UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The optical absorption and emission properties of 20Li2O-xBi2O3-(78-x)TeO2-1Er2O3-1Ag glass system had been analyzed to investigate the hypersensitivity shift and its mechanism. According to the Covalent model, the hypersensitive shift indicated by the drop of F2 at x = 5 mol% can be attributed to charge transfer from O2 ligands to Er3+ ions meanwhile according to the Dielectric screening model, drop of F2 may due to Er3+ ions contraction. The dynamic coupling mechanism was used to explain hypersensitivity transition probabilities in non-centrosymmetric systems. The addition of Bi2O3 may modify the site symmetry of Er3+ ions and oxygen to a high asymmetry ?2, resulting in an asymmetrical electron distribution, thus increasing Er-O covalency, as shown by the maximum ?2 value at x = 5 mol%. The Er3+ ions site symmetry was investigated using Hamiltonian crystal field fitting in the frame of the D4 point symmetry model, which yielded maximum crystal field strength Nv at x = 5 mol%, indicating low point symmetry distortion of the Er3+ ions site symmetry. 2023 The Authors |
References |
B.C. Jamalaiah, T. Suhasini, L.R. Moorthy, K.J. Reddy, I.G. Kim, D.S. Yoo, K. Jang, Visible and near infrared luminescence properties of Er3+ doped LBTAF glasses for optical amplifiers, Optical Mater. 34 (5) (2012) 861–867. D. Ramachari, L.R. Moorthy, C.K. Jayasankar, Gain properties and concentration quenching of Er3+ doped niobium oxyfluorosilicate glasses for photonic applications, Opt. Mater. 36 (4) (2014) 823–828. K. Selvaraju, N. Vijaya, K. Marimuthu, V. Lavin, Composition dependent spectroscopic properties of Er3+ doped boro-tellurite glasses, physica status solidi (a) 210 (3) (2013) 607–615. Y.D. Huang, M. Mortier, F. Auzel, Stark levels analysis for Er3+ doped oxide glasses: germanate and silicate, Opt. Mater. 15 (4) (2001) 243–260. J.B. Gruber, J.R. Quagliano, M.F. Reid, F.S. Richardson, M.E. Hills, M.D. Seltzer, T. H. Allik, Energy levels and correlation crystal-field effects in Er3+ doped garnets, Phys. Rev. B 48 (21) (1993) 15561. S.R. Lüthi, H.U. Güdel, M.P. Hehlen, J.R. Quagliano, Electronic energy-level structure, correlation crystal-field effects, and f− f transition intensities of Er3+ in Cs3Lu2Cl9, Phys. Rev. B 57 (24) (1998) 15229. M.P. Hehlen, M.G. Brik, K.W. Kramer, ¨ 50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application, J. Lumin. 136 (2013) 221–239. Y.C.R. Babu, P.S.R. Naik, K.V. Kumar, S.V.G.V.A. Prasad, A.S. Kumar, Spectral studies of Erbium doped heavy metal borophosphate glass systems, Phys. B Condens. Matter 407 (4) (2012) 705–711. S. Arunkumar, K. Marimuthu, Spectroscopic properties of Er3+ doped bismuth lead telluroborate glasses for 1.53 μm optical amplifiers, J. Alloy. Compd. 627 (2015) 54–68. C.K. Jørgensen, The nephelauxetic series, Prog. Inorg. Chem. (1962) 73–124. Wensky, D. A., & Moulton, W. G. (1970). Energy levels of Pr3+ in various crystal hosts. The Journal of Chemical Physics, 53(10), 3957-3969. Sovers, O. J., & Yoshioka, T. (1969). Host cation effects on the fluorescence spectrum of Eu3+ in oxysulfides. The journal of chemical physics, 51(12), 5330-5336. P.A. Tanner, Y.Y. Yeung, Nephelauxetic effects in the electronic spectra of Pr3 +, Chem. A Eur. J. 117 (41) (2013) 10726–10735. S.P. Tandon, P.C. Mehta, Bonding Inferred from Study of Nephelauxetic Effect in Praseodymium Complexes, Spectrosc. Lett. 2 (8) (1969) 255–259. L. Petit, A. Borel, C. Daul, P. Maldivi, C. Adamo, A theoretical characterization of covalency in rare earth complexes through their absorption electronic properties: f− f transitions, Inorg. Chem. 45 (18) (2006) 7382–7388. C. Morrison, D.R. Mason, C. Kikuchi, Modified slater integrals for an ion in a solid, Phys. Lett. A 24 (11) (1967) 607–608. B.M. Angelov, Nephelauxetic effect and (rk) 4f expectation values of Er3+ in ionic crystals, J. Phys. C Solid State Phys. 17 (10) (1984) 1709. D.J. Newman, Slater parameter shifts in substituted lanthanide ions, J. Phys. Chem. Solid 34 (3) (1973) 541–545. D.E. Henrie, R.L. Fellows, G.R. Choppin, Hypersensitivity in the electronic transitions of lanthanide and actinide complexes, Coord. Chem. Rev. 18 (2) (1976) 199–224. C. Gorller-Walrand, ¨ K. Binnemans, Spectral intensities of f-f transitions, Handb. Phys. Chem. Rare Earths 25 (1998) 101–264. R.D. Peacock, The charge-transfer contribution to the intensity of hypersensitive trivalent lanthanide transitions, Mol. Phys. 33 (5) (1977) 1239–1246. K. Iftikhar, Hypersensitivity in the 4f–4f absorption spectra of lanthanide (III) complexes, Inorg. Chim. Acta 129 (2) (1987) 261–264. A.R. Devi, C.K. Jayasankar, Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses, J. Non Cryst. Solids 197 (2–3) (1996) 111–128. S.V.J. Lakshman, S. Buddhudu, Racah and Judd-Ofelt parameters for Pr3+, Nd3+, and Er3+ ions in a laser liquid, J. Quant. Spectrosc. Radiat. Transf. 24 (3) (1980) 251–257. Y.Y. Yeung, P.A. Tanner, Trends in atomic parameters for crystals and free ions across the lanthanide series: the case of LaCl3: Ln3 +, Chem. A Eur. J. 119 (24) (2015) 6309–6316. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |