., & van Merriënboer, J. J. (2008). How to optimize learning from animated models: A review of guidelines based on cognitive load. Review of Educational Research, 78(3), 645–675. doi:10.1037/edu0000285 

Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991-2005. doi:10.1111/bjet.13023 

Wu, H., Luo, W., Pan, N., Nan, S., Deng, Y., Fu, S., & Yang, L. (2019). Understanding freehand gestures: A study of freehand gestural interaction for immersive VR shopping applications. Human-centric Computing and Information Sciences, 9(1), 43. doi:10.1186/s13673-019-0204-710.1186/s13673-019-0204-7 

Wu, X. (2011). Research on the application of virtual reality technology in the course of modern educational technology. Audio-Visual Education in China, 3, 96–100. doi:10.12738/estp.2018.5.037 

Xie, B., & Salvendy, G. (2000). Prediction of mental workload in single and multiple tasks environments. International Journal of Cognitive Ergonomics, 4(3), 213–242. doi:10.1207/S15327566IJCE0403_3 

Xie, H., Mayer, R. E., Wang, F., & Zhou, Z. (2019). Coordinating visual and auditory cueing in multimedia learning. Educational Psychology, 111(2), 235–255. doi:10.1037/edu0000285 

Yang, F.-Y., Chang, C.-Y., Chien, W.-R., Chien, Y.-T., & Tseng, Y.-H. (2013). Tracking learners' visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208–220. doi:10.1016/j.compedu.2012.10.009 

Yang, H. (2018). The effects of attention cueing on English reading on mobile phones. Frontiers of Education in China, 13(3), 315–345. 

doi:10.1007/s11516-018-0016-y 

Yang, H. y. (2016). The effects of attention cueing on visualizers' multimedia learning. Educational Technology Society, 19(1), 249–262. 

Yang, O., Shiping, Y., Yabo, D., & Miaoliang, Z. (2007). Web-based interactive virtual laboratory system for digital circuit experiment. InIskander, M. (Eds.), Innovations in e-learning, instruction technology, assessment, and engineering education (pp. 305-309). Dordrecht: Springer. 

Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661–676. doi:10.1037/0096-1523.25.3.661 

Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95–107. doi:10.1037/0096-1523.20.1.95 

Yin,L., Zhao,Y.,& Wang, Q. (2020). Design of photographic lighting placement virtual platform based on multimedia technology. InYang, CT., Pei, Y., Chang, JW. (Eds.),Innovative Computing (pp. 1263-1270). Singapore: Springer. 

Yung, H. I., & Paas, F. (2015). Effects of cueing by a pedagogical agent in an instructional animation: A cognitive load approach. Educational Technology Society, 18(3), 153–160. doi:10.1037/t15489-000 

Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, 1339(1), 154. doi:10.1111/nyas.12606 

Zhang, B., Zhang, J. X., Kong, L., Huang, S.,Yue, Z., & Wang, S. (2010). Guidance of visual attention from working memory contents depends on stimulus attributes. Neuroscience Letters, 486(3), 202–206. doi:10.1016/j.neulet.2010.09.052 

Zhang, K., & Chen, D. (2016). Design and research of virtual simulation experiment teaching resource. Disciplines Exploration(7X), 33–34. doi:10.16400/j.cnki.kjdkx.2016.07.017 

Zhao, J., Lin, L., Sun, J., & Liao, Y. (2020). Using the summarizing strategy to engage learners: Empirical evidence in an immersive virtual reality environment. The Asia-Pacific Education Researcher, 1–10. doi:10.1007/s40299-020-00499-w 

Zhao, Y. (2019). Construction of virtual simulation laboratory in higher vocational 

colleges. Paper presented at the Application of Intelligent Systems in Multi-modal InformationAnalytics. 

Zhu, S., Wang, W., & Zhou, X. (2008). The preliminary exploration of experimental district for digital media education integrated arts and technology. Paper presented at the 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design. 

Zilles Borba, E., Corrêa, A. G., de Deus Lopes, R., & Zuffo, M. (2020). Usability in virtual reality: Evaluating user experience with interactive archaeometry tools in digital simulations. Multimedia Tools and Applications, 79(5), 3425–3447. doi:10.1007/s11042-019-07924-3 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.