UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0022-2313
Main Author :Muhammad Noorazlan Abd Azis
Title :Altering coupled mode of surface plasmon resonance mediated by silver and gold nanoparticles through heat treatment: judd ofelt, racah and NIR-luminescence of neodymium doped magnesiumzinc-sulfophosphate glass
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Journal of Luminescence
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Manipulating surface plasmon resonance (SPR) of silver (Ag) and gold (Au) nanoparticles (NPs) in amorphous material may open new possibilities in optic and photonic fields. Driven by this fact, heat treatments (HT) were used to tune the excitation mode of SPR. The Nd3+ doped magnesium-zinc-sulfophosphate glasses embedded with Ag and Au NPs were heat-treated at 450 C for 6 and 12 h and characterized using X-ray diffractometer (XRD), high-resolution transmission electron microscope (HRTEM), UVVisNIR absorption and photoluminescence (PL) spectrometer. The mean size of NPs was slightly reduced (4.68 nm? 4.35 nm) after 12 h of HT due to the elastic ripening process, causes by internal pressure within NPs. Unusual multiple SPR bands were evidence around 419, 481, 613, 676, 776, 848 and 939 nm after the glass (AgAu6h) is heat-treated for 6 h. Thirteen absorption bands are recorded within 326875 nm, corresponding to the Nd3+ ion transitions. The NIR PL bands of Nd3+ ion were detected around 878 nm, 1050 nm, and 1322 nm corresponding to 4F3/2 ? 4I9/2, 4F3/2 ? 4I11/2, and 4F3/2 ? 4I13/2 transitions, respectively. Overall, sample coded AgAu12 h disclosed the highest bandwidth gain of 0.09, 1.14, and 3.06 ( 10?22 cm3) assigned to transition 4F3/2 ? 4I9/2, 4F3/2 ? 4I11/2, and 4F3/2 ? 4I13/2, respectively, with a quantum efficiency of 21.06% (for transition 4F3/2 ? 4I11/2). The HT can modify the intensity of PL through different NPs assemblies (single, dimer, trimer) and bonding modes (e.g: longitudinal dipolar or quadrupolar coupling mode). The unique optical feature discovered may be useful in customizing solid-state laser materials. 2022 Elsevier B.V.

References

Adachi, S. (2021). Luminescence spectroscopy of Cr3+ in an oxide: A strong or weak crystal-field phosphor? Journal of Luminescence, 234. https://doi.org/10.1016/j.jlumin.2021.117965

Ahmadi, F., Hussin, R., & Ghoshal, S. K. (2018). On the optical properties of Er3+ ions activated magnesium zinc sulfophosphate glass: Role of silver nanoparticles sensitization. Journal of Luminescence, 204, 95–103. https://doi.org/10.1016/j.jlumin.2018.07.033

Algradee, M. A., Sultan, M., Samir, O. M., & Alwany, A. E. B. (2017). Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses. Applied Physics A: Materials Science and Processing, 123(8). https://doi.org/10.1007/s00339-017-1136-6

Alkan, F., & Aikens, C. M. (2019). Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction. Physical Chemistry Chemical Physics, 21(41), 23065–23075. https://doi.org/10.1039/c9cp03890f

Battaglin, G., Catalano, M., Cattaruzza, E., D’Acapito, F., de Julian Fernandez, C., de Marchi, G., Gonella, F., Mattei, G., Maurizio, C., Mazzoldi, P., Miotello, A., & Sada, C. (2001). Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 178(1–4), 176–179. https://doi.org/10.1016/S0168-583X(00)00502-4

Burns, G. (1962). Shielding and crystal fields at rare-earth ions. Physical Review, 128(5), 2121–2130. https://doi.org/10.1103/PhysRev.128.2121

Cai, G. M., Yang, N., Liu, H. X., Si, J. Y., & Zhang, Y. Q. (2017). Single-phased and color tunable LiSrBO3:Dy3+, Tm3+, Eu3+ phosphors for white-light-emitting application. Journal of Luminescence, 187, 211–220. https://doi.org/10.1016/j.jlumin.2017.03.017

Calahoo, C., & Wondraczek, L. (2020). Ionic glasses: Structure, properties and classification. Journal of Non-Crystalline Solids: X, 8. https://doi.org/10.1016/j.nocx.2020.100054

Cao, E., Lin, W., Sun, M., Liang, W., & Song, Y. (2018). Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics, 7(1), 145–167. https://doi.org/10.1515/nanoph-2017-0059

Cao, Y., Shao, C., Wang, F., Xu, W., Wang, S., Hu, L., & Yu, C. (2018). Local environment regulation and performance analysis in Nd3 +-doped SiO2-Al(PO3)3 binary composite glass. Journal of Non-Crystalline Solids, 481, 164–169. https://doi.org/10.1016/j.jnoncrysol.2017.10.051

Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu 8+. The Journal of Chemical Physics, 49(10), 4424–4442. https://doi.org/10.1063/1.1669893

Cha, H., Lee, D., Yoon, J. H., & Yoon, S. (2016). Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime. Journal of Colloid and Interface Science, 464, 18–24. https://doi.org/10.1016/j.jcis.2015.11.009

Chen, L., Deng, X., Zhao, E., Chen, X., Xue, S., Zhang, W., Chen, S., Zhao, Z., Zhang, W., & Chan, T.-S. (2014). The effect of electron cloud expansion on the red luminescence of Sr 4Al14O25:Mn4+ revealed by calculation of the Racah parameters. Journal of Alloys and Compounds, 613, 312–316. https://doi.org/10.1016/j.jallcom.2014.06.029

Deopa, N., Rao, A. S., Gupta, M., & Vijaya Prakash, G. (2018). Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06 μm laser applications. Optical Materials, 75, 127–134. https://doi.org/10.1016/j.optmat.2017.09.047

Deubener, J., Allix, M., Davis, M. J., Duran, A., Höche, T., Honma, T., Komatsu, T., Krüger, S., Mitra, I., Müller, R., Zanotto, E. D., & Zhou, S. (2018). Updated definition of glass-ceramics. Journal of Non-Crystalline Solids, 501, 3–10. https://doi.org/10.1016/j.jnoncrysol.2018.01.033

Eichelbaum, M., Rademann, K., Hoell, A., Tatchev, D. M., Weigel, W., Stößer, R., & Pacchioni, G. (2008). Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology, 19(13). https://doi.org/10.1088/0957-4484/19/13/135701

Foerster, B., Joplin, A., Kaefer, K., Celiksoy, S., Link, S., & Sönnichsen, C. (2017). Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano, 11(3), 2886–2893. https://doi.org/10.1021/acsnano.6b08010

Giridhar, G., Sreehari Sastry, S., & Rangacharyulu, M. (2011). Spectroscopic studies on Pb3O4ZnOP2O 5 glasses doped with transition metal ions. Physica B: Condensed Matter, 406(21), 4027–4030. https://doi.org/10.1016/j.physb.2011.07.024

Hazra, A., Hossain, S. M., Pramanick, A. K., & Ray, M. (2017). Gold-silver nanostructures: Plasmon-plasmon interaction. Vacuum, 146, 437–443. https://doi.org/10.1016/j.vacuum.2017.05.016

Heard, C. J., & Johnston, R. L. (2014). A theoretical study of the structures and optical spectra of helical copper-silver clusters. Physical Chemistry Chemical Physics, 16(39), 21039–21048. https://doi.org/10.1039/c3cp55507k

Huang, Y., Ma, L., Hou, M., Li, J., Xie, Z., & Zhang, Z. (2016). Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Scientific Reports, 6. https://doi.org/10.1038/srep30011

