UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :HB Economic Theory
Main Author :Nadiah Hanun Ismail
Additional Authors :Chee, Wooi Hooy
Title :Predicting restaurant revenue using machine learning
Place of Production :Tanjong Malim
Publisher :Fakulti Pengurusan dan Ekonomi
Year of Publication :2023
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
This paper studied the restaurant branch’s revenue to determine the best strategic location with period of study from 1996 until 2014. On the other hand, the paper examined multiple linear regression, decision tree regression, random forest regression and support vector regression to forecasting approach that will likely generate the highest accuracy during validation process in predicting the revenue. Analysis have resulted that support vector regression gives the lowest of error. Some recommendation been proposed for successful plans toward revenue growth which applicable to adopt in the company. Keywords: Supervised machine learning; Restaurant revenue prediction; TFI branch

References

Ahmad, I. S., Bakar, A. A., Yaakub, M. R., & Muhammad, S. H. (2020). A survey on machine learning techniques

in movie revenue prediction. SN Computer Science, 1(4), 1–14. https://doi.org/10.1007/S42979-020-00249-1

Ariffin, F. F. (2020). Zara tak putus asa, buka restoran baharu - Berita Harian.

https://www.bharian.com.my/hiburan/selebriti/2020/06/704960/zara-tak-putus-asa-buka-restoran-baharu

Bera, S. (2021). An application of operational analytics: For predicting sales revenue of restaurant. In Studies in

Computational Intelligence, 907, 209–235. https://doi.org/10.1007/978-3-030-50641-4_13

Chang, X. & Li, J. (2019). Business performance prediction in location-based social commerce. Expert Systems with

Applications, 126, 112–123. https://doi.org/10.1016/j.eswa.2019.01.086

Chen, C.-Y., Lee, W.-I., Kuo, H.-M., Chen, C.-W., & Chen, K.-H. (2010). The study of a forecasting sales model for

fresh food. Expert Systems with Applications, 37(12), 7696–7702. https://doi.org/10.1016/j.eswa.2010.04.072

Demšar, J., Zupan, B., Leban, G., & Curk, T. (2004). Orange: From Experimental Machine Learning to Interactive

Data Mining. In European conference on principles of data mining and knowledge discovery (pp. 537-539). Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30116-5_58

Department of Statistic Malaysia. (2020).

https://www.dosm.gov.my/v1/index.php?r=column/coneandmenu_id=V3R2ZnB6dE0xU1NDRXNKSHUvdm

hkQT09

Gogolev, S., & Ozhegov, E. M. (2019). Comparison of machine learning algorithms in restaurant revenue

prediction. Communications in Computer and Information Science, 1086CCIS, 27–36.

Hájek, P. & Olej, V. (2010). Municipal revenue prediction by ensembles of neural networks and support vector

machines. WSEAS Transactions on Computers, 9(11), 1255–1264.

Hu, C., Chen, M., & McCain, S.-L. C. (2004). Forecasting in short-term planning and management for a casino

buffet restaurant. Journal of Travel and Tourism Marketing, 16(2–3), 79–98.

https://doi.org/10.1300/J073v16n02_07

Kolkova, A. (2020). The application of forecasting sales of services to increase business competitiveness. Journal of

Competitiveness, 12(2), 90–105. https://doi.org/10.7441/joc.2020.02.06

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification

techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3-24.

Mackinlay, J., Hanrahan, P., & Stolte, C. (2007). Show me: Automatic presentation for visual analysis. IEEE

Transactions on Visualization and Computer Graphics, 13(6), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594

McDonald’s: number of restaurants worldwide. Statista. (2021).

https://www.statista.com/statistics/219454/mcdonalds-restaurants-worldwide/

Mohamed, A. (2017). Comparative study of four supervised machine learning techniques for classification.

Academia.Edu, 7(2). https://www.academia.edu/download/54482697/2.pdf

National Restaurant Association. (2019). Restaurant industry added nearly 14K locations in 2018. NRA. (n.d.).

Retrieved from https://restaurant.org/education-and-resources/resource-library/restaurant-industry-addednearly-

14k-locations-in-2018/

Othman, K. (2019). Hanya bertahan 3 bulan, Ning Baizura tutup restoran – Hiburan. mStar.

https://www.mstar.com.my/spotlight/hiburan/2019/03/30/ning-tutup-kedai

Posch, K., Truden, C., Hungerländer, P., & Pilz, J. (2021). A Bayesian approach for predicting food and beverage

sales in staff canteens and restaurants. International Journal of Forecasting.

https://doi.org/10.1016/j.ijforecast.2021.06.001

Restaurant Revenue Prediction. Kaggle. (2015). https://www.kaggle.com/c/restaurant-revenue-prediction

Reynolds, D., Rahman, I., & Balinbin, W. (2013). Econometric modeling of the U.S. restaurant industry.

International Journal of Hospitality Management, 34(1), 317–323. https://doi.org/10.1016/J.IJHM.2013.04.003

Tanizaki, T., Hoshino, T., Shimmura, T., & Takenaka, T. (2019). Demand forecasting in restaurants using machine

learning and statistical analysis. Procedia CIRP, 79(2), 679–683. https://doi.org/10.1016/j.procir.2019.02.042

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.