UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0365-0340
Main Author :Norhayati Hashim
Title :Chitosan nanoparticles as a sustainable alternative nutrient formulation in hydroponically grown Brassica rapa subsp. chinensis (L.) Hanelt microgreen and its adult vegetable
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Archives of Agronomy and Soil Science
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Microgreens have been chosen as a sustainable dietary staple food due to their high nutritional value and short harvesting time. However, researches about the actual comparison of the nutritional value between microgreens and their respective adult vegetables is still missing. Furthermore, in a hydroponic system, chitosan nanoparticles (CNPs) can be used as an alternative sustainable nutrient formulation to the conventional/basic nutrient formulation solution. As a result, in this study, the quality, yield and nutritional content of hydroponically cultured microgreens versus adult of Bok Choy (Brassica rapa subsp. Chinensis (L.) Hanelt) vegetables were examined and evaluated in response to CNPs treatments and/or fertilizer supplementation that were grown under the same conditions and environments. CNPs have shown incredible potential as a sustainable alternative nutrient supplement in the growth of Bok Choy microgreens and adults. The nutritional value results backed up these claims as well. The addition of CNPs to conventional fertilizer has significantly increased the nutritional value of Bok Choy (microgreens and adults), supporting the claims of CNPs ability to improve nutrient absorption and uptake. This is towards high-throughput green farming with better quality and yield using the nanotechnology platform. 2022 Informa UK Limited, trading as Taylor & Francis Group.

References

Abad M, Noguera P, Bures S. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol. 77(2):197–200. doi:10.1016/S0960-8524(00)00152-8.

Agarwal M, Nagar D, Srivastava N, Agarwal M. 2015. Chitosan nanoparticles-based drug delivery: an update. Int J Adv Multidiscip Res. 2(4):1–13.

Ahmed AF, Yu H, Yang X, Jiang W. 2014. Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience. 49(6):722–728. doi:10.21273/HORTSCI.49.6.722.

Al-Mudaris M. 1998. Notes on various parameters recording the speed of seed germination. J Agric Rural Dev Trop. 99 (2):147–154.

Angelim AL, Costa SP, Farias BCS, Aquino LF, Melo VMM. 2013. An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. J Environ Manage. 127:10–17. doi:10.1016/j.jenvman.2013.04.014.

AOAC. 2006. Methods 975.03, official methods of analysis. 18th ed. International. MD (USA): Association of Official Analytical Chemist Incorporation, Virginia USA. p. 20877–22417.

Aranaz I, Harris R, Heras A. 2010. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem. 14 (3):308–330. doi:10.2174/138527210790231919.

Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, Wohlleb GM, Halden RU. 2015. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int J Environ Res. 12(6):6879–6891.

Benbrook C. 2009. The impacts of yield on nutritional quality: lessons from organic farming. HortScience. 44(1):12–14. doi:10.21273/HORTSCI.44.1.12.

Bernkop-Schnürch A, Dünnhaupt S. 2012. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 81(3):463–469. doi:10.1016/j.ejpb.2012.04.007.

Bewley JD, Black M. 1994. Dormancy and the control of germination. Seeds. New York, USA: Springer; p. 199–271.

Dangour AD, Dodhia SK, Hayter A, Allen E, Lock K, Uauy R. 2009. Nutritional quality of organic foods: a systematic review. Am J Clin. 90(3):680–685. doi:10.3945/ajcn.2009.28041.

Dhillon GS, Kaur S, Brar SK, Verma M. 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol. 33(4):379–403. doi:10.3109/07388551.2012.717217.

Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2014.

Ghoora MD, Babu DR, Srividya N. 2020. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J Food Composit Anal. 91:103495. doi:10.1016/j.jfca.2020.103495.

Haytowitz D, Ahuja J, Wu X, Khan M, Somanchi M, Nickle M, Nguyen Q, Roseland J, Williams J, Patterson K. 2018. USDA National Nutrient Database for standard reference, legacy. Maryland, USA: USDA National Nutrient Database for Standard Reference.

Hussey G. 1958. An analysis of the factors controlling the germination of the seed of the oil palm, Elaeis guineensis (Jacq.). Ann Bot. 22(2):259–284. doi:10.1093/oxfordjournals.aob.a083610.

Hwang S-Y, Liu C-H, Shen T-C. 2008. Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochem Syst Ecol. 36(7):505–513. doi:10.1016/j.bse.2008.03.001.

Johnson SA, Prenni JE, Heuberger AL, Isweiri H, Chaparro JM, Newman SE, Uchanski ME, Omerigic HM, Michell KA, Bunning M. 2021. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Curr Dev Nutr. 5(2):180. doi:10.1093/cdn/nzaa180.

Kowalski B, Terry FJ, Herrera L, Peñalver DA. 2006. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res. 49(3):167–176. doi:10.1007/s11540-006-9015-0.

Kulkarni M, Street R, Van Staden J. 2007. Germination and seedling growth requirements for propagation of Dioscorea dregeana (Kunth) Dur. and Schinz—A tuberous medicinal plant. S Afr J Bot. 73(1):131–137. doi:10.1016/j.sajb.2006.09.002.

Kyriacou MC, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, Renna M, De Pascale S, Santamaria P. 2016. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Technol. 57:103–115. doi:10.1016/j.tifs.2016.09.005.

Lakhiar IA, Gao J, Syed TN, Chandio FA, Buttar NA. 2018. Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact. 13(1):338–352. doi:10.1080/17429145.2018. 1472308.

Le Strange M, Cahn M, Koike S, Smith R. 2010. Broccoli Production in California. California, USA: UCANR Publications.Maluin FN, Hussein MZ. 2020. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules. 25(1611):1611. doi:10.3390/molecules25071611.

Maluin FN, Hussein MZ, Nik Ibrahim NNL, Wayayok A, Hashim N. 2021. Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming. Agronomy. 11(6):1213. doi:10.3390/ agronomy11061213.

Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Zainol Hilmi NH, Jeffery Daim LD. 2019. Preparation of chitosan– hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules. 24(13):2498. doi:10.3390/molecules24132498.

Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, Hilmi NHZ, Daim LDJ. 2020. Residual analysis of chitosan-based agronanofungicides as a sustainable alternative in oil palm disease management. Sci Rep. 10(1):1–10. doi:10.1038/s41598-020-79335-6.

Massa D, Incrocci L, Maggini R, Carmassi G, Campiotti C, Pardossi A. 2010. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric Water Manag. 97(7):971–980. doi:10.1016/j. agwat.2010.01.029.

NIH. 2022. Nutrient Recommendations: dietary Reference Intakes (DRI). [accessed 22/2/2022]. https://ods.od.nih.gov/ HealthInformation/Dietary_Reference_Intakes.aspx .

Orzali L, Corsi B, Forni C, Riccioni L. 2017. Chitosan in agriculture: a new challenge for managing plant disease. Biological Activities and Application of Marine. olysaccharides.87–96.

Pant AP, Radovich TJ, Hue NV, Talcott ST, Krenek KA. 2009. Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical fertiliser. J Sci Food Agric. 89(14):2383–2392. doi:10.1002/jsfa.3732.

Priadi D, Nuro F. 2017. Seedling production of Pak Choy (Brassica rapa L.) using organic and inorganic nutrients. Biosaintifika. 9(2):217–224.

Renna M, Stellacci AM, Corbo F, Santamaria P. 2020. The use of a nutrient quality score is effective to assess the overall nutritional value of three brassica microgreens. Foods. 9(9):1226. doi:10.3390/foods9091226.

Roe NE. 2006. Growing microgreens: maybe the ultimate specialty crop! Proceedings of the Florida State Horticultural Society; p. 2006.

Savvas D, Neocleous D. 2019. Developments in soilless/hydroponic cultivation of vegetables. Achieving sustainable cultivation of vegetables. Burleigh Dodds Science Publishing; p. 211–244.

Stefanelli D, Goodwin I, Jones R. 2010. Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res Int. 43(7):1833–1843. doi:10.1016/j.foodres.2010.04.022.

Turner ER, Luo Y, Buchanan RLJ. 2020. Microgreen nutrition, food safety, and shelf life: a review. J Food Sci. 85 (4):870–882. doi:10.1111/1750-3841.15049.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.