Intawin, P., Eitssayeam, S., Tunkasiri, T., & Pengpat, K. (2018). Crystallization kinetics and heat treatment temperature on microstructure and properties of Na2O-CaO-P2O5 bioactive glass system. Ceramics International, 44, S203–S206. https://doi.org/10.1016/j.ceramint.2018.08.114

Jagannath, G., Eraiah, B., Jayanthi, K., Keshri, S. R., Som, S., Vinitha, G., Pramod, A. G., Krishnakanth, K. N., Devarajulu, G., Balaji, S., Das, S., & Allu, A. R. (2020). Influence of gold nanoparticles on the nonlinear optical and photoluminescence properties of Eu2O3 doped alkali borate glasses. Physical Chemistry Chemical Physics, 22(4), 2019–2032. https://doi.org/10.1039/c9cp05783h

Jagannathan, A., Gangareddy, J., Rajaramakrishna, R., Rajashekara, K. M., Rao, S. V., Kaewkhao, J., Kothan, S., & El-Denglawey, A. (2021). Precursor Based Tuning of the Nonlinear Optical Properties of Au-Ag Bimetallic Nanoparticles Doped in Oxy-fluoroborate Glasses. Journal of Non-Crystalline Solids, 561. https://doi.org/10.1016/j.jnoncrysol.2021.120766

Jagannathan, A., Rajaramakrishna, R., Rajashekara, K. M., Gangareddy, J., Pattar K, V., S, V. R., B, E., Angadi V, J., Kaewkhao, J., & Kothan, S. (2020). Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications. Journal of Non-Crystalline Solids, 538. https://doi.org/10.1016/j.jnoncrysol.2020.120010

Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2(3), 107–118. https://doi.org/10.1007/s11468-007-9031-1

Jupri, S. A., Ghoshal, S. K., Yusof, N. N., Omar, M. F., Hamzah, K., & Krishnan, G. (2020). Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium-zinc-sulfophosphate glass system. Optics and Laser Technology, 126. https://doi.org/10.1016/j.optlastec.2020.106134

Karmakar, B., Rademann, K., & Stepanov, A. L. (2016). Glass Nanocomposites: Synthesis, Properties and Applications. In Glass Nanocomposites: Synthesis, Properties and Applications. https://doi.org/10.1016/C2014-0-02375-1

Kheirandish, A., Sepehri Javan, N., & Mohammadzadeh, H. (2020). Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63066-9

Kolwas, K., & Derkachova, A. (2020). Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials, 10(7), 1–27. https://doi.org/10.3390/nano10071411

Kumar, C. S. S. R. (2013). UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. In UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. https://doi.org/10.1007/978-3-642-27594-4

Lee, D., & Yoon, S. (2016). Gold nanotrimers: A preparation method and optical responses. Bulletin of the Korean Chemical Society, 37(7), 987–988. https://doi.org/10.1002/BKCS.10816

Lee, S. A., & Link, S. (2021). Chemical Interface Damping of Surface Plasmon Resonances. Accounts of Chemical Research, 54(8), 1950–1960. https://doi.org/10.1021/acs.accounts.0c00872

Lewandowski, T., Dembski, M., Walas, M., Łapiński, M., Narajczyk, M., Sadowski, W., & Kościelska, B. (2017). Heat Treatment Effect on Eu3+ Doped TeO2-BaO-Bi2O3 Glass Systems with Ag Nanoparticles. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5075326

Li, Q., & Zhang, Z. (2016). Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers. Scientific Reports, 6. https://doi.org/10.1038/srep19433

Mahmud, S., Satter, S. S., Singh, A. K., Rahman, M. M., Mollah, M. Y. A., & Susan, M. A. B. H. (2019). Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles. ACS Omega, 4(19), 18061–18075. https://doi.org/10.1021/acsomega.9b01897

Mariselvam, K., Arun Kumar, R., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 18–26. https://doi.org/10.1016/j.infrared.2018.03.021

Mattei, G. (2002). Alloy nanoclusters in dielectric matrix. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 191(1–4), 323–332. https://doi.org/10.1016/S0168-583X(02)00527-X

Mawlud, S. Q. (2019). A comparative enhancement of Au and Ag NPs role on radiative properties in Sm3+ doped zinc-sodium tellurite glass: Judd-Ofelt parameter. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 209, 78–84. https://doi.org/10.1016/j.saa.2018.10.032

Mohd Saidi, M. S. A., Ghoshal, S. K., Hamzah, K., Arifin, R., Omar, M. F., Roslan, M. K., & Sazali, E. S. (2018). Visible light emission from Dy3+ doped tellurite glass: Role of silver and titania nanoparticles co-embedment. Journal of Non-Crystalline Solids, 502, 198–209. https://doi.org/10.1016/j.jnoncrysol.2018.09.012

Qin, X., Xu, J., Wu, Y., & Liu, X. (2019). Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Central Science, 5(1), 29–42. https://doi.org/10.1021/acscentsci.8b00827

Ramteke, D. D., Kroon, R. E., & Swart, H. C. (2017). Infrared emission spectroscopy and upconversion of ZnO-Li2O-Na2O-P2O5 glasses doped with Nd3 + ions. Journal of Non-Crystalline Solids, 457, 157–163. https://doi.org/10.1016/j.jnoncrysol.2016.12.006

Raza, Sø., Kadkhodazadeh, S., Christensen, T., di Vece, M., Wubs, M., Mortensen, N. A., & Stenger, N. (2015). Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature Communications, 6. https://doi.org/10.1038/ncomms9788

Rivera, V. A. G., Ledemi, Y., Pereira-Da-Silva, M. A., Messaddeq, Y., & Marega, E. (2016). Plasmon-photon conversion to near-infrared emission from Yb 3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses. Scientific Reports, 6. https://doi.org/10.1038/srep18464

Ros, I., Placido, T., Amendola, V., Marinzi, C., Manfredi, N., Comparelli, R., Striccoli, M., Agostiano, A., Abbotto, A., Pedron, D., Pilot, R., & Bozio, R. (2014). SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 9(3), 581–593. https://doi.org/10.1007/s11468-014-9669-4

Rosowski, K. A., Vidal-Henriquez, E., Zwicker, D., Style, R. W., & Dufresne, E. R. (2020). Elastic stresses reverse Ostwald ripening. Soft Matter, 16(25), 5892–5897. https://doi.org/10.1039/d0sm00628a

Sarac, B., Zhang, L., Kosiba, K., Pauly, S., Stoica, M., & Eckert, J. (2016). Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses. Scientific Reports, 6. https://doi.org/10.1038/srep27271

Scholl, J. A., García-Etxarri, A., Koh, A. L., & Dionne, J. A. (2013). Observation of quantum tunneling between two plasmonic nanoparticles. Nano Letters, 13(2), 564–569. https://doi.org/10.1021/nl304078v

Seshadri, M., Anjos, V., & Bell, M. J. V. (2018). Energy transfer process and radiative properties of 1.06 µm emission in Nd3+ doped TeO2-ZnO-Na2O glasses. Journal of Luminescence, 196, 399–405. https://doi.org/10.1016/j.jlumin.2017.12.055

Shakhgildyan, G. Y., Ziyatdinova, M. Z., Vetchinnikov, M. P., Lotarev, S. V., Savinkov, V. I., Presnyakova, N. N., Lopatina, E. V., Vilkovisky, G. A., & Sigaev, V. N. (2020). Thermally-induced precipitation of gold nanoparticles in phosphate glass: effect on the optical properties of Er3+ ions. Journal of Non-Crystalline Solids, 550. https://doi.org/10.1016/j.jnoncrysol.2020.120408

Siva Rama Krishna Reddy, K., Swapna, K., Mahamuda, S., Venkateswarulu, M., & Rao, A. S. (2021). Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. Optical Materials, 111. https://doi.org/10.1016/j.optmat.2020.110615

Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Gelloz, B., & Férid, M. (2016). Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: Heat treatment effect. Journal of Alloys and Compounds, 686, 556–563. https://doi.org/10.1016/j.jallcom.2016.06.027

Soltani, I., Hraiech, S., Horchani-Naifer, K., Massera, J., Petit, L., & Férid, M. (2016). Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. Journal of Non-Crystalline Solids, 438, 67–73. https://doi.org/10.1016/j.jnoncrysol.2015.12.022

Som, T., & Karmakar, B. (2011). Synthesis and enhanced photoluminescence in novel AucoreAu-Agshell nanoparticles embedded Nd3+-doped antimony oxide glass hybrid nanocomposites. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(15), 2469–2479. https://doi.org/10.1016/j.jqsrt.2011.06.015

Sun, F., Du, C., Fu, T., Chen, Y., Sun, L., Zhang, R., & Shi, D. (2020). Optimal aspect ratio and excitation spectral region of individual AuxAg1−x alloy nanobars for plasmonic sensing. Physics Letters, Section A: General, Atomic and Solid State Physics, 384(30). https://doi.org/10.1016/j.physleta.2020.126785

Swetha, B. N., Keshavamurthy, K., Gupta, G., Aloraini, D. A., Almuqrin, A. H., Sayyed, M. I., & Jagannath, G. (2021). Silver nanoparticles enhanced photoluminescence and the spectroscopic performances of Nd3+ ions in sodium lanthanum borate glass host: Effect of heat treatment. Ceramics International, 47(15), 21212–21220. https://doi.org/10.1016/j.ceramint.2021.04.124

Yang, D., Pan, Q., Kang, S., Dong, G., & Qiu, J. (2019). Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF4 nanocrystals via acid-treatment. Journal of the American Ceramic Society, 102(10), 6027–6037. https://doi.org/10.1111/jace.16490

Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020a). Luminescence of Neodymium Ion-Activated Magnesium Zinc Sulfophosphate Glass: Role of Titanium Nanoparticles Sensitization. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110390

Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020b). Spectroscopic properties of neodymium doped magnesium zinc sulfophosphate glass: Synergistic effects of titanium and silver nanoparticles embedment. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110266

Yusof, N. N., Ghoshal, S. K., Jupri, S. A., & Azlan, M. N. (2020a). Nd3+ doped magnesium zinc sulfophosphate glass: New candidate for up-conversion solid state laser host. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110299

Yusof, N. N., Ghoshal, S. K., Jupri, S. A., & Azlan, M. N. (2020b). Synergistic effects of Nd3+ and Ag nanoparticles doping on spectroscopic attributes of phosphate glass. Optical Materials, 110. https://doi.org/10.1016/j.optmat.2020.110403

Yusof, N. N., Hashim, S., Ghoshal, S. K., Azlan, M. N., Zaid, M. H. M., Boukhris, I., & Kebaili, I. (2022). Spectrographic analysis of zinc-sulfate-magnesium-phosphate glass containing neodymium ions: Impact of silver–gold nanoparticles plasmonic coupling. Journal of Luminescence, 242. https://doi.org/10.1016/j.jlumin.2021.118571

Zhang, X. (2021). Plasmon extinguishment by bandedge shift identified as a second-order spectroscopic differentiation. Nanophotonics, 10(2), 1329–1335. https://doi.org/10.1515/nanoph-2020-0603

Zheng, R., Zhou, X., Yang, Y., Wu, Q., Lv, P., Yu, K., & Wei, W. (2017). Effects of heat treatment on Na-ion conductivity and conduction pathways of fluorphosphate glass-ceramics. Journal of Non-Crystalline Solids, 471, 280–285. https://doi.org/10.1016/j.jnoncrysol.2017.06.010


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.