UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1823-7010
Main Author :Ismail Zainol
Additional Authors :Mira Azah Najihah Zainurin
Title :The effect of Yttria-Stabilized Zirconia (YSZ) addition on the synthesis of? ETA-Tricalcium Phosphate (?-TCP) from biogenic hydroxyapatite
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Malaysian Journal of Microscopy
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The utilization of ?-tricalcium phosphate (?-TCP) in medical field has been on demand for their excellent biocompatibility, bioactivity and solubility properties. This material can be produced through degradation of hydroxyapatite (HA) at high temperature. In this research, biogenic hydroxyapatite from fish scales (FsHA) was selected as pre-cursor for the synthesis of ?-TCP. The effect of yttria-stabilized zirconia (YSZ) addition on degradation of FsHA into ?-TCP have been investigated. Different amount of YSZ ranging from 5 to 15 wt% were mixed with FsHA and ball milled into fine powder. The mixture was then sintered at temperature of 1200 C. The materials were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results from FTIR, XRD and SEM-EDX analyses proved that the presence of ?-TCP in the sintered sample at 1200oC. The percentage of ?-TCP was calculated ranging from 17 to 21 % as analyzed from XRD pattern. It was found that the FsHA/YSZ composite with 5 wt% of YSZ addition produced the highest composition of ?-TCP with smallest crystallite size at the ideal sintering temperature of 1200 C. The results also shown that the FsHA was not fully converted into ?-TCP during sintering. Furthermore, XRD analysis also clearly shown the presence of another phase known as calcium zirconate (CaZrO3) phase. The triphasic calcium phosphate (BCP) has high potential to be used as biomaterials for bone fillers applications. Malaysian Journal of Microscopy (2023). All rights reserved.

References

Suresh, S., Romana, S., Md-Zillur, R., Muhamad, F. I., Anita, L., Is, F., Noor, H. M. K.&Won-Chun,  O.  (2023).  Recent  advancements  in  polymer  matrix  nanocomposites  for  bone tissue  engineering  applications. Journal  of  Drug  Delivery  Science  and  Technology.82, 104313.

Zainol, I., Zainurin, M.A.N., Bakar, N.H.A., Jaafar, C.N.A. &Mudhafar, M. (2022). Characterisation  of  porous  hydroxyapatite  beads  prepared  from  fish  scale  for  potential  bone filler applications.Malaysian Journal of Microscopy. 18 (2), 48-57

Mariana  F.  V.,  Nunes,  P.  J., Sónia,  P.  M.,  Ilídio,  J.  C.&Abílio,  P.S. (2019). Microstructural,     mechanical     and    biological     properties     of     hydroxyapatite-CaZrO3biocomposites. Ceramics International. 45, 8195–8203.

Joviniano,  M.  O.  J.,  Pedro,  G.M.,  Rafael,  C.  C.  &  Elizabeth,  F.  M. (2021). Physical characterization  of biphasic  bioceramic  materials  with  diferent  granulation  sizes  and  their infuence on bone repair and infammation in rat calvaria. Scientifc Reports. 11, 4484.

Atchara,  K.,  Thanachai,  B.,  Wantana,  K.,  Penphitcha,  A.,  H-thaichnok,  C.,  Nutth,  T., Adulphan,  P.,  Sujittra,  D.,  Pitphichaya,  S.,  Wutthigrai,  S.,  Drusawin,  V.,Atipong,  B.&Boonrat, L. (2021). Sintering behavior and mechanical properties of hydroxyapatiteceramics prepared  from  Nile  Tilapia  (Oreochromis  niloticus)  bone  and  commercial  powder  for biomedical applications. Ceramics International. 47, 34575–34584.

Evis,  Z.,  Ergun,  C.,  &  Doremus,  R.H.  (2005).  Hydroxylapatite–zirconia  composites: thermal  stability  of  phases  and  sinterability  as  related  to  the  CaO–ZrO2  phase  diagram. Journal of Materials Science. 40(5), 1127–1134.

Ferreira,  C.R.D.,  Santiago,  A.A.G.,  Vasconcelos,  R.C.,  Paiva,  D.  F.F.,  Pirih,  F.Q., Araújo, A. A., Motta, F.V.&Bomio, M.R.D. (2022). Study of microstructural, mechanical, and   biomedical   properties   of   zirconia/hydroxyapatite  ceramic   composites. Ceramics International.48, 12376–12386.

Evis,    Z.    (2006).    Reactions    in    hydroxylapatite-zirconia    composites. CeramicsInternational. 33(6), 987–91.

Evis, Z., Usta, M. & Kutbay, I. (2008). Hydroxyapatite and zirconia composites: effect of MgO and MgF2 on the stability of phases and sinterability. Materials Chemistry and Physics. 110(1), 68–75.

Ananth, K.P., Shanmugam, S., Jose, S.P., Nathanael, A.J., Oh, T.H., Mangalaraj, D. & Ballamurugan, A.M. (2015). Structural and chemical analysis of silica-doped β-TCP ceramic coatings  on  surgical  grade  316L  SS  for  possible  biomedical  application. Journal  of  Asian Ceramic Societies. 3, 317-324.

Joint  Committee  for  Powder  Diffraction  Studies  [JCPDS] –International  Center  for Diffraction  Data,  and  American  Society  for  Testing  and  Materials,  Powder  Diffraction  File. Joint Committee for Powder Diffraction Studies, Swarthmore, PA, 1991.

Stoch, P., Szczerba, J., Lis, J., Madej,D.&Pedzich, Z. (2012).Crystal structure and ab initio calculations of CaZrO3, Journal of the European Ceramic Society. 32, 665–670.

Rapacz-Kmita,  A.,  Slosarczyk,  A.,  Paszkiewicz,  Z.  &  Paluszkiewicz,  C.  (2004).  Phase stability of hydroxyapatite-zirconia (HAp/ZrO2) composites for bone replacement. Journal of Molecular Structure. 704(1-3), 333-340.

Towler,  M.  R.  &  Gibson,  I.  R.  (2001).  The  effect  of  low  levels  of  zirconia  addition  on the mechanical properties of hydroxyapatite. Journal of Materials Science Letters. 20, 1719–1722.

Balaji, D.S.,   Basavaraja, S.,   Deshpande, R.,   Mahesh, D.B.,   Prabhakar, B.K.   & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces. 68, 88-92.

Ruys,  A. (2019). Processing,  structure,  and properties of alumina  ceramics. In Alumina Ceramics:   Biomedical   and  Clinical   Applications.(Woodhead   Publishing   Series   in Biomaterials),pp. 71–121.

Parashurama, L. & Devia, V.S.A. (2018). Combustion Synthesis of Calcium Zirconate Ceramic Nano Powders -Their Structural and Morphological Studies. Der Pharmacia Lettre.10(7), 65-69.

Ashok, M., Sundaram, N.M.& Kalkura, S.N. (2003). Crystallization of hydroxyapatite at physiological temperature. Materials Letters. 57, 2066–2070.

Bollino,  F., Armenia,  E.  &  Tranquillo,  E.  (2017).  Zirconia/Hydroxyapatite  Composites Synthesized  Via  Sol-Gel:  Influence  of  Hydroxyapatite  Content  and  Heating  on  Their Biological Properties.Materials.10, 757.

Mansour,  S.F.,  El-dek,  S.I.  &  Ahmed,  M.K.  (2017).  Physico-mechanical  and morphological  features  of  zirconia  substituted  hydroxyapatite  nano  crystals. Science Report. 7,4320.

Sayer, M., Stratilatov, A.D., Reid, J., Calderin, L., Stott, M.J., Yin, X., Mackenzie,M., Smith,  T.J.N.,  Hendry,  J.A.  &  Langstaff,  S.D.  (2003).  Structure  and  composition  of silicon-stabilized tricalcium phosphate. Biomaterials. 24, 369–382.

Bollino,  F.,  Armenia,  E. & Tranquillo,  E. (2017).  Zirconia/Hydroxyapatite  Composites Synthesized  Via  Sol-Gel: Influence  of  Hydroxyapatite  Content  and  Heating  on  Their Biological Properties.Materials.10, 757.

Salehi,  S.  &  Fathi,  M.H.  (2010).  Fabrication  and  characterization  of  sol–gel  derived hydroxyapatite/zirconia  composite   nanopowderswith   various   yttria   contents.Ceramics International. 36, 1659–1667.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.