UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This work explicates a simple, rapid, and sensitive method for the electrochemical detection of dopamine (DOP) utilising 1-phenyl-3-methyl-4-orthofluorobenzoyl-5-pyrazolone (HPMoFBP)/multiwalled carbon nanotube (MWCNT) carbon paste electrode (CPE). The electrochemical behaviour of DOP was performed through cyclic voltammetry and square wave voltammetry. HPMoFBP/MWCNT showed a higher current at the lower potential for the oxidation of DOP compared to bare MWCNT. The sensor's improved electrocatalytic activity was observed to detect in a 1.0 x 10-1 M phosphate buffer saline (PBS) solution at pH 8.0. A good linear regression analysis was observed between electrical response and the concentration of DOP in the range of 1 to 1000 M. Under optimized experimental conditions, 1.0 x 10-7 M has been determined as the limit of detection (LOD). The sensor has expressed considerable sensitivity towards DOP detection without interference and is successfully used to determine DOP in dopamine hydrochloride injection. 2023 Chemical Society of Ethiopia and The Authors. |
References |
Donati, E.; Aturki, Z. Capillary Electrophoresis in Food Analysis, 1st ed., Bentham Science Publishers Pte. Ltd: Singapore; 2022; p 450. Karthik, V.; Selvakumar, P.; Senthil Kumar, P.; Satheeskumar, V.; Godwin Vijaysunder, M.; Hariharan, S.; Antony, K. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment. Chemosphere 2022, 304, 135331. Lu, L.; Lin, J.; Zhang, K.; Gao, D.; Wang, D. Molecularly imprinted polymers based on magnetic metal-organic frameworks for surface-assisted laser desorption/ionization time-offlight mass spectrometry analysis and simultaneous luteolin enrichment. J. Chromatogr. A2022, 1678, 463377. Qi, H.; Zhang, C. Organic nanoparticles for electrogenerated chemiluminescence assay. Curr. Opin. Electrochem. 2022, 34, 101023. Salerno, T.M.G.; Coppolino, C.; Donato, P.; Mondello, L. The online coupling of liquid chromatography to Fourier transform infrared spectroscopy using a solute-deposition interface: A proof of concept. Anal. Bioanal. Chem. 2022, 414, 703-712. Moallem, Q.A.; Beitollahi, H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metalorganic frameworks. Microchem. J. 2022, 177, 107261. Sriprasertsuk, S.; Zhang, S.; Wallace, G.; Chen, J.; Varcoe, J.R.; Crean, C. Reduced graphene oxide carbon yarn electrodes for drug sensing. Front. Sens. 2021, 2, 719161. Rejithamol, R.; Beena, S. Carbon paste electrochemical sensors for the detection of neurotransmitters. Front. Sens. 2022, 3, 901628. Maaroof, Y.T.; Mahmoud, K.M. Silver nanoparticle-modified graphite pencil electrode for sensitive electrochemical detection of chloride ions in pharmaceutical formulations. Bull. Chem. Soc. Ethiop. 2023, 37, 491-503. Fredj, Z.; Sawan, M. Advanced nanomaterials-based electrochemical biosensors for catecholamines detection: Challenges and trends. Biosensors 2023, 13, 211. Abedul, M.T.F. Laboratory Methods in Dynamic Electroanalysis, 1st ed., Elsevier: Amsterdam; 2019; p 2-3. Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines 2021, 9, 109. Masood, T.; Asad, M.; Riaz, S.; Akhtar, N.; Hayat, A.; Shenashen, M.A.; Rahman, M.M.Nonenzymatic electrochemical sensing of dopamine from COVID-19 quarantine person. Mater. Chem. Phys. 2022, 289, 126451. Šik Novak, K.; Bogataj Jontez, N.; Kenig, S.; Hladnik, M.; Baruca Arbeiter, A.; Bandelj, D.; Jenko Pražnikar, Z. The effect of COVID-19 lockdown on mental health, gut microbiota composition and serum cortisol levels. Stress 2022, 25, 246-257. Lakard, S.; Pavel, I.A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11, 179. Asif, M.; Imran, M.; Husain, A. Approaches for chemical synthesis and diverse pharmacological significance of pyrazolone derivatives: a review. J. Chil. Chem. Soc. 2021, 66, 5149-5163. Yusri, W.T.; Yulkifli, Y.; Alizar, A.; Isa, I.M. Synthesis and characterization of HPMpFBP using Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and FTIR. J. Ilmu Fisika 2021, 13, 109-117. Zainul, R.; Isa, I.M.; Yazid, N.A.M.; Hashim, N.; Mohd Sharif, S. N.; Amir, Y. Enhanced electrochemical sensor for electrocatalytic glucose analysis in orange juices and milk by the integration of the electron-withdrawing substituents on graphene/glassy carbon electrode. J. Anal. Methods Chem. 2022, 2022, 5029036. Hua, Z.; Qin, Q.; Bai, X.; Wang, C.; Huang, X. β-Cyclodextrin inclusion complex as the immobilization matrix for laccase in the fabrication of a biosensor for dopamine determination. Sens. Actuators B Chem. 2015, 220, 1169-1177. Atta, N.F.; Galal, A.; El-Said, D.M. Novel design of a layered electrochemical dopamine sensor in real samples based on gold nanoparticles/β-cyclodextrin/nafion-modified gold electrode. ACS Omega 2019, 4, 17947-17955. Pomeroy, E.D.; Maza, W.A.; Steinhurst, D.A.; Owrutsky, J.C.; Walker, R.A. Electrochemical sulfur oxidation in solid oxide fuel cells studied by near infrared thermal imaging and chronocoulometry. J. Electrochem. Soc. 2020, 167, 164511. Laviron, E.; Roullier, L.; Degrand, C. A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem. 1980, 112, 11-23. Kumar, Y.; Pramanik, P.; Das, D.K. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon 2019, 5, e02031. Guan, Q.; Guo, H.; Xue, R.; Wang, M.; Zhao, X.; Fan, T.; Yang, W. Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid. J. Electroanal. Chem. 2021, 880, 114932. Abd Azis, N.; Isa, I.M.; Hashim, N.; Ahmad, M.S.; Yazid, N.A.M.; Mukdasai, S. Synergistic effect of zinc/aluminium-layered double hydroxide-clopyralid carbon nanotubes paste electrode in the electrochemical response of dopamine, acetaminophen, and bisphenol A. Int. J. Electrochem. Sci. 2020, 15, 9088-9107. Roduan, M.R.A.M.; Saidin, M.I.; Sidik, S.M.; Abdullah, J.; Isa, I.M.; Hashim, N.; Ahmad, M.S.; Yazid, S.N.A.M.; Bahari, A. A. New modified mesoporous silica nanoparticles with bimetallic Ni-Zr for electroanalytical detection of dopamine. J. Electrochem. Sci. Eng. 2022, 12, 463-474. Tang, C.R.; Tian, G.; Wang, Y.J.; Su, Z.H.; Li, C.X.; Lin, B.G.; Huang, H.W.; Yu, X.Y.; Li, X.F.; Long, Y.F.; Zeng, Y.L. Selective response of dopamine in the presence of ascorbic acid and uric acid at gold nanoparticles and multi-walled carbon nanotubes grafted with ethylene diamine tetraacetic acid modified electrode. Bull. Chem. Soc. Ethiop. 2009, 23, 317-326. Li, Y.; Shen, Y.; Zhang, Y.; Zeng, T.; Wan, Q.; Lai, G.; Yang, N. A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal. Chim. Acta 2021, 1158, 338419. Ahmad, M.S.; Isa, I.M.; Hashim, N.; Saidin, M.I.; Suyanta, S.; Zainul, R.; Mukdasar, S. Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified multiwalled carbon nanotubes as sensor for electrochemical determination of dopamine in alkaline medium. Int. J. Electrochem. Sci. 2019, 14, 9080-9091. Olana, B.N.; Kitte, S.A.; Geletu, A.K.; Soreta, T.R. Selective electrochemical determination of dopamine at p-nitroaniline film-hole modified glassy carbon electrodes. Bull. Chem. Soc. Ethiop. 2017, 31, 361-372. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |