UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Due to the vast volumes of newly streamed data on the Internet and social media, the use of sentiment analysis (SA) to extract information and analyze people's opinions has become a trendy topic. Yet, the majority of research are attributed to the English language, despite the fact that other languages, such as Arabic, are among the most popular on the Internet. Considering the availability of numerous dialects of this language and how their data were annotated and processed, the absence of research in this field is evident. Understanding these initiatives merits a great deal of attention in Arabic SA research. To the best of our knowledge, this domain has not been considered before, and thus the aim of this study is to perform a systematic review with regard to SA and data annotations for Arabic dialects published between 2015 and 2023. The outcomes of this research offer a refined taxonomy of data annotation methods classified into three categories: (1) manual, (2) automatic, and (3) hybrid methods. In addition, a discussion of the research challenges, motivations, and recommendations is presented with detailed taxonomy analysis of current research trends, and from this, we identify new research gaps and propose new research implications and future directions that will encourage more scholars to contribute to Arabic SA research, facilitate more successful multilingual SA applications, and provide insights regarding Arabic SA in different contexts. 2023 Elsevier Ltd |
References |
Abdallah, E. E., & Abo-Suaileek, S. A. (2019). Feature-based sentiment analysis for Slang Arabic text. International Journal of Advanced Computer Science and Applications, 10(4), 298–304. https://doi.org/10.14569/ijacsa.2019.0100436 Abdellaoui, H., & Zrigui, M. (2018). Using tweets and emojis to build TEAD: An arabic dataset for sentiment analysis. Computacion y Sistemas, 22(3), 777–786. https://doi.org/10.13053/CyS-22-3-3031 Abdelli, A., Guerrouf, F., Tibermacine, O., & Abdelli, B. (2019). Sentiment Analysis of Arabic Algerian Dialect Using a Supervised Method. Proceedings - 2019 International Conference on Intelligent Systems and Advanced Computing Sciences, ISACS 2019. https://doi.org/10.1109/ISACS48493.2019.9068897 Abdelminaam, D. S., Neggaz, N., Gomaa, I. A. E., Ismail, F. H., & Elsawy, A. (2021a). AOM-MPA: Arabic Opinion Mining using Marine Predators Algorithm based Feature Selection. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 2021, 395–402. https://doi.org/10.1109/MIUCC52538.2021.9447621 Abdelminaam, D. S., Neggaz, N., Gomaa, I. A. E., Ismail, F. H., & Elsawy, A. A. (2021b). Arabicdialects: An efficient framework for Arabic dialects opinion mining on twitter using optimized deep neural networks. IEEE Access, 9, 97079–97099. https://doi.org/10.1109/ACCESS.2021.3094173 Abdul-Mageed, M. (2019). Modeling Arabic subjectivity and sentiment in lexical space. Information Processing and Management, 56(2), 291–307. https://doi.org/10.1016/j.ipm.2017.07.004 Abo, M. E. M., Raj, R. G., & Qazi, A. (2019). A Review on Arabic sentiment analysis: State-of-The-Art, taxonomy and open research challenges. IEEE Access, 7, 162008–162024. https://doi.org/10.1109/ACCESS.2019.2951530 Abo, M. E. M., Shah, N. A. K., Balakrishnan, V., Kamal, M., Abdelaziz, A., & Haruna, K. (2019). SSA-SDA: Subjectivity and sentiment analysis of sudanese dialect Arabic. 2019 International Conference on Computer and Information Sciences, ICCIS 2019. https://doi.org/10.1109/ICCISci.2019.8716466 Abu Farha, I., & Magdy, W. (2021). A comparative study of effective approaches for Arabic sentiment analysis. Information Processing and Management, 58(2). https://doi.org/10.1016/j.ipm.2020.102438 Abuuznien, S., Abdelmohsin, Z., Abdu, E., & Amin, I. (2021). Sentiment Analysis for Sudanese Arabic Dialect Using comparative Supervised Learning approach. Proceedings of: 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering, ICCCEEE 2020. https://doi.org/10.1109/ICCCEEE49695.2021.9429560 Ain, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review. Decision Support Systems, 125. https://doi.org/10.1016/j.dss.2019.113113 Alali, M., Mohd Sharef, N., Azmi Murad, M. A., Hamdan, H., & Husin, N. A. (2019). Narrow Convolutional Neural Network for Arabic Dialects Polarity Classification. IEEE Access, 7, 96272–96283. https://doi.org/10.1109/ACCESS.2019.2929208 Alayba, A. M., Palade, V., England, M., & Iqbal, R. (2018). Improving Sentiment Analysis in Arabic Using Word Representation. 2nd IEEE International Workshop on Arabic and Derived Script Analysis and Recognition, ASAR 2018, 13–18. https://doi.org/10.1109/ASAR.2018.8480191 Al-Ayyoub, M., Khamaiseh, A. A., Jararweh, Y., & Al-Kabi, M. N. (2019). A comprehensive survey of arabic sentiment analysis. Information Processing and Management, 56(2), 320–342. https://doi.org/10.1016/j.ipm.2018.07.006 Al-Kabi, M. N., Al-Qwaqenah, A. A., Gigieh, A. H., Alsmearat, K., Al-Ayyoub, M., & Alsmadi, I. M. (2016). Building a standard dataset for Arabie sentiment analysis: Identifying potential annotation pitfalls. Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, 0. https://doi.org/10.1109/AICCSA.2016.7945822 Almanie, T., Aldayel, A., Alkanhal, G., Alesmail, L., Almutlaq, M., & Althunayan, R. (2018). Saudi Mood: A Real-Time Informative Tool for Visualizing Emotions in Saudi Arabia Using Twitter. 21st Saudi Computer Society National Computer Conference, NCC 2018. https://doi.org/10.1109/NCG.2018.8593165 Al-Moslmi, T., Albared, M., Al-Shabi, A., Omar, N., & Abdullah, S. (2018). Arabic senti-lexicon: Constructing publicly available language resources for Arabic sentiment analysis. Journal of Information Science, 44(3), 345–362. https://doi.org/10.1177/0165551516683908 Almouzini, S., Khemakhem, M., & Alageel, A. (2019). Detecting Arabic Depressed Users from Twitter Data. Procedia Computer Science, 163, 257–265. https://doi.org/10.1016/j.procs.2019.12.107 Almuzaini, H. A., & Azmi, A. M. (2022). An unsupervised annotation of Arabic texts using multi-label topic modeling and genetic algorithm. Expert Systems with Applications, 203. https://doi.org/10.1016/j.eswa.2022.117384 Alotaibi, S., Mehmood, R., & Katib, I. (2019). Sentiment analysis of Arabic tweets in smart cities: A review of Saudi dialect. 2019 4th International Conference on Fog and Mobile Edge Computing, FMEC 2019, 330–335. https://doi.org/10.1109/FMEC.2019.8795331 Alsayat, A., & Elmitwally, N. (2020). A comprehensive study for Arabic Sentiment Analysis (Challenges and Applications). Egyptian Informatics Journal, 21(1), 7–12. https://doi.org/10.1016/j.eij.2019.06.001 Al-Smadi, M., Al-Ayyoub, M., Jararweh, Y., & Qawasmeh, O. (2019). Enhancing Aspect-Based Sentiment Analysis of Arabic Hotels’ reviews using morphological, syntactic and semantic features. Information Processing and Management, 56(2), 308–319. https://doi.org/10.1016/j.ipm.2018.01.006 Alsudais, A., Alotaibi, W., & Alomary, F. (2022). Similarities between Arabic dialects: Investigating geographical proximity. Information Processing and Management, 59(1). https://doi.org/10.1016/j.ipm.2021.102770 Al-Thubaity, A., Alharbi, M., Alqahtani, S., & Aljandal, A. (2018). A Saudi Dialect Twitter Corpus for Sentiment and Emotion Analysis. 21st Saudi Computer Society National Computer Conference, NCC 2018. https://doi.org/10.1109/NCG.2018.8592998 Al-Twairesh, N., Al-Khalifa, H., Al-Salman, A., & Al-Ohali, Y. (2017). AraSenTi-Tweet: A Corpus for Arabic Sentiment Analysis of Saudi Tweets. Procedia Computer Science, 117, 63–72. https://doi.org/10.1016/j.procs.2017.10.094 Al-Twairesh, N., Al-Matham, R., Madi, N., Almugren, N., Al-Aljmi, A.-H., Alshalan, S., Alshalan, R., Alrumayyan, N., Al-Manea, S., Bawazeer, S., Al-Senaydi, S., & Alfutamani, A. (2018). SUAR: Towards Building a Corpus for the Saudi Dialect. Procedia Computer Science, 142, 72–82. https://doi.org/10.1016/j.procs.2018.10.462 Alwakid, G., Osman, T., & Hughes-Roberts, T. (2017). Challenges in Sentiment Analysis for Arabic Social Networks. Procedia Computer Science, 117, 89–100. https://doi.org/10.1016/j.procs.2017.10.097 Alzanin, S. M., Azmi, A. M., & Aboalsamh, H. A. (2022). Short text classification for Arabic social media tweets. Journal of King Saud University - Computer and Information Sciences, 34(9), 6595–6604. https://doi.org/10.1016/j.jksuci.2022.03.020 Daoud, M. (2019). Using implicitly and explicitly rated online customer reviews to build opinionated Arabic lexicons. International Journal of Data Mining, Modelling and Management, 11(2), 189–203. https://doi.org/10.1504/ijdmmm.2019.098968 Diwali, A., Dashtipour, K., Saeedi, K., Gogate, M., Cambria, E., & Hussain, A. (2022). Arabic sentiment analysis using dependency-based rules and deep neural networks. Applied Soft Computing, 127. https://doi.org/10.1016/j.asoc.2022.109377 el Mekki, A., el Mahdaouy, A., Berrada, I., & Khoumsi, A. (2022). AdaSL: An Unsupervised Domain Adaptation framework for Arabic multi-dialectal Sequence Labeling. Information Processing and Management, 59(4). https://doi.org/10.1016/j.ipm.2022.102964 El-Beltagy, S. R. (2016). NileULex: A phrase and word level sentiment lexicon for Egyptian and modern standard Arabic. Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016, 2900–2905. Elfaik, H., & Nfaoui, E. H. (2023). Leveraging feature-level fusion representations and attentional bidirectional RNN-CNN deep models for Arabic affect analysis on Twitter. Journal of King Saud University - Computer and Information Sciences, 35(1), 462–482. https://doi.org/10.1016/j.jksuci.2022.12.015 Elgezouli, M., Elmadani, K. N., & Saeed, M. (2021). SudaBERT: A Pre-Trained Encoder Representation for Sudanese Arabic Dialect. Proceedings of: 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering, ICCCEEE 2020. https://doi.org/10.1109/ICCCEEE49695.2021.9429651 El-Masri, M., Altrabsheh, N., Mansour, H., & Ramsay, A. (2017). A web-based tool for Arabic sentiment analysis. Procedia Computer Science, 117, 38–45. https://doi.org/10.1016/j.procs.2017.10.092 Elminaam, D. S. A., Neggaz, N., Ahmed, I. A., & Abouelyazed, A. E. S. (2021). Swarming Behavior of Harris Hawks Optimizer for Arabic Opinion Mining. Computers, Materials and Continua, 69(3), 4129–4149. https://doi.org/10.32604/cmc.2021.019047 Elnagar, A., Al-Debsi, R., & Einea, O. (2020). Arabic text classification using deep learning models. Information Processing and Management, 57(1). https://doi.org/10.1016/j.ipm.2019.102121 Elnagar, A., Lulu, L., & Einea, O. (2018). An Annotated Huge Dataset for Standard and Colloquial Arabic Reviews for Subjective Sentiment Analysis. Procedia Computer Science, 142, 182–189. https://doi.org/10.1016/j.procs.2018.10.474 Elshakankery, K., & Ahmed, M. F. (2019). HILATSA: A hybrid Incremental learning approach for Arabic tweets sentiment analysis. Egyptian Informatics Journal, 20(3), 163–171. https://doi.org/10.1016/j.eij.2019.03.002 Essatouti, B., Khamar, H., Fkihi, S. E., Faizi, R., & Thami, R. O. H. (2018). Arabic Sentiment Analysis Using a Levenshtein Distance Based Representation Approach. Colloquium in Information Science and Technology, CIST, 2018-Octob, 270–273. https://doi.org/10.1109/CIST.2018.8596379 Farha, I. A., & Magdy, W. (2019). Mazajak: An online arabic sentiment analyser. ACL 2019 - 4th Arabic Natural Language Processing Workshop, WANLP 2019 - Proceedings of the Workshop, 192–198. Fashwan, A., & Alansary, S. (2021). A Morphologically Annotated Corpus and a Morphological Analyzer for Egyptian Arabic. Procedia CIRP, 189, 203–210. https://doi.org/10.1016/j.procs.2021.05.084 Guellil, I., Azouaou, F., & Mendoza, M. (2019). Arabic sentiment analysis: studies, resources, and tools. Social Network Analysis and Mining, 9(1). https://doi.org/10.1007/s13278-019-0602-x Guellil, I., Saâdane, H., Azouaou, F., Gueni, B., & Nouvel, D. (2021). Arabic natural language processing: An overview. Journal of King Saud University - Computer and Information Sciences, 33(5), 497–507. https://doi.org/10.1016/j.jksuci.2019.02.006 Ibrahim, H. S., Abdou, S. M., & Gheith, M. (2016). Automatic expandable large-scale sentiment lexicon of modern standard Arabic and colloquial. Proceedings - 1st International Conference on Arabic Computational Linguistics: Advances in Arabic Computational Linguistics, ACLing 2015, 94–99. https://doi.org/10.1109/ACLing.2015.20 Itani, M., Roast, C., & Al-Khayatt, S. (2017). Developing Resources for Sentiment Analysis of Informal Arabic Text in Social Media. Procedia Computer Science, 117, 129–136. https://doi.org/10.1016/j.procs.2017.10.101 Loureiro, S. M. C., Romero, J., & Bilro, R. G. (2020). Stakeholder engagement in co-creation processes for innovation: A systematic literature review and case study. Journal of Business Research, 119, 388–409. https://doi.org/10.1016/j.jbusres.2019.09.038 Mohammed, A., & Kora, R. (2019). Deep learning approaches for Arabic sentiment analysis. Social Network Analysis and Mining, 9(1). https://doi.org/10.1007/s13278-019-0596-4 Moudjari, L., & Akli-Astouati, K. (2020). An experimental study on sentiment classification of algerian dialect texts. Procedia Computer Science, 176, 1151–1159. https://doi.org/10.1016/j.procs.2020.09.111 Nabil, M., Aly, M., & Atiya, A. F. (2015). ASTD: Arabic sentiment tweets dataset. Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, 2515–2519. https://doi.org/10.18653/v1/d15-1299 Najadat, H., Al-Abdi, A., & Sayaheen, Y. (2018). Model-based sentiment analysis of customer satisfaction for the Jordanian telecommunication companies. 2018 9th International Conference on Information and Communication Systems, ICICS 2018, 2018-Janua, 233–237. https://doi.org/10.1109/IACS.2018.8355429 Stein Dani, V., Dal Sasso Freitas, C. M., & Thom, L. H. (2019). Ten years of visualization of business process models: A systematic literature review. Computer Standards and Interfaces, 66. https://doi.org/10.1016/j.csi.2019.04.006 Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1253 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |