UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Water has been proven to be an effective additive to enhance the growth rate and purity of the synthesized carbon nanotubes (CNTs) in the chemical vapor deposition (CVD) method. Due to similar CNT growth parameters in CVD and flame environment, it is expected that a similar effect can be replicated in CNT flame synthesis to a certain degree. The present study analyzes the effect of water addition to the fuel stream toward the CNT growth in methane diffusion flame under atmospheric conditions. Water vapor was introduced into the fuel gas by passing the methane gas through a water bubbler, and the growth condition was analyzed based on a cross-sectional analysis of the grown CNT on top of nickel wire. The water addition to the fuel reduces the axial extent of the growth region due to the reduction in flame height. Even though the spatial distribution of the growth region in the flame with water additive changes compared to that of the flame without water, the average growth region temperature is relatively identical for both flames at a similar height above the burner. The synthesized CNT morphology did not change with the addition of water due to similar temperatures within the growth region and inhomogeneity of catalyst nanoparticle formation. Remarkably, the thickness of the amorphous carbon layer in the growth region decreases by almost 20% in water-assisted flame due to the reduction of carbon supply caused by the modification of gas-phase chemical reaction and water vapor etching effects that happen within the growth region. Numerical simulation of the flame structure shows that addition of water vapor in the fuel stream lowers the methane concentration within the CNT growth region and simultaneously promotes water etching effects on the amorphous carbon layer. 2021 Taylor & Francis Group, LLC. |
References |
Bartholomew, C. H. 1982. Catalysis reviews : Science and reforming and methanation carbon deposition in steam reforming and methanation. Catal. Rev. : Sci. Eng. 24 (1):67–112. doi:10.1080/03602458208079650. Chen, G., R. C. Davis, D. N. Futaba, S. Sakurai, K. Kobashi, M. Yumura, and K. Hata. 2016. A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Nanoscale 8:162–71. doi:10.1039/c5nr05537g. Cho, W., M. Schulz, and V. Shanov. 2014. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon 72:264–73. doi:10.1016/j.carbon.2014.01.074. Friedman, R. 1953. Measurement of the temperature profile in a laminar flame. Laminar Combust. Detonation Waves. 148:259–63. Futaba, D. N., J. Goto, S. Yasuda, T. Yamada, M. Yumura, and K. Hata. 2009. General rules governing the highly efficient growth of carbon nanotubes. Adv. Mater. 21 (47):4811–15. doi:10.1002/adma.200901257. Futaba, D. N., K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima. 2005. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95 (5):1–4. doi:10.1103/PhysRevLett.95.056104. Geng, J., M. Motta, V. Engels, J. Luo, and B. F. G. Johnson. August 2016. Temperature threshold and water role in CVD growth of single-walled carbon nanotubes. Front. Mater. 3. doi: 10.3389/fmats.2016.00004. Guo, Y., G. Zhai, Y. Ru, C. Wu, X. Jia, Y. Sun, J. Yu, Z. Kang, Y. Guo, G. Zhai, et al. 2018. Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method. AIP Adv. 8:1–11. doi:10.1063/1.5020936. Hamzah, N., M. F. M. Yasin, M. Z. M. Yusop, A. Saat, and N. A. M. Subha. 2017. Rapid production of carbon nanotubes: A review on advancement in growth control and morphology manipulations of flame synthesis. J. Mater. Chem. A. 5 (48):25144–70. doi:10.1039/C7TA08668G. Hamzah, N., M. F. M. Yasin, M. Z. M. Yusop, A. Saat, and N. A. M. Subha. 2019a. Growth region characterization of carbon nanotubes synthesis in heterogeneous flame environment with wire-based macro-image analysis. Diam. Relat. Mater. 99:107500. doi:10.1016/j.diamond.2019.107500. Hamzah, N., M. F. M. Yasin, M. T. Zainal, and M. A. F. Rosli. 2019b. Identification of CNT growth region and optimum time for catalyst oxidation : Experimental and modelling studies of flame synthesis. EVERGREEN Joint J. Novel Carbon Res. Sci. Green Asia Strategy. 6 (1):85–91.doi:10.5109/2328409. Han, W., Y. Ya, H. Chu, W. Cao, Y. Yan, and L. Chen. 2020. Morphological evolution of soot emissions from a laminar co-flow methane diffusion flame with varying oxygen concentrations. J. Energy Inst. 93 (1):224–34. doi:10.1016/j.joei.2019.03.006. Hasegawa, K., and S. Noda. 2011. Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon 49 (13):4497–504. doi:10.1016/j.carbon.2011.06.061. Hata, K., D. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. 2004. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–64. doi:10.1126/science.1104962. Heras, J. M., and L. Viscido. 1988. The behavior of water on metal surfaces. Catal. Rev.: Sci. Eng. 30 (2):281–338. doi:10.1080/01614948808078621. Hu, J. L., C. C. Yang, and J. H. Huang. 2008. Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition. Diam. Relat. Mater. 17 (12):2084–88. doi:10.1016/j.diamond.2008.07.010. Jourdain, V., and C. Bichara. 2013. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39. doi:10.1016/j.carbon.2013.02.046. Little, R. B. 2003. Mechanistic aspects of carbon nanotube nucleation and growth. J. Cluster Sci. 14 (2):135–85. doi:10.1023/A:1024841621054. Liu, S., Y. Zhang, Y. Lin, Z. Zhao, and Q. Li. 2014. Tailoring the structure and nitrogen content of nitrogen-doped carbon nanotubes by water-assisted growth. Carbon 69:247–54. doi:10.1016/j.carbon.2013.12.023. Matsumoto, N., A. Oshima, S. Ishizawa, G. Chen, K. Hata, and D. N. Futaba. 2018a. One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Adv. 8 (14):7810–17. doi:10.1039/C7RA13093G. Matsumoto, N., A. Oshima, S. Ishizawa, G. Chen, K. Hata, and D. N. Futaba. 2018b. One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Adv. 8 (14):7810–17. doi:10.1039/C7RA13093G. Merchan-Merchan, W., A. V. Saveliev, L. Kennedy, and W. C. Jimenez. 2010. Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci. 36 (6):696–727. doi:10.1016/j.pecs.2010.02.005. Moisala, A., A. G. Nasibulin, and E. I. Kauppinen. 2003. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review. J. Phys. - Condens. Matter. 15:3011–35. doi:10.1088/0953-8984/15/42/003. Okada, S., H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda. 2018. Flameassisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes. Carbon 138:1–7. doi:10.1016/j.carbon.2018.05.060. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |