UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Manipulating surface plasmon resonance (SPR) of silver (Ag) and gold (Au) nanoparticles (NPs) in amorphous material may open new possibilities in optic and photonic fields. Driven by this fact, heat treatments (HT) were used to tune the excitation mode of SPR. The Nd3+ doped magnesium-zinc-sulfophosphate glasses embedded with Ag and Au NPs were heat-treated at 450 C for 6 and 12 h and characterized using X-ray diffractometer (XRD), high-resolution transmission electron microscope (HRTEM), UVVisNIR absorption and photoluminescence (PL) spectrometer. The mean size of NPs was slightly reduced (4.68 nm? 4.35 nm) after 12 h of HT due to the elastic ripening process, causes by internal pressure within NPs. Unusual multiple SPR bands were evidence around 419, 481, 613, 676, 776, 848 and 939 nm after the glass (AgAu6h) is heat-treated for 6 h. Thirteen absorption bands are recorded within 326875 nm, corresponding to the Nd3+ ion transitions. The NIR PL bands of Nd3+ ion were detected around 878 nm, 1050 nm, and 1322 nm corresponding to 4F3/2 ? 4I9/2, 4F3/2 ? 4I11/2, and 4F3/2 ? 4I13/2 transitions, respectively. Overall, sample coded AgAu12 h disclosed the highest bandwidth gain of 0.09, 1.14, and 3.06 ( 10?22 cm3) assigned to transition 4F3/2 ? 4I9/2, 4F3/2 ? 4I11/2, and 4F3/2 ? 4I13/2, respectively, with a quantum efficiency of 21.06% (for transition 4F3/2 ? 4I11/2). The HT can modify the intensity of PL through different NPs assemblies (single, dimer, trimer) and bonding modes (e.g: longitudinal dipolar or quadrupolar coupling mode). The unique optical feature discovered may be useful in customizing solid-state laser materials. 2022 Elsevier B.V. |
References |
Adachi, S. (2021). Luminescence spectroscopy of Cr3+ in an oxide: A strong or weak crystal-field phosphor? Journal of Luminescence, 234. https://doi.org/10.1016/j.jlumin.2021.117965 Ahmadi, F., Hussin, R., & Ghoshal, S. K. (2018). On the optical properties of Er3+ ions activated magnesium zinc sulfophosphate glass: Role of silver nanoparticles sensitization. Journal of Luminescence, 204, 95–103. https://doi.org/10.1016/j.jlumin.2018.07.033 Algradee, M. A., Sultan, M., Samir, O. M., & Alwany, A. E. B. (2017). Electronic polarizability, optical basicity and interaction parameter for Nd Alkan, F., & Aikens, C. M. (2019). Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction. Physical Chemistry Chemical Physics, 21(41), 23065–23075. https://doi.org/10.1039/c9cp03890f Battaglin, G., Catalano, M., Cattaruzza, E., D’Acapito, F., de Julian Fernandez, C., de Marchi, G., Gonella, F., Mattei, G., Maurizio, C., Mazzoldi, P., Miotello, A., & Sada, C. (2001). Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 178(1–4), 176–179. https://doi.org/10.1016/S0168-583X(00)00502-4 Burns, G. (1962). Shielding and crystal fields at rare-earth ions. Physical Review, 128(5), 2121–2130. https://doi.org/10.1103/PhysRev.128.2121 Cai, G. M., Yang, N., Liu, H. X., Si, J. Y., & Zhang, Y. Q. (2017). Single-phased and color tunable LiSrBO Calahoo, C., & Wondraczek, L. (2020). Ionic glasses: Structure, properties and classification. Journal of Non-Crystalline Solids: X, 8. https://doi.org/10.1016/j.nocx.2020.100054 Cao, E., Lin, W., Sun, M., Liang, W., & Song, Y. (2018). Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics, 7(1), 145–167. https://doi.org/10.1515/nanoph-2017-0059 Cao, Y., Shao, C., Wang, F., Xu, W., Wang, S., Hu, L., & Yu, C. (2018). Local environment regulation and performance analysis in Nd3 +-doped SiO Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu 8+. The Journal of Chemical Physics, 49(10), 4424–4442. https://doi.org/10.1063/1.1669893 Cha, H., Lee, D., Yoon, J. H., & Yoon, S. (2016). Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime. Journal of Colloid and Interface Science, 464, 18–24. https://doi.org/10.1016/j.jcis.2015.11.009 Chen, L., Deng, X., Zhao, E., Chen, X., Xue, S., Zhang, W., Chen, S., Zhao, Z., Zhang, W., & Chan, T.-S. (2014). The effect of electron cloud expansion on the red luminescence of Sr Deopa, N., Rao, A. S., Gupta, M., & Vijaya Prakash, G. (2018). Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06 μm laser applications. Optical Materials, 75, 127–134. https://doi.org/10.1016/j.optmat.2017.09.047 Deubener, J., Allix, M., Davis, M. J., Duran, A., Höche, T., Honma, T., Komatsu, T., Krüger, S., Mitra, I., Müller, R., Zanotto, E. D., & Zhou, S. (2018). Updated definition of glass-ceramics. Journal of Non-Crystalline Solids, 501, 3–10. https://doi.org/10.1016/j.jnoncrysol.2018.01.033 Eichelbaum, M., Rademann, K., Hoell, A., Tatchev, D. M., Weigel, W., Stößer, R., & Pacchioni, G. (2008). Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology, 19(13). https://doi.org/10.1088/0957-4484/19/13/135701 Foerster, B., Joplin, A., Kaefer, K., Celiksoy, S., Link, S., & Sönnichsen, C. (2017). Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano, 11(3), 2886–2893. https://doi.org/10.1021/acsnano.6b08010 Giridhar, G., Sreehari Sastry, S., & Rangacharyulu, M. (2011). Spectroscopic studies on Pb Hazra, A., Hossain, S. M., Pramanick, A. K., & Ray, M. (2017). Gold-silver nanostructures: Plasmon-plasmon interaction. Vacuum, 146, 437–443. https://doi.org/10.1016/j.vacuum.2017.05.016 Heard, C. J., & Johnston, R. L. (2014). A theoretical study of the structures and optical spectra of helical copper-silver clusters. Physical Chemistry Chemical Physics, 16(39), 21039–21048. https://doi.org/10.1039/c3cp55507k Huang, Y., Ma, L., Hou, M., Li, J., Xie, Z., & Zhang, Z. (2016). Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Scientific Reports, 6. https://doi.org/10.1038/srep30011 Intawin, P., Eitssayeam, S., Tunkasiri, T., & Pengpat, K. (2018). Crystallization kinetics and heat treatment temperature on microstructure and properties of Na Jagannath, G., Eraiah, B., Jayanthi, K., Keshri, S. R., Som, S., Vinitha, G., Pramod, A. G., Krishnakanth, K. N., Devarajulu, G., Balaji, S., Das, S., & Allu, A. R. (2020). Influence of gold nanoparticles on the nonlinear optical and photoluminescence properties of Eu Jagannathan, A., Gangareddy, J., Rajaramakrishna, R., Rajashekara, K. M., Rao, S. V., Kaewkhao, J., Kothan, S., & El-Denglawey, A. (2021). Precursor Based Tuning of the Nonlinear Optical Properties of Au-Ag Bimetallic Nanoparticles Doped in Oxy-fluoroborate Glasses. Journal of Non-Crystalline Solids, 561. https://doi.org/10.1016/j.jnoncrysol.2021.120766 Jagannathan, A., Rajaramakrishna, R., Rajashekara, K. M., Gangareddy, J., Pattar K, V., S, V. R., B, E., Angadi V, J., Kaewkhao, J., & Kothan, S. (2020). Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications. Journal of Non-Crystalline Solids, 538. https://doi.org/10.1016/j.jnoncrysol.2020.120010 Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2(3), 107–118. https://doi.org/10.1007/s11468-007-9031-1 Jupri, S. A., Ghoshal, S. K., Yusof, N. N., Omar, M. F., Hamzah, K., & Krishnan, G. (2020). Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium-zinc-sulfophosphate glass system. Optics and Laser Technology, 126. https://doi.org/10.1016/j.optlastec.2020.106134 Karmakar, B., Rademann, K., & Stepanov, A. L. (2016). Glass Nanocomposites: Synthesis, Properties and Applications. In Glass Nanocomposites: Synthesis, Properties and Applications. https://doi.org/10.1016/C2014-0-02375-1 Kheirandish, A., Sepehri Javan, N., & Mohammadzadeh, H. (2020). Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63066-9 Kolwas, K., & Derkachova, A. (2020). Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials, 10(7), 1–27. https://doi.org/10.3390/nano10071411 Kumar, C. S. S. R. (2013). UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. In UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. https://doi.org/10.1007/978-3-642-27594-4 Lee, D., & Yoon, S. (2016). Gold nanotrimers: A preparation method and optical responses. Bulletin of the Korean Chemical Society, 37(7), 987–988. https://doi.org/10.1002/BKCS.10816 Lee, S. A., & Link, S. (2021). Chemical Interface Damping of Surface Plasmon Resonances. Accounts of Chemical Research, 54(8), 1950–1960. https://doi.org/10.1021/acs.accounts.0c00872 Lewandowski, T., Dembski, M., Walas, M., Łapiński, M., Narajczyk, M., Sadowski, W., & Kościelska, B. (2017). Heat Treatment Effect on Eu3+ Doped TeO Li, Q., & Zhang, Z. (2016). Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO Mahmud, S., Satter, S. S., Singh, A. K., Rahman, M. M., Mollah, M. Y. A., & Susan, M. A. B. H. (2019). Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles. ACS Omega, 4(19), 18061–18075. https://doi.org/10.1021/acsomega.9b01897 Mariselvam, K., Arun Kumar, R., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 18–26. https://doi.org/10.1016/j.infrared.2018.03.021 Mattei, G. (2002). Alloy nanoclusters in dielectric matrix. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 191(1–4), 323–332. https://doi.org/10.1016/S0168-583X(02)00527-X Mawlud, S. Q. (2019). A comparative enhancement of Au and Ag NPs role on radiative properties in Sm3+ doped zinc-sodium tellurite glass: Judd-Ofelt parameter. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 209, 78–84. https://doi.org/10.1016/j.saa.2018.10.032 Mohd Saidi, M. S. A., Ghoshal, S. K., Hamzah, K., Arifin, R., Omar, M. F., Roslan, M. K., & Sazali, E. S. (2018). Visible light emission from Dy3+ doped tellurite glass: Role of silver and titania nanoparticles co-embedment. Journal of Non-Crystalline Solids, 502, 198–209. https://doi.org/10.1016/j.jnoncrysol.2018.09.012 Qin, X., Xu, J., Wu, Y., & Liu, X. (2019). Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Central Science, 5(1), 29–42. https://doi.org/10.1021/acscentsci.8b00827 Ramteke, D. D., Kroon, R. E., & Swart, H. C. (2017). Infrared emission spectroscopy and upconversion of ZnO-Li Raza, Sø., Kadkhodazadeh, S., Christensen, T., di Vece, M., Wubs, M., Mortensen, N. A., & Stenger, N. (2015). Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature Communications, 6. https://doi.org/10.1038/ncomms9788 Rivera, V. A. G., Ledemi, Y., Pereira-Da-Silva, M. A., Messaddeq, Y., & Marega, E. (2016). Plasmon-photon conversion to near-infrared emission from Yb 3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses. Scientific Reports, 6. https://doi.org/10.1038/srep18464 Ros, I., Placido, T., Amendola, V., Marinzi, C., Manfredi, N., Comparelli, R., Striccoli, M., Agostiano, A., Abbotto, A., Pedron, D., Pilot, R., & Bozio, R. (2014). SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 9(3), 581–593. https://doi.org/10.1007/s11468-014-9669-4 Rosowski, K. A., Vidal-Henriquez, E., Zwicker, D., Style, R. W., & Dufresne, E. R. (2020). Elastic stresses reverse Ostwald ripening. Soft Matter, 16(25), 5892–5897. https://doi.org/10.1039/d0sm00628a Sarac, B., Zhang, L., Kosiba, K., Pauly, S., Stoica, M., & Eckert, J. (2016). Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses. Scientific Reports, 6. https://doi.org/10.1038/srep27271 Scholl, J. A., García-Etxarri, A., Koh, A. L., & Dionne, J. A. (2013). Observation of quantum tunneling between two plasmonic nanoparticles. Nano Letters, 13(2), 564–569. https://doi.org/10.1021/nl304078v Seshadri, M., Anjos, V., & Bell, M. J. V. (2018). Energy transfer process and radiative properties of 1.06 µm emission in Nd3+ doped TeO Shakhgildyan, G. Y., Ziyatdinova, M. Z., Vetchinnikov, M. P., Lotarev, S. V., Savinkov, V. I., Presnyakova, N. N., Lopatina, E. V., Vilkovisky, G. A., & Sigaev, V. N. (2020). Thermally-induced precipitation of gold nanoparticles in phosphate glass: effect on the optical properties of Er3+ ions. Journal of Non-Crystalline Solids, 550. https://doi.org/10.1016/j.jnoncrysol.2020.120408 Siva Rama Krishna Reddy, K., Swapna, K., Mahamuda, S., Venkateswarulu, M., & Rao, A. S. (2021). Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. Optical Materials, 111. https://doi.org/10.1016/j.optmat.2020.110615 Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Gelloz, B., & Férid, M. (2016). Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: Heat treatment effect. Journal of Alloys and Compounds, 686, 556–563. https://doi.org/10.1016/j.jallcom.2016.06.027 Soltani, I., Hraiech, S., Horchani-Naifer, K., Massera, J., Petit, L., & Férid, M. (2016). Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. Journal of Non-Crystalline Solids, 438, 67–73. https://doi.org/10.1016/j.jnoncrysol.2015.12.022 Som, T., & Karmakar, B. (2011). Synthesis and enhanced photoluminescence in novel Au Sun, F., Du, C., Fu, T., Chen, Y., Sun, L., Zhang, R., & Shi, D. (2020). Optimal aspect ratio and excitation spectral region of individual Au Swetha, B. N., Keshavamurthy, K., Gupta, G., Aloraini, D. A., Almuqrin, A. H., Sayyed, M. I., & Jagannath, G. (2021). Silver nanoparticles enhanced photoluminescence and the spectroscopic performances of Nd3+ ions in sodium lanthanum borate glass host: Effect of heat treatment. Ceramics International, 47(15), 21212–21220. https://doi.org/10.1016/j.ceramint.2021.04.124 Yang, D., Pan, Q., Kang, S., Dong, G., & Qiu, J. (2019). Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020a). Luminescence of Neodymium Ion-Activated Magnesium Zinc Sulfophosphate Glass: Role of Titanium Nanoparticles Sensitization. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110390 Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020b). Spectroscopic properties of neodymium doped magnesium zinc sulfophosphate glass: Synergistic effects of titanium and silver nanoparticles embedment. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110266 Yusof, N. N., Ghoshal, S. K., Jupri, S. A., & Azlan, M. N. (2020a). Nd3+ doped magnesium zinc sulfophosphate glass: New candidate for up-conversion solid state laser host. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110299 Yusof, N. N., Ghoshal, S. K., Jupri, S. A., & Azlan, M. N. (2020b). Synergistic effects of Nd3+ and Ag nanoparticles doping on spectroscopic attributes of phosphate glass. Optical Materials, 110. https://doi.org/10.1016/j.optmat.2020.110403 Yusof, N. N., Hashim, S., Ghoshal, S. K., Azlan, M. N., Zaid, M. H. M., Boukhris, I., & Kebaili, I. (2022). Spectrographic analysis of zinc-sulfate-magnesium-phosphate glass containing neodymium ions: Impact of silver–gold nanoparticles plasmonic coupling. Journal of Luminescence, 242. https://doi.org/10.1016/j.jlumin.2021.118571 Zhang, X. (2021). Plasmon extinguishment by bandedge shift identified as a second-order spectroscopic differentiation. Nanophotonics, 10(2), 1329–1335. https://doi.org/10.1515/nanoph-2020-0603 Zheng, R., Zhou, X., Yang, Y., Wu, Q., Lv, P., Yu, K., & Wei, W. (2017). Effects of heat treatment on Na-ion conductivity and conduction pathways of fluorphosphate glass-ceramics. Journal of Non-Crystalline Solids, 471, 280–285. https://doi.org/10.1016/j.jnoncrysol.2017.06.010 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |