UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :P Philology. Linguistics
ISSN :2626-8493
Main Author :Puteri Zarina Megat Khalid
Title :Practical consideration in using pre-trained Convolutional Neural Network (CNN) for finger vein biometric
Place of Production :Tanjung Malim
Publisher :Fakulti Bahasa dan Komunikasi
Year of Publication :2023
Notes :International journal of online and biomedical engineering
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Using a pre-trained Convolutional Neural Network (CNN) model for a practical biometric authentication system requires specific procedures for training and performance evaluation. There are two criteria for a practical biometric system studied in this paper. First, the systems ability to handle identity theft or impersonation attacks. Second, the ability of the system to generate high authentication performance with minimal enrollment period. We propose the use of the Multiple Clip Contrast Limited Adaptive Histogram Equalization (MC-CLAHE) technique to process finger images before being trained by CNN. A pre-trained CNN model called AlexNet is used to extract features as well as classify the MC-CLAHE images. The authentication performance of the pre-trained AlexNet model has increased by a maximum of 30% when using this technique. To ensure that the pre-trained AlexNet model is evaluated based on its ability to prevent impersonation attacks, a procedure to generate the Receiver Operating Characteristics (ROC) curve is proposed. An offline procedure for training the pre-trained AlexNet model is also proposed in this paper. The purpose is to minimize the user enrollment period without compromising the authentication performance. In this paper, this procedure successfully reduces the enrollment time by up to 95% compared to using on-line training 2023, International journal of online and biomedical engineering.All Rights Reserved.

References

X. Meng and S. Qiang, “Vasculature Development in Embryos and its Regulatory Mecha-nisms,” Chinese Journal of Comparative Medicine, vol. 13, p. 45–49, 2003.

D. Wang,  J.  Li  and  G.  Memik,  “User  Identification  Based  on  Finger-Vein  Patterns  for Consumer  Electronics  Devices,”  IEEE  Transactions  on  Consumer  Electronics,  vol.  56,  pp. 799–804, 2010. https://doi.org/10.1109/TCE.2010.5506004

L.  Yang,  G.  Yang,  Y.  Yin  and  X.  Xi,  “Finger  Vein  Recognition  With  Anatomy  Structure  Analysis,”  IEEE  Transactions  on  Circuits  and  Systems  for  Video  Technology,  vol.  28, pp. 1892–1905, 2018. https://doi.org/10.1109/TCSVT.2017.2684833

L. Chen, J. Wang, S. Yang and H. He, “A Finger Vein Image-Based Personal Identification System  With  Self-Adaptive  Illuminance  Control,”  IEEE  Transactions  on  Instrumentation  and Measurement, vol. 66, pp. 294–304, 2017. https://doi.org/10.1109/TIM.2016.2622860

H. Qin and M. A. El-Yacoubi, “Deep Representation-Based Feature Extraction and Recover-ing for Finger-Vein Verification,” IEEE Transactions on Information Forensics and Security, vol. 12, pp. 1816–1829, 2017. https://doi.org/10.1109/TIFS.2017.2689724

M.  S.  M.  Asaari,  S.  A.  Suandi  and  B.  A.  Rosdi,  “Fusion  of  Band  Limited  Phase  Only  Correlation  and  Width  Centroid  Contour  Distance  for  Finger-Based  Biometrics,”  Expert  Systems with Applications, vol. 41, pp. 3367–3382, 2014. https://doi.org/10.1016/j.eswa.2013.11.033

K. J. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” in Graphics Gems, 1994. https://doi.org/10.1016/B978-0-12-336156-1.50061-6

Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolu-tional Neural Networks,” in Advances in Neural Information Processing Systems, 2012.

W. Pi, J. Shin and D. Park, “An Effective Quality Improvement Approach for Low Quality Finger Vein Image,” in 2010 International Conference on Electronics and Information Engi-neering, 2010. https://doi.org/10.1109/ICEIE.2010.5559667

K. Zidan and S. Jumaa, “Finger Vein Recognition using Fuzzy Histogram Equalization and New  Collected  Hardware  Tool,”  Solid  State  Technology,  vol.  63,  pp.  601–620,  October  2020.

M. D. Maysanjaya, M. W. A. Kesiman and I. M. Putrama, “Evaluation of Contrast Enhance-ment  Methods  on  Finger  Vein  NIR  Images,”  Journal  of  Physics:  Conference  Series,  vol. 1810, p. 012035, March 2021. https://doi.org/10.1088/1742-6596/1810/1/012035

P. Musa, F. Rafi and M. Lamsani, “A Review: Contrast Limited Adaptive Histogram Equal-ization (CLAHE) Methods to Help the Application of Face Recognition,” 2018. https://doi.org/10.1109/IAC.2018.8780492

P. L. Kompalli, K. R. Mekala, V. S. R. S. Modala, V. Devalla and A. B. Kompalli, (2022). Leaf  Disease  Detection  and  Remedy  Recommendation  Using  CNN  Algorithm.  Interna-tional Journal of Online and Biomedical Engineering (iJOE), 18(07), pp. 85–100. https://doi.org/10.3991/ijoe.v18i07.30383

S. Safie, R. Ramli, M. A. Azri, M. Aliff and Z. Mohammad, “Raspberry Pi Based Driver Drowsiness Detection System Using Convolutional Neural Network (CNN),” in 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), 2022.

Siddique, M. A. A., Jannatul Ferdouse, Md. Tarek Habib, Md. Jueal Mia, & Mohammad Shorif  Uddin.  (2022).  Convolutional  Neural  Network  Modeling  for  Eye  Disease  Rec-ognition.  International  Journal  of  Online  and  Biomedical  Engineering  (iJOE),  18(09), pp. 115–130. https://doi.org/10.3991/ijoe.v18i09.29847

O.  Abdel-Hamid,  A.-r.  Mohamed,  H.  Jiang,  L.  Deng,  G.  Penn  and  D.  Yu,  “Convolutional  Neural  Networks  for  Speech  Recognition,”  IEEE/ACM  Transactions  on  Audio,  Speech,  and  Language  Processing,  vol.  22,  pp.  1533–1545,  2014.  https://doi.org/10.1109/TASLP. 2014.2339736

F. Radzi, M. Khalil-Hani and R. Bakhteri, “Finger Vein Biometric Identification using Con-volutional Neural Network,” Turkish Journal of Electrical Engineering & Computer Sci-ences, vol. 24, pp. 1863–1878, January 2016. https://doi.org/10.3906/elk-1311-43

R. Das, E. Piciucco, E. Maiorana and P. Campisi, “Convolutional Neural Network for Finger-Vein-Based  Biometric  Identification,”  IEEE  Transactions  on  Information  Forensics  and Security, vol. 14, pp. 360–373, 2019. https://doi.org/10.1109/TIFS.2018.2850320

Boucherit, M. Zmirli, H. Hamza and B. Rosdi, “Finger Vein Identification Using Deeply-Fused Convolutional Neural Network,” Journal of King Saud University – Computer and Information Sciences, vol. 34, April 2020. https://doi.org/10.1016/j.jksuci.2020.04.002

O.  Russakovsky,  J.  Deng,  H.  Su,  J.  Krause,  S.  Satheesh,  S.  Ma,  Z.  Huang,  A.  Karpathy,  A. Khosla, M. Bernstein, A. Berg and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”  International  Journal  of  Computer  Vision,  vol.  115,  September  2014.  https://doi.org/10.1007/s11263-015-0816-y

H. Huang, S. Liu, H. Zheng, L. Ni, Y. Zhang and W. Li, “DeepVein: Novel Finger Vein Veri-fication Methods Based on Deep Convolutional Neural Networks,” 2017.

H. G. Hong, M. B. Lee and K. R. Park, “Convolutional Neural Network-Based Finger-Vein Recognition  Using  NIR  Image  Sensors,”  Sensors,  vol.  17,  2017.  https://doi.org/10.3390/s17061297

Wang,  G.  Chen  and  H.  Chu,  “Finger  Vein  Recognition  Based  on  Multi-Receptive  Field  Bilinear  Convolutional  Neural  Network,”  IEEE  Signal  Processing  Letters,  vol.  28, pp. 1590–1594, 2021. https://doi.org/10.1109/LSP.2021.3094998


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.