UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The iridium(III) complex, Ir(bFppy)2(pyim) (bFppy = 2-(2-butoxy-4-fluorophenyl)pyridine and pyim = 2-(1H-Imidazol-2-yl)pyridine) was excellently prepared between 2-(1H-Imidazol-2-yl)pyridine and chloro-bridged iridium(III) dimer via reflux reaction. Butoxy functional group and fluorine atom were added to the phenyl ring of 2-phenylpyridine at positions 2 and 4 respectively, as cyclometalating ligand. The Ir(bFppy)2(pyim) complex was characterized by spectroscopic methods: FTIR, NMR, LCMS and UVVis absorption. The presence of two sharp peaks at 1256 cm?1 and 1129 cm?1 due to ?(CO) was revealed by IR analysis. The bands appear in the range of 15941567 cm?1 owing to the C[dbnd]C and C[dbnd]N aromatic ring stretching vibrations of phenyl and pyridine. The 1H NMR spectrum showed signals in the range of ? 5.508.60 ppm corresponding to phenylpyridine and pyridylimidazole protons. In contrast, the proton signals in the range of ? 0.804.50 ppm, assignable to butyl substituent. The UVVis spectrum displayed weaker and broader bands (333 nm and 376 nm) in the visible region due to the spin-forbidden 3MLCT transitions. The steady-state emission spectrum of the Ir(bFppy)2(pyim) complex in air-equilibrated methylene chloride solution at 298 K exhibited almost blue emission with a ?max at 466 nm. To support the experimental spectroscopic data, DFT and TD-DFT measurements were conducted using B3LYP in combination with the LanL2DZ basis set. The chemical shifts, vibrational modes and maximum absorptions of the Ir(bFppy)2(pyim) complex were relatively well reproduced. 2023 Elsevier B.V. |
References |
Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E., & Forrest, S. R. (2001). Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 79(13), 2082–2084. https://doi.org/10.1063/1.1400076 Adeloye, A. O., Mphahlele, M. J., Adekunle, A. S., Rhyman, L., & Ramasami, P. (2017). Spectroscopic, electrochemical and DFT studies of phosphorescent homoleptic cyclometalated iridium(III) complexes based on substituted 4-fluorophenylvinyland 4-methoxyphenylvinylquinolines. Materials, 10(10). https://doi.org/10.3390/ma10101061 Ahn, S. Y., Lee, H. S., & Ha, Y. (2011). New blue phosphorescent iridium complexes containing phenylpyridine and triazole ligands: Synthesis and luminescence studies. Journal of Nanoscience and Nanotechnology, 11(5), 4414–4418. https://doi.org/10.1166/jnn.2011.3656 Ali, N. M., MacLeod, V. L., Jennison, P., Sazanovich, I. V., Hunter, C. A., Weinstein, J. A., & Ward, M. D. (2012). Luminescent cyanometallates based on phenylpyridine-Ir(iii) units: Solvatochromism, metallochromism, and energy-transfer in Ir/Ln and Ir/Re complexes. Dalton Transactions, 41(8), 2408–2419. https://doi.org/10.1039/c1dt11328c Ali, N. M., Meijer, A. J. H. M., Ward, M. D., Daud, N., Hashim, N., & Isa, I. M. (2021). Solvatochromism and theoretical studies of dicyanobis(Phenylpyridine)iridium(iii) complex using density functional theory. Indonesian Journal of Chemistry, 21(3), 769–775. https://doi.org/10.22146/ijc.62763 Ali, N. M., Ward, M. D., Hashim, N., & Daud, N. (2019). Synthesis and photophysical properties of bis(phenylpyridine) iridium(III) dicyanide complexes. Materials Research Innovations, 23(3), 135–140. https://doi.org/10.1080/14328917.2017.1397940 Andersson, M. P., & Uvdal, P. (2005). New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis Set 6-311+G(d,p). Journal of Physical Chemistry A, 109(12), 2937–2941. https://doi.org/10.1021/jp045733a Bain, N. H. A. S., Ali, N. M., Juahir, Y., Hashim, N., Isa, I. M., Mohamed, A., Kamari, A., Anouar, E. H., Yamin, B. M., Tajuddin, A. M., Tajuddin, A. M., & Baharudin, M. H. (2020). Synthesis, crystal structure, photophysical properties, DFT studies and Hirshfeld surface analysis of a phosphorescent 1,2,4-triazole-based iridium(III) complex. Polyhedron, 188. https://doi.org/10.1016/j.poly.2020.114690 Baranoff, E., Curchod, B. F. E., Monti, F., Steimer, F., Accorsi, G., Tavernelli, I., Rothlisberger, U., Scopelliti, R., Grätzel, M., & Nazeeruddin, M. K. (2012). Influence of halogen atoms on a homologous series of bis-cyclometalated iridium(III) complexes. Inorganic Chemistry, 51(2), 799–811. https://doi.org/10.1021/ic2011474 Barbante, G. J., Doeven, E. H., Francis, P. S., Stringer, B. D., Hogan, C. F., Kheradmand, P. R., Wilson, D. J. D., & Barnard, P. J. (2015). Iridium(iii) N-heterocyclic carbene complexes: An experimental and theoretical study of structural, spectroscopic, electrochemical and electrogenerated chemiluminescence properties. Dalton Transactions, 44(18), 8564–8576. https://doi.org/10.1039/c4dt03378g Barbante, G. J., Francis, P. S., Hogan, C. F., Kheradmand, P. R., Wilson, D. J. D., & Barnard, P. J. (2013). Electrochemiluminescent ruthenium(II) N-heterocyclic carbene complexes: A combined experimental and theoretical study. Inorganic Chemistry, 52(13), 7448–7459. https://doi.org/10.1021/ic400263r Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913 Chen, S., Bi, H., Tian, W., & Liu, Y. (2022). Deep-Red and Near-Infrared Iridium Complexes with Fine-Tuned Emission Colors by Adjusting Trifluoromethyl Substitution on Cyclometalated Ligands Combined with Matched Ancillary Ligands for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. Molecules, 27(1). https://doi.org/10.3390/molecules27010286 Fabry, D. C., Ho, Y. A., Zapf, R., Tremel, W., Panthöfer, M., Rueping, M., & Rehm, T. H. (2017). Blue light mediated C-H arylation of heteroarenes using TiO Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. Journal of Chemical Physics, 117(16), 7433–7447. https://doi.org/10.1063/1.1508368 Gauss, J. (1993). Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts. The Journal of Chemical Physics, 99(5), 3629–3643. https://doi.org/10.1063/1.466161 Gerber, T. I. A., Hosten, E., Mayer, P., & Tshentu, Z. R. (2006). Synthesis and characterization of rhenium(III) and (V) pyridylimidazole complexes. Journal of Coordination Chemistry, 59(3), 243–253. https://doi.org/10.1080/00958970500069063 Hay, P. J. (2002). Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. Journal of Physical Chemistry A, 106(8), 1634–1641. https://doi.org/10.1021/jp013949w Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009). Extensive TD-DFT benchmark: Singlet-excited states of organic molecules. Journal of Chemical Theory and Computation, 5(9), 2420–2435. https://doi.org/10.1021/ct900298e Monti, F., Kessler, F., Delgado, M., Frey, J., Bazzanini, F., Accorsi, G., Armaroli, N., Bolink, H. J., Ortí, E., Scopelliti, R., Nazeeruddin, M. K., & Baranoff, E. (2013). Charged bis-cyclometalated iridium(III) complexes with carbene-based ancillary ligands. Inorganic Chemistry, 52(18), 10292–10305. https://doi.org/10.1021/ic400600d Omae, I. (2016). Application of the five-membered ring blue light-emitting iridium products of cyclometalation reactions as OLEDs. Coordination Chemistry Reviews, 310, 154–169. https://doi.org/10.1016/j.ccr.2015.08.009 Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., Holmes, R. J., & Forrest, S. R. (2005). Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Inorganic Chemistry, 44(22), 7992–8003. https://doi.org/10.1021/ic051296i Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124(9). https://doi.org/10.1063/1.2173258 Schneidenbach, D., Ammermann, S., Debeaux, M., Freund, A., Zöllner, M., Daniliuc, C., Jones, P. G., Kowalsky, W., & Johannes, H.-H. (2010). Efficient and long-time stable red iridium(III) complexes for organic light-emitting diodes based on quinoxaline ligands. Inorganic Chemistry, 49(2), 397–406. https://doi.org/10.1021/ic9009898 Shavaleev, N. M., Scopelliti, R., Grätzel, M., & Nazeeruddin, M. K. (2013). How to blue-shift phosphorescence color of iridium(III) complexes. Inorganica Chimica Acta, 396, 17–20. https://doi.org/10.1016/j.ica.2012.12.004 Sunesh, C. D., Chitumalla, R. K., Subeesh, M. S., Shanmugasundaram, K., Jang, J., & Choe, Y. (2016). Photophysical, electrochemical, and quantum chemical properties of cationic iridium complexes with tunable emission color. Journal of Electroanalytical Chemistry, 780, 249–256. https://doi.org/10.1016/j.jelechem.2016.09.037 Tan, G., Wang, L., Wang, S., Liu, P., Fan, H., Ho, C.-L., Ma, D., & Wong, W.-Y. (2019). Synthesis, photoluminescence and electroluminescence of triphenylphosphine functionalized cyclometalated iridium(III) complexes. Dyes and Pigments, 160, 717–725. https://doi.org/10.1016/j.dyepig.2018.08.054 Tom, L., Diluzio, S., Hua, C., & Connell, T. U. (2022). Understanding the role of cyclometalating ligand regiochemistry on the photophysics of charged heteroleptic iridium(III) complexes. Journal of Coordination Chemistry, 75(11–14), 1722–1743. https://doi.org/10.1080/00958972.2022.2099272 Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093. https://doi.org/10.1021/cr9904009 Welby, C. E., Gilmartin, L., Marriott, R. R., Zahid, A., Rice, C. R., Gibson, E. A., & Elliott, P. I. P. (2013). Luminescent biscyclometalated arylpyridine iridium(iii) complexes with 4,4′-bi-1,2,3-triazolyl ancillary ligands. Dalton Transactions, 42(37), 13527–13536. https://doi.org/10.1039/c3dt51284c Wu, K., Huang, Z., Liu, C., Zhang, H., & Lei, A. (2015). Aerobic C-N bond activation: A simple strategy to construct pyridines and quinolines. Chemical Communications, 51(12), 2286–2289. https://doi.org/10.1039/c4cc08074b Yang, C.-H., Mauro, M., Polo, F., Watanabe, S., Muenster, I., Fröhlich, R., & de Cola, L. (2012). Deep-blue-emitting heteroleptic iridium(III) complexes suited for highly efficient phosphorescent OLEDs. Chemistry of Materials, 24(19), 3684–3695. https://doi.org/10.1021/cm3010453 Yin, C., Zhou, J., Chen, Q., Han, J., Wu, Y., & Yang, X. (2016). Deactivation causes of supported palladium catalysts for the oxidative carbonylation of phenol. Journal of Molecular Catalysis A: Chemical, 424, 377–383. https://doi.org/10.1016/j.molcata.2016.07.028 Zeng, W., Sun, M.-J., Gong, Z.-L., Shao, J.-Y., Zhong, Y.-W., & Yao, J. (2020). Effect of the Fluoro-Substituent Position on the Crystal Structure and Photoluminescence of Microcrystals of Platinum β-Diketonate Complexes. Inorganic Chemistry, 59(16), 11316–11328. https://doi.org/10.1021/acs.inorgchem.0c00887 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |