UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorod-assembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphic-flower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 ?molg?1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152%. 2023 by the authors. |
References |
Liu, R.; Ji, Z.; Xie, S.; Chen, J.; Zhang, J.; Cao, Y.; Wang, J. Fabrication of {001}-facet enriched anatase TiO2/TiOF2 heterostructures with controllable morphology for enhanced photocatalytic activity. Mater. Today Commun. 2021, 26, 102060. [CrossRef] Hamed, N.K.A.; Ahmad, M.K.; Hairom, N.H.H.; Faridah, A.B.; Mamat, M.H.; Mohamed, A.; Suriani, A.B.; Nafarizal, N.; Fazli, F.I.M.; Mokhtar, S.M.; et al. Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method. Appl. Surf. Sci. 2020, 534, 147571. [CrossRef] Ying, C.; Shi, C.; Lv, K.; Ma, C.; Guo, F.; Fu, H. Fabrication of Sb2S3 sensitized TiO2 nanorod array solar cells using spin-coating assisted successive ionic layer absorption and reaction. Mater. Today Commun. 2019, 19, 393–395. Muqoyyanah; Suriani, A.B.; Mohamed, A.; Hashim, N.; Mamat, M.H.; Ahmad, M.K.; Othman, M.H.D.; Mohamed, M.A.; Nurhafizah, M.D.; Birowosuto, M.D.; et al. Effects of TiO2 phase and nanostructures as photoanode on the performance of dye-sensitized solar cells. Bull. Mater. Sci. 2021, 44, 10. [CrossRef] Cappelli, I.; Fort, A.; Lo Grasso, A.; Panzardi, E.; Mugnaini, M.; Vignoli, V. RH Sensing by Means of TiO2 Nanoparticles: A Comparison among Different Sensing Techniques Based on Modeling and Chemical/Physical Interpretation. Chemosensors 2020, 8, 89. [CrossRef] Musa, M.Z.; Mamat, M.H.; Vasimalai, N.; Subki, A.S.R.A.; Hassan, H.; Malek, M.F.; Ahmad, M.Y.; Rusop, M. Recent Progress on Titanium Dioxide-Based Humidity Sensor: Structural Modification, Doping, and Composite Approach. In Enabling Industry 4.0 through Advances in Manufacturing and Materials; Springer: Singapore, 2022. Chen, K.; Zhang, H.; Tong, H.; Wang, L.; Tao, L.; Wang, K.; Zhang, Y.; Zhou, X. Down-conversion Ce-doped TiO2 nanorod arrays and commercial available carbon based perovskite solar cells: Improved performance and UV photostability. Int. J. Hydrog. Energy 2021, 46, 5677–5688. Jiang, Y.; Pang, H.; Sun, X.; Yang, Z.; Ding, Y.; Liu, Z.; Zhang, P. TiO2 nanobelts with ultra-thin mixed C/SiOx coating as high-performance photo/photoelectrochemical hydrogen evolution materials. Appl. Surf. Sci. 2021, 537, 147861. [CrossRef] Septiani, N.L.W.; Saputro, A.G.; Kaneti, Y.V.; Maulana, A.L.; Fathurrahman, F.; Lim, H.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Golberg, D.; et al. Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. ACS Appl. Nano Mater. 2020, 3, 8982–8996. [CrossRef] Wang, X.; Liu, F.; Chen, X.; Lu, G.; Song, X.; Tian, J.; Cui, H.; Zhang, G.; Gao, K. SnO2 core-shell hollow microspheres comodification with Au and NiO nanoparticles for acetone gas sensing. Powder Technol. 2020, 364, 159–166. [CrossRef] Chammingkwan, P.; Mai, L.T.T.; Ikeda, T.; Mohan, P. Nanostructured magnesium oxide microspheres for efficient carbon dioxide capture. J. CO2 Util. 2021, 51, 101652. Shu, Y.; Zhao, T.; Li, X.; Yang, L.; Cao, S. Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J. Alloy. Compd. 2022, 897, 163227. [CrossRef] Parimon, N.; Mamat, M.H.; Shameem Banu, I.B.; Vasimalai, N.; Ahmad, M.K.; Suriani, A.B.; Mohamed, A.; Rusop, M. Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball-flower-like structure films. J. Mater. Sci. Mater. Electron. 2020, 31, 11673–11687. Lan, K.; Wang, R.; Zhang, W.; Zhao, Z.; Elzatahry, A.; Zhang, X.; Liu, Y.; Al-Dhayan, D.; Xia, Y.; Zhao, D. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures. Chem 2018, 4, 2436–2450. Arjunkumar, B.; Ramalingam, G.; Ramesh, M.; Ponraj, J.S.; Rao, K.V. Investigation of uni-directional nanorods composed microspheres and branched TiO2 nanorods towards solar cell application. Mater. Lett. 2020, 273, 127900. [CrossRef] Ren, Y.; Zhang, G.; Huo, J.; Li, J.; Liu, Y.; Guo, S. Flower-like TiO2 hollow microspheres with mixed-phases for highpseudocapacitive lithium storage. J. Alloy. Compd. 2022, 902, 163730. Huai, X.; Rizzi, G.A.; Wang, Y.; Qi, Q.; Granozzi, G.; Fu, W.; Zhang, Z. Suppressed charge carrier trap states and double photon absorption in substitutional Ta-doped TiO2-NT array. Nano Today 2022, 43, 101407. [CrossRef] Hsu, C.-H.; Chen, K.-T.; Lin, L.-Y.; Wu, W.-Y.; Liang, L.-S.; Gao, P.; Qiu, Y.; Zhang, X.-Y.; Huang, P.-H.; Lien, S.-Y.; et al. Tantalum- Doped TiO2 Prepared by Atomic Layer Deposition and Its Application in Perovskite Solar Cells. Nanomaterials 2021, 11, 1504. [CrossRef] Nitta, A.; Takashima, M.; Murakami, N.; Takase, M.; Ohtani, B. Reversed double-beam photoacoustic spectroscopy of metal-oxide powders for estimation of their energy-resolved distribution of electron traps and electronic-band structure. Electrochim. Acta 2018, 264, 83–90. [CrossRef] Kobielusz, M.; Nitta, A.; Macyk,W.; Ohtani, B. Combined Spectroscopic Methods of Determination of Density of Electronic States: Comparative Analysis of Diffuse Reflectance Spectroelectrochemistry and Reversed Double-Beam Photoacoustic Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 3019–3025. [CrossRef] [PubMed] Suriani, A.B.; Alfarisa, S.; Mohamed, A.; Isa, I.M.; Kamari, A.; Hashim, N.; Mamat, M.H.; Mohamed, A.R.; Rusop, M. Quasialigned carbon nanotubes synthesised from waste engine oil. Mater. Lett. 2015, 139, 220–223. [CrossRef] Malek, M.F.; Robaiah, M.; Suriani, A.B.; Mamat, M.H.; Ahmad, M.K.; Soga, T.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Aslam, M.; et al. The utilization of waste cooking palm oil as a green carbon source for the growth of multilayer graphene. J. Aust. Ceram. Soc. 2021, 57, 347–358. [CrossRef] Jeong, H.; Noh, Y.; Lee, D. Highly stable and sensitive resistive flexible humidity sensors by means of roll-to-roll printed electrodes and flower-like TiO2 nanostructures. Ceram. Int. 2019, 45, 985–992. Saqib, M.; Ali Khan, S.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. [CrossRef] [PubMed] Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225, 233–240. [CrossRef] Mohamed Zahidi, M.; Mamat, M.H.; Malek, M.F.; Yaakob, M.K.; Ahmad, M.K.; Abu Bakar, S.; Mohamed, A.; A Subki, A.S.R.; Mahmood, M.R. Evaluating Different TiO2 Nanoflower-Based Composites for Humidity Detection. Sensors 2022, 22, 5794. [CrossRef] Guo, L.; Li, X.; Li,W.; Gou, C.; Zheng, M.; Zhang, Y.; Chen, Z.; Hong, Y. High-sensitive humidity sensor based on MoS2/graphene oxide quantum dot nanocomposite. Mater. Chem. Phys. 2022, 287, 126146. [CrossRef] Li, X.; Zhuang, Z.; Qi, D.; Zhao, C. High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens. Actuators B Chem. 2021, 330, 129239. [CrossRef] Yao, X.; Chen, L.; Luo, Z.; Ye, C.; Liang, F.; Yang, T.; Liu, X.; Tian, X.; Bi, H.;Wang, C.; et al. High-performance flexible humidity sensors for breath detection and non-touch switches. Nano Sel. 2022, 3, 1168–1177. [CrossRef] Yusoff, M.M.; Mamat, M.H.; Abdullah, M.A.R.; Ismail, A.S.; Malek, M.F.; Zoolfakar, A.S.; Al Junid, S.A.M.; Suriani, A.B.; Mohamed, A.; Ahmad, M.K.; et al. Coupling heterostructure of thickness-controlled nickel oxide nanosheets layer and titanium dioxide nanorod arrays via immersion route for self-powered solid-state ultraviolet photosensor applications. Measurement 2020, 149, 106982. Hameed, T.A.; Azab, A.A.; Ibrahim, R.S.; Rady, K.E. Optimization, structural, optical and magnetic properties of TiO2/CoFe2O4 nanocomposites. Ceram. Int. 2022, 48, 20418–20425. Chen, X.; Peng, X.; Jiang, L.; Yuan, X.; Fei, J.; Zhang, W. Photocatalytic removal of antibiotics by MOF-derived Ti3+- and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix. Chem. Eng. J. 2022, 427, 130945. [CrossRef] Samriti; Prateek; Joshi, M.C.; Gupta, R.K.; Prakash, J. Hydrothermal synthesis and Ta doping of TiO2 nanorods: Effect of soaking time and doping on optical and charge transfer properties for enhanced SERS activity. Mater. Chem. Phys. 2022, 278, 125642. [CrossRef] Raguram, T.; Rajni, K.S. Synthesis and characterisation of Cu-Doped TiO2 nanoparticles for DSSC and photocatalytic applications. Int. J. Hydrog. Energy 2022, 47, 4674–4689. [CrossRef] Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [CrossRef] [PubMed] Liu, Y.; Zhou, W.; Wu, P. Electronic structure and optical properties of Ta-doped and (Ta, N)-codoped SrTiO3 from hybrid functional calculations. J. Appl. Phys. 2017, 121, 075102. Takci, D.K. Synthesis, characterization and dielectric properties of rutile TiO2 nanoflowers. J. Cryst. Growth 2022, 578, 126442. [CrossRef] Ranjan, R.; Prakash, A.; Singh, A.; Singh, A.; Garg, A.; Gupta, R.K. Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A 2018, 6, 1037–1047. [CrossRef] Hu, W.; Lau, K.; Liu, Y.; Withers, R.L.; Chen, H.; Fu, L.; Gong, B.; Hutchison, W. Colossal Dielectric Permittivity in (Nb + Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chem. Mater. 2015, 27, 4934–4942. [CrossRef] Liu, G.; Fan, H.; Xu, J.; Liu, Z.; Zhao, Y. Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2 ceramics. RSC Adv. 2016, 6, 48708–48714. [CrossRef] |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |