UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :TJ Mechanical engineering and machinery
Main Author :Mohd Saiful Syazwan Mohd Yusoff
Title :Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file

Abstract : Perpustakaan Tuanku Bainun
The purpose of this research was to design, simulate and optimize a 4-band radio frequency energy harvesting (RFEH) network circuit using the Keysight Technologies Advanced Design System (ADS) design and simulation software used for low power applications. The RF bands used for this study were Global System for Mobile Communication (GSM) (950MHz, 1850MHz, 2150MHz) and Wireless Fidelity (Wi- Fi) (5000MHz). Smith chart was employed to design the impedance matching circuit to match the source impedance (Zin) and the load impedance (Zload) to minimize the signal reflection (return loss) and maximize the power transfer. The impedances were matched at the desired radio frequency (RF) operating frequency. A single, two and three-stage voltage multipliers were simulated to obtain the output impedance at 4-band RF frequencies with the source impedance set to 50 ohms. Simulation results showed that the three-stage voltage multiplier produced the best outcomes, thus, was used for this research. The highest RF to DC power conversion efficiency at 0dBm RF input power were 54.317%, 41.011%, 25.281%, and 23.658%. On the other hand, the optimum DC output voltage found at 30dBm were 5.701V, 5.696V, 5.668V, and 5.674V. In conclusion, this research found that the RFEH system with a three-stage voltage multiplier connected to the impedance matching circuit produced both the optimal DC output voltage and power conversion efficiency. The findings of this research imply that the three-stage voltage multiplier is suitable for harvesting DC electrical energy from 4 different RF band waves for low-power applications, especially for wireless sensor networks (WSNs).

References

Acciona. (2020). Wind energy. Acciona: Business as unusual. https://www.acciona. com/renewable-energy/wind-energy/?adin=02021864894 

 

 Adam, I., Yasin, M. N. M., Malek, M. F. A., Rahim, H. A., Shakhirul, M. S., & Razalli, M. S. (2017). Feasibility study on RF energy harvesting in Malaysia. Advanced Science Letters, 23(6), 5034–5038. https://doi.org/10.1166/asl.2017.7304. 

 

Akin-Ponnle, A.E., & Carvalho, N.B. (2021). Energy harvesting mechanisms in a smart city—A review. Smart Cities, 4(2), 476–498. https://doi.org/10.3390/ smartcities4020025. 

 

Ali, E. M., Yahaya, N. Z., Nallagownden, P., & Alqasem, B.H. (2018). Enhanced Dickson voltage multiplier rectenna by developing analytical model for radio frequency harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21657. https://doi.org/10.1002/mmce. 21657. 

 

Ali-Abadi, H.A., & Gharakhili, F.G. (2019). Design of dual-band impedance matching circuit using t-shape shunt stub. Signal Processing and Renewable Energy, 3(2), 1–8. https://journals.iau.ir/article_664959.html. 

 

Allaboutcircuits. (n.d.). What are zener diodes? | Diodes and rectifiers | Electronics textbook. allaboutcircuits.com. https://www.allaboutcircuits.com/textbook/semi conductors/chpt-3/zener-diodes/. 

 

Allen, J. J., & Smits, A. J. (2001). Energy harvesting eel. Journal of Fluids and Structures, 15(3-4), 629–640. https://doi.org/10.1006/jfls.2000.0355. 

 

Al-Shetwi, A.Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of the Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022. 153645. 

Alternative Energy Tutorials. (2023). Wind speed - Is there enough wind where you live. Alternative Energy Tutorials. https://www.alternative-energy-tutorials.com/wind-energy/wind-speed.html. 

 

Al-Zubaidi, A.S., Ariffin, A.A., & Al-Qadhi, A.K. (2018). Enhancing the Stability of the Improved-LEACH Routing Protocol for WSNs. Journal of ICT Research and Applications, 12(1), 1–13. https://doi.org/10.5614/itbj.ict.res.appl.2018.12.1.1. 

 

Amineh, R. K. (2020). Applications of electromagnetic waves: Present and future. Electronics, 9(5), 808. https://doi.org/10.3390/electronics9050808. 

 

Ang, J. H., Yusup, Y., Zaki, S. A., Salehabadi, A., Rahman, M. B. A., & Ahmad, M. I. (2020). A review on kinetic energy harvesting towards innovative technological advances from sustainable sources. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(1), 12–41. https://www.akademiabaru.com/ submit/index.php/arfmts/article/view/2804. 

 

Assogba, O., Mbodji, A. K., & Diallo, A.K. (2020, February 4-6). Efficiency in RF energy harvesting systems: A comprehensive review [Paper presentation]. 2020 IEEE International Conference on Natural and Engineering Sciences for Sahel's Sustainable Development - Impact of Big Data Application on Society and Environment (IBASE-BF), Ouagadougou, Burkina Faso. https://doi.org/10.1109/ibase-bf48578.2020.9069597. 

 

Awati, R. (2023). What is the Seebeck effect? TechTarget Networking. https://tinyurl.com/4e4eye2r. 

 

Awodumi, O. B., & Adewuyi, A. O. (2020). The role of non-renewable energy consumption in economic growth and carbon emission: Evidence from oil producing economies in Africa. Energy Strategy Reviews, 27, 100434. https://doi.org/10.1016/j.esr.2019.100434. 

 

Bakhoum, E. G. (2012). High-sensitivity miniature smoke detector. IEEE Sensors Journal, 12(10), 3031–3035. https://doi.org/10.1109/jsen.2012.2208741. 

 

Bakkali, A., Pelegri-Sebastia, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8. https://doi.org/10.1155/2016/5725836. 

Baroudi, U. (2019, March 21-24). Management of RF energy harvesting: A survey [Paper presentation]. 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey. https://doi.org/10.1109/ssd.2019.8893169. 

 

Batra, A. K., & Alomari, A. (2017). Ambient energy sources: Mechanical, light, and thermal. In Power harvesting via smart materials, pp. 1-15. The Society of Photo-Optical Instrumentation Engineers. https://doi.org/10.1117/3.2268643.ch1. 

 

Bensky, A. (2019). Antennas and transmission lines. In Short-range wireless communication, pp. 43–83. Elsevier. https://doi.org/10.1016/b978-0-12-815405-2.00003-8. 

 

Bhattacharya, A. (n.d.). Power management of battery-powered wireless IoT Sensors. Blog.semtech.com. https://blog.semtech.com/low-dropout-for-battery-powered-wireless-iot-sensors#:~:text=Because%20of%20this%2C%20it%20has 

 

Bougas, I. D., Papadopoulou, M. S., Boursianis, A. D., Kokkinidis, K., & Goudos, S. K. (2021). State-of-the-art techniques in RF energy harvesting circuits. Telecom, 2(4), 369–389. https://doi.org/10.3390/telecom2040022 

 

Bowick, C., Blyler, J., & Ajluni, C. J. (2008). RF circuit design (2nd ed.). Elsevier. 

 

Branz, Ltd. (2022). Wind turbine systems and renewable energy. level.org.nz. https://www.level.org.nz/energy/renewable-electricity-generation/wind-turbine-systems/. 

 

Bush. J. (2017, February 22). Understanding noise figure in RF systems. Keysight Technologies. https://www.electronicspecifier.com/products/test-and-measureme nt/understanding-noise-figure-in-rf-systems. 

 

Cansiz, M., Altinel, D., & Kurt, G.K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100. 

 

Cauhan, V. (2015). Microwave and radar engineering with lab manual (1st ed.).  Laxmi Publications Pvt Ltd. 

Chen, S-W., Chang, M-H., Hsieh, W-C., & Hwang, W. (2010, May 30-June 2). Fully on-chip temperature, process, and voltage sensors [Paper presentation]. IEEE International Symposium on Circuits and Systems, Paris, France. https://doi.org/10.1109/iscas.2010.5537410. 

 

Chew, Z. J., Ruan, T., & Zhu, M. (2018). Power management circuit for wireless sensor nodes powered by energy harvesting: On the synergy of harvester and load. IEEE Transactions on Power Electronics, 34(9), 8671–8681. https://doi.org/10.1109/ tpel.2018.2885827. 

 

Davis, W.A. (2011). Radio frequency circuit design. John Wiley & Sons. 

 

Dawood, M.S., Benazer S.S., Nanthini, N., Devika, R., & Karthick, R. (2021). Design of rectenna for wireless sensor networks. Materials Today: Proceedings, 45, 2912–2915. https://doi.org/10.1016/j.matpr.2020.11.905. 

 

de Fazio, R., Cafagna, D., Marcuccio, G., Minerba, A., & Visconti, P. (2020). A multi-source harvesting system applied to sensor-based smart garments for monitoring workers’ bio-physical parameters in harsh environments. Energies, 13(9), 2161. https://doi.org/10.3390/en13092161. 

 

Delgado-Alvarado, E., Elvira-Hernández, E.A., Hernández-Hernández, J., Huerta-Chua, J., Vázquez-Leal, H., Martínez-Castillo, J., García-Ramírez, P. J., & Herrera-May, A. L. (2022). Recent progress of nanogenerators for green energy harvesting: Performance, applications, and challenges. Nanomaterials, 12(15), 2549. https://doi.org/10.3390/nano12152549. 

 

Dinesh Kumar, S., & Veerami R. (2016). Harvesting microwave signal power from the ambient environment, International Journal of Communication and Computer Technologies, 4(2), 76-81. https://doi.org/10.31838/ijccts/04.02.04. 

 

Divakaran, S. K., Krishna, D. D., & Nasimuddin. (2018). RF energy harvesting systems: An overview and design issues. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21633. https://doi.org/10.1002/mmce.216 33. 

 

Dobrowolski, J. Scattering parameters in RF and microwave circuit analysis and design. Artech. https://ieeexplore.ieee.org/document/9101144. 

Electrical4U. (2020, July 20). Admittance: What is it? (formula & admittance vs impedance). Electrical4U. https://www.electrical4u.com/admittance/ 

 

Electronic notes. (2016). Understanding reflection coefficient in RF systems. electronics-Notes.com. https://www.electronics-notes.com/articles/antennas-propagation/vswr-return-loss/reflection-coefficient.php#:~:text=Reflection%20 coefficient%20definition%3A&text=The%20reflection%20coefficient%20is%20equal. 

 

Electronicforu. (2017, November 5). Harvesting radio frequency energy. Power Electronics. https://www.electronicsforu.com/market-verticals/power-electronics /harvesting-radio-frequency-energy. 

 

Elliott, B. (2021). Optical Communication. AIP Publishing LLC. https://doi.org/ 10.1063/9780735423077. 

 

Elsheakh, D. (2017). Microwave antennas for energy harvesting applications. In Goudos, S.K. (Ed.), Microwave systems and applications. https://doi.org/10.5772/64918. 

 

Emilio, M. D. P. (2019, April 23). Circuits for RF energy harvesting. Planet Analog. https://www.planetanalog.com/circuits-for-rf-energy-harvesting/. 

 

Eniscuola. (n.d.). Solar knowledge. Eniscuola. https://eniscuola.eni.com/en-IT/energy/ solar/solar-energy-knowledge.html. 

 

Fahad, E. (2021, June 13). How to make wireless power transfer system for phones, dc motors, and LEDs. Electronic Clinic. https://www.electroniclinic.com/how-to-make-wireless-power-transfer-system-for-phones-dc-motors-and-leds/. 

 

Frenzel, L. (2011, October 25). Back to basics: Impedance matching (Part 1). electronicdesign.com. https://www.electronicdesign.com/technologies/communi cations/article/21796367/back-to-basics-impedance-matching-part-1. 

 

Fritzsche, H. (2019). Electromagnetic radiation - Radio waves. Encyclopædia Britannica. https://www.britannica.com/science/electromagnetic-radiation/Radio -waves. 

Gholikhani, M., Tahami, S. A., Khalili, M., & Dessouky, S. (2019). Electromagnetic energy harvesting technology: Key to sustainability in transportation systems. Sustainability, 11(18), 4906. https://doi.org/10.3390/su11184906. 

 

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(24), 38–50. https://doi.org/10.1016/j.esr.2019.01.006. 

 

Grady, S. (2011). Zero power wireless sensors using energy processing. Energy Harvesting Technologies. https://tinyurl.com/4mtv8nrs. 

 

Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics, 10(6), 661. https://doi.org/10.3390/ electronics10060661. 

 

Güney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development & World Ecology, 26(5), 389–397. https://doi.org/10.1080/13504509.2019.1595214. 

 

Gupta, S.K., Jangam, H.K., Sharma, N. (2018). Theory of antennas, its advantage & applications in communication systems. International Journal of Engineering Development and Research, 6(1), 925-930.  

 

Gurgel, K-W. (2015, November 25). University of Hamburg HF-radar home page. University of Hamburg. http://wera.cen.uni-hamburg.de/DBM.shtml. 

 

Garade, M. (2018). What are S-parameters? (2018). Everythingrf.com. https://www.everythingrf.com/community/what-are-s-parameters. 

 

Hameed, Z., & Moez, K. (2017). Design of impedance matching circuits for RF energy harvesting systems. Microelectronics Journal, 62, 49–56. https://doi.org/10.1016/ j.mejo.2017.02.004. 

 

Hamza, M., Ur Rehman, M., Riaz, A., Maqsood, Z., & Tanveer Khan, W. (2021, January 17-22). Hybrid dual band radio frequency and solar energy harvesting system for making battery-less sensing nodes [Paper presentation]. IEEE Radio and Wireless Symposium (RWS). https://doi.org/10.1109/rws50353.2021.9360 396. 

Keysight Technologies. (2019). Fundamentals of RF and microwave noise figure measurements. https://www.datatec.eu/en/keysight-5952-8255en. 

 

Khalid, F., Saeed, W., Shoaib, N., Khan, M.U., & Cheema, H.M. (2020). Quad-band 3D rectenna array for ambient rf energy harvesting. International Journal of Antennas and Propagation, 2020, e7169846. https://doi.org/10.1155/2020/7169 846. 

 

Khaligh, A., & Onar, O.C. (2017). Energy Harvesting: Solar, wind, and ocean energy conversion systems. CRC Press. https://doi.org/10.1201/9781439815090. 

 

Khan, I., Han, L., Khan, H., & Kim Oanh, L.T. (2021). Analyzing renewable and nonrenewable energy sources for environmental quality: Dynamic investigation in developing countries. Mathematical Problems in Engineering, 2021, e3399049. https://doi.org/10.1155/2021/3399049. 

 

Khan, S.R., Pavuluri, S.K., Cummins, G., & Desmulliez, M.P.Y. (2020). Wireless power transfer techniques for implantable medical devices: A review. Sensors, 20(12), 3487. https://doi.org/10.3390/s20123487. 

 

Khare, V., Khare, C., Nema, S., & Baredar, P. (2019). Introduction to energy sources. In Tidal energy systems: Design, optimization and control, pp. 1–39. Elsevier. https://doi.org/10.1016/b978-0-12-814881-5.00001-6 

 

Krein, P. T. (2011). Introduction: Energy sources, storage and transmission. In Rashid, M.H. (Ed.), Power electronics handbook (3rd ed.), pp. 1–14. Elsevier. https://doi.org/10.1016/b978-0-12-382036-5.00001-x. 

 

Kundu(datta), P., Acharjee, J., & Mandal, K. (2017). Design of an efficient rectifier circuit for RF energy harvesting system. International Journal of Advanced Engineering and Management, 2(4), 94-97. https://hal.science/hal-01592486. 

 

Li, C., & Schreurs, D. (2017). Fundamentals of microwave engineering. In: Li, C., Tofighi, M-H., Schreurs, D., & Horng, T-S, J. (Eds.), Principles and applications of RF/microwave in healthcare and biosensing, pp.1-52. Academic Press. https://doi.org/10.1016/b978-0-12-802903-9.00001-1. 

 

Ibrahim, H. H., Singh, M. S. J., Al-Bawri, S. S., & Islam, M. T. (2020). Synthesis, characterization and development of energy harvesting techniques incorporated with antennas: A review study. Sensors, 20(10), 2772. https://doi.org/10.3390/s20102772. 

 

Ibrahim, H.H., Singh, M.J., Al-Bawri, S.S., Ibrahim, S. K., Islam, M. T., Alzamil, A., & Islam, M.S. (2022). Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors, 22(11), 4144. https://doi.org/10.3390/s22114144. 

Haque, M.E., & Baroudi, U. (2020). Ambient self-powered cluster-based wireless sensor networks for industry 4.0 applications. Soft Computing, 25(3), 1859–1884. https://doi.org/10.1007/s00500-020-05259-y. 

 

Huang, J., Zhou, Y., Ning, Z., & Gharavi, H. (2019). Wireless power transfer and energy harvesting: Current status and future prospects. IEEE Wireless Communications, 26(4), 163–169. https://doi.org/10.1109/mwc.2019.1800378. 

 

Hydro-Québec. (2021). Wind turbines | How they work? Hydro-Québec. http://www.hydroquebec.com/learning/eolienne. 

 

Hymel, R.W. (2016, June). Far-field wireless energy harvesting for increased safeguards equipment battery life. Sandia National Laboratories. https://www.osti. gov/servlets/purl/1431252. 

 

 

 

Jawad, A.M., Nordin, R., Gharghan, S.K., Jawad, H.M., & Ismail, M. (2017). Opportunities and challenges for near-field wireless power transfer: A review. Energies, 10(7), 1022. https://doi.org/10.3390/en10071022. 

 

Jin, T., Song, Y., Cui G., & Guo, S. (2020). Advances on penetrating imaging of building layout technique using low frequency radio waves. Journal of Radars, 10(3), 342-359. https://doi.org/10.12000/jr20119. 

 

Jo, J., Jo, B., Kim, J., Kim, S., & Han, W. (2020). Development of an IoT-based indoor air quality monitoring platform. Journal of Sensors, 2020, 1–14. https://doi.org/10.1155/2020/8749764. 

 

Kato, Y., Koyama, M., Fukushima, Y., & Nakagaki, T. (2016). Energy technology roadmaps of Japan: Future energy systems based on feasible technologies beyond 2030. Springer Japan. https://doi.org/10.1007/978-4-431-55951-1. 

Kaur, N., Sharma, N., & Kumar, N. (2018). RF energy harvesting and storage system of rectenna: A review. Indian Journal of Science and Technology, 11(25), 1–5. https://doi.org/10.17485/ijst/2018/v11i25/114309. 

 

Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Select, 2(8), 1459-1479. https://doi.org/10.1002/nano.202000 242. 

 

Lozano, M.G., García, Y.P., Gonzalez, J.A.S., Bañuelos, C.V. O., Escareño, M.P.L., & Balagurusamy, N. (2019). Biosensors for food quality and safety monitoring: Fundamentals and applications. In Kuddus, M. (Ed.), Enzymes in Food Biotechnology, pp. 691–709. https://doi.org/10.1016/b978-0-12-813280-7.0004 0-2. 

 

Lu, M., Fu, G., Osman, N. B., & Konbr, U. (2021). Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustainable Cities and Society, 75, 103349. https://doi.org/10.1016/j.scs.2021.103349. 

 

Luo, Y., Pu, L., Wang, G., & Zhao, Y. (2019). RF energy harvesting wireless communications: RF environment, device hardware and practical issues. Sensors, 19(13), 3010. https://doi.org/10.3390/s19133010 

 

Mahan, G. D. (2005). Thermoelectric effect. In: Bassani, F., Liedl, G.L., & Wyder, P. (Eds.), Encyclopedia of condensed matter physics, pp. 180–187. Elsevier. https://doi.org/10.1016/b0-12-369401-9/00726-9. 

 

Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A., & Soliman, A. M. (2022). Near-field wireless power transfer used in biomedical implants: A comprehensive review. IET Power Electronics, 15(16), 1936-1955.  https://doi.org/10.1049/pel2. 12351. 

 

Malaysian Communications and Multimedia Commission, MCMC. (2023). Spectrum assignments for 900 MHz band. https://www.mcmc.gov.my/en/legal/registers /cma-registers/register-of-spectrum-assignments/spectrum-assignments-for-900 mhz-band. 

 

Malik, N. N., Alosaimi, W., Uddin, M. I., Alouffi, B., & Alyami, H. (2020). Wireless sensor network applications in healthcare and precision agriculture. Journal of Healthcare Engineering, 2020, 1–9. https://doi.org/10.1155/2020/8836613. 

 

Martins, G.C., Mansano, A.L., Stoopman, M., & Serdjin, W.A. (2021). Introduction to RF energy harvesting. In: Sazonov, E. (Ed), Wearable sensors: Fundamental, implementation and applications (2nd ed.), pp. 331-366. Elsevier. https://doi.org/10.1016/B978-0-12-819246-7.00011-5. 

Martins, G.C., Urso, A., Mansano, A., Liu, Y., & Serdijn, W.A. (2018). Energy-efficient low-power circuit techniques for wireless energy and data transfer in IoT sensor nodes. arXiv Preprint. https://doi.org/10.48550/arXiv.1704.08910. 

 

Maxim Integrated. (2020). Glossary definition for energy harvesting. Analog devices. https://www.stg-maximintegrated.com/en/glossary/definitions.mvp/term/Energ y%20Harvesting/gpk/1144. 

 

Microwaves101. (2023). Why fifty ohms? Microwaves 101.com. https://www. microwaves101.com/encyclopedias/why-fifty-ohms. 

 

Moghaddam, A.K., Chuah, J.H., Ramiah, H., Ahmadian, J., Mak, P-I., & Martins, R. P. (2017). A 73.9%-efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems. IEEE Transactions on Circuits and Systems I-Regular Papers, 64(4), 992–1002. https://doi.org/10.1109/tcsi.2016.2623821. 

 

Mouapi, A., Hakem, N., & Delisle, G. Y. (2018). A new approach to design of RF energy harvesting system to enslave wireless sensor networks. ICT Express, 4(4), 228–233. https://doi.org/10.1016/j.icte.2017.11.002. 

 

Mudeng, V., Priyanto, Y.T.K., Wicaksono, H., Kusuma, V.A., & Muntaha, M. (2019, November 18-21). Design of five stages Cockroft-Walton with passive filter [Paper presentation]. 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia. https://doi.org/10.1109/icevt48285.20 19.8993983. 

 

Muhammad, S., Tiang, J. J., Wong, S. K., Rambe, A. H., Adam, I., Smida, A., Waly, M. I., Iqbal, A., Abubakar, A. S., & Yasin, M.N.M. (2022). Harvesting systems for RF energy: Trends, challenges, techniques, and tradeoffs. Electronics, 11(6), 959. https://doi.org/10.3390/electronics11060959. 

 

Muncuk, U., Alemdar, K., Sarode, J. D., & Chowdhury, K.R. (2018). Multiband Ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT. IEEE Internet of Things Journal, 5(4), 2700–2714. https://doi.org/10.1109/ jiot.2018.2813162. 

 

Nawaza, S.M.N., & Alvib, S. (2018). Energy security for socio-economic and environmental sustainability in Pakistan. Heliyon, 4(10), e00854. https://doi. org/10.1016%2Fj.heliyon.2018.e00854. 

 

Newaskar, D., Kulkarni, K., & Paliwal, M. (2021). Wireless charger for biomedical devices. IT in Industry, 9(3), 689-695. http://it-in-industry.org/index.php/itii/ article/view/650/557. 

 

Nguyen, D.H., & Chapman, A. (2021). The potential contributions of universal and ubiquitous wireless power transfer systems towards sustainability. International Journal of Sustainable Engineering, 14(6), 1780–1790. https://doi.org/10.1080/ 19397038.2021.1988187. 

 

Nikolic, T., Stojcev, M., Nikolic, G., & Jovanovic, G. (2018). Energy harvesting techniques in wireless sensor networks. Facta Universitatis, Series: Automatic Control and Robotics, 17(2), 117. https://doi.org/10.22190/fuacr1802117n. 

 

Nikolova, N.K. (2017). Scattering parameters in microwave imaging. In: Introduction to microwave imaging, pp. 154-181. Cambridge University Press. https://doi.org/ 10.1017/9781316084267.

 

Ordunlade, E. (2019, September 13). Basics of Smith Charts and how to use it for impedance matching. Circuit Digest. https://circuitdigest.com/article/basics-of-smith-chart-and-how-to-use-if-for-impedance-matching. 

 

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990. 

 

Pareja Aparicio, M., Bakkali, A., Pelegri-Sebastia, J., Sogorb, T., Llario, V., & Bou, A. (2016). Radio frequency energy harvesting - Sources and techniques. In: Cao, W., & Hu. Y. (Eds.), Renewable energy - Utilisation and system integration, pp.155-170. https://doi.org/10.5772/61722. 

 

Pop-Vadean, A., Pop, P.P., Barz, C., Latinovic, T. (2015). Research about harvesting energy devices and storage methods. Carpathian Journal of Electrical Engineering 4(2), 102-120. https://www.researchgate.net/publication/292154962_Research_ about_harvesting_energy_devices_and_storage_method. 

 

Pratiwi, S., & Juerges, N. (2020). Review of the impact of renewable energy development on the environment and nature conservation in Southeast Asia. Energy, Ecology and Environment, 5(4), 221–239. https://doi.org/10.1007 /s40974-020-00166-2.

 

Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18(8), 2446. https://doi.org/10.3390/s18082446.  

 

Rajiv. (2022, July 31). What is impedance matching. RF page. https://tinyurl.com/ 2hzhj8c9. 

 

Rathod, J. (2019, September 5). RF energy harvesting-Converting radio frequency into electrical energy. Circuit Digest. https://circuitdigest.com/article/rf-energy-harvesting-converting-radio-frequency-into-electrical-energy. 

 

Ren, H., Zhang, Y., & Zheng, S. (2020). Simulation analysis of DC bus short circuit fault in electrochemical energy storage power station. Journal of Physics: Conference Series, 1601(2), 022025. https://doi.org/10.1088/1742-6596/1601/2/022025. 

 

RF Wireless World. (2012). Reflection coefficient and transmission coefficient formula, definition. RF Wireless World. https://www.rfwireless-world.com/Terminology/ Reflection-coefficient-vs-Transmission-coefficient.html. 

 

Safaei, M., Sodano, H. A., & Anton, S. R. (2019). A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008-2018). Smart Materials and Structures, 28(11), 113001. https://doi.org/10.1088/1361-665x/ab36e4. 

 

Sansoy, M., Buttar, A. S., & Goyal, R. (2020, February 27-28). Empowering wireless sensor networks with RF energy harvesting [Paper presentation]. 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India. https://doi.org/10.1109/SPIN48934.2020.9071376. 

 

Schieweck, A., Uhde, E., Salthammer, T., Salthammer, L.C., Morawska, L., Mazaheri, M., & Kumar, P. (2018). Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 94, 705–718. https://doi.org/10.1016/j.rser.2018.05.057. 

 

Shah, M. H., & Abosaq, N. H. (2020). Wireless power transfer via inductive coupling. 3C Tecnología_Glosas de Innovación Aplicadas a La Pyme, Abril 2020, 107–117. https://doi.org/10.17993/3ctecno.2020.specialissue5.107-117. 

 

Sharma, S., Tripathi, C. C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 1–16. https://doi.org/10.17485/ijst/2017/v10i28/97642. 

 

Sherazi, H. H. R., Zorbas, D., & O’Flynn, B. (2022). A comprehensive survey on RF energy harvesting: Applications and performance determinants. Sensors, 22(8), 2990. https://doi.org/10.3390/s22082990. 

 

Sidiku, M. B., Eronu, E. M., & Ashigwuike, E. C. (2021). A review on wireless power transfer: Concepts, implementations, challenges, and mitigation scheme. Nigerian Journal of Technology, 39(4), 1206–1215. https://doi.org/10.4314/njt. v39i4.29. 

 

Singh, J., Kaur, R., & Singh, D. (2020). Energy harvesting in wireless sensor networks: A taxonomic survey. International Journal of Energy Research, 45(1), 118–140. https://doi.org/10.1002/er.5816. 

 

Singh, P. (2018). Application of fractal antennas with advantages and disadvantages. International Journal of Creative Research Thoughts, 6(2), 552-554.  https://tinyu rl.com/3pmw64sa. 

 

Solar Schools. (2019). Solar energy: Shine on-Knowledge bank. Solarschools.net. https://www.solarschools.net/knowledge-bank/renewable-energy/solar/energy. 

 

Song, C., Huang, Y., Carter, P., Zhou, J., Yuan, S., Xu, Q., & Kod, M. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 3160–3171. https://doi.org/10.1109/tap.2016.2565697. 

 

Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57. https://doi.org/10.1109/mcas.2015.2510198. 

 

Spectrum Monitoring. (2023). Global mobile frequencies database. Spectrum Monitoring. https://www.spectrummonitoring.com/frequencies.php/. 

 

Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design (3rd ed.). Wiley. 

 

Sunawar, A., Garniwa, I., & Hudaya, C. (2019). The characteristics of heat inside a parked car as energy source for thermoelectric generators. International Journal of Energy and Environmental Engineering, 10(3), 347–356. https://doi.org/10.1007/s40095-019-0311-2. 

 

 

Techplayon. (2017, April 19). Insertion loss, return loss and attenuation. Techplayon. https://www.techplayon.com/insertion-loss-return-loss/#:~:text=The%20ratio% 20of%20incident%20power, terminology%2C%20is%20the%20return%20loss. 

 

ToyoChem. (2011). Column: What is electromagnetic wave shield? ToyoChem. https://tinyurl.com/yc3exu4h. 

 

Tran, H., Åkerberg, J., Björkman, M., & Tran, H.-V. (2017). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199. https://doi.org/10.1007/s11276-017-1546-6. 

 

Tran, L-G., Cha, H-K., & Park, W-T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0. 

 

Trikolikar, A., & Lahudkar, S. (2021). Design & simulation of dual-band rectifier for ambient RF energy harvesting. International Journal of Advanced Technology and Engineering Exploration, 8(83), 1383-1393. https://doi.org/10.19101/ijatee. 2021.874465. 

 

ur Rehman, M., Ahmad, W., & Khan, W. T. (2017, November 13-16). Highly efficient dual band 2.45/5.85 GHz rectifier for RF energy harvesting applications in ISM band [Paper presentation]. IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia. https://doi.org/10.1109/APMC.2017.8251400. 

 

ur-Rehman, M. Ahmad, W., Qureshi, M. I., & Khan, W. T. (2017, November 19-22). A highly efficient tri band (GSM1800, WiFi2400 and WiFi5000) rectifier for various radio frequency harvesting applications [Paper presentation]. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore. https://doi.org/10.1109/PIERS-FALL.2017.8293473. 

 

Uzun, Y. (2016). Design and implementation of RF energy harvesting system for low-power electronic devices. Journal of Electronic Materials, 45(8), 3842–3847. https://doi.org/10.1007/s11664-016-4441-5.

 

Vahdat-Nejad, H., & Asef, M. (2018). Architecture design of the air pollution mapping system by mobile crowd sensing. IET Wireless Sensor Systems, 8(6), 268–275. https://doi.org/10.1049/iet-wss.2018.5130. 

 

Vaka, M., Walvekar, R., Rasheed, A. K., & Khalid, M. (2020). A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production, 273, 122834. https://doi.org/10.1016/j. jclepro.2020.122834. 

 

Van Mulders, J., Delabie, D., Lecluyse, C., Buyle, C., Callebaut, G., Van der Perre, L., & De Strycker, L. (2022). Wireless power transfer: Systems, circuits, standards, and use cases. Sensors, 22(15), 5573. https://doi.org/10.3390/s22155573. 

 

van Zalk, J., & Behrens, P. (2018). The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S. Energy Policy, 123, 83–91. https://doi.org/10.1016/j.enpol. 2018.08.023. 

 

Varghese, B., John, N. E., Sreelal, S., & Gopal, K. (2016). Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications. Procedia Computer Science, 93, 230–237. https://doi.org/10.1016/j.procs.2016.07.205. 

 

Vijayakumar, M., Adduru, J., Rao, T. N., & Karthik, M. (2018). Solar cells: Conversion of solar energy into electrical energy storage: Supercapacitor as an ultrafast energy-storage device made from biodegradable agar-agar as a novel and low-cost carbon precursor (Global Challenges 10/2018). Global Challenges, 2(10), 1870204. https://doi.org/10.1002/gch2.201870204. 

 

Wang, L., Fei, Z., Qi, Y., Zhang, C., Zhao, L., Jiang, Z., & Maeda, R. (2022). Overview of human kinetic energy harvesting and application. ACS Applied Energy Materials, 5(6), 7091–7114. https://doi.org/10.1021/acsaem.2c00703. 

 

Wikimedia Commons. (2014, December 22). File: Wireless power system - inductive coupling.svg. Wikimedia Commons. https://commons.wikimedia.org/wiki/File: Wireless_power_system_-_inductive_coupling.svg. 

 

Yaldi, I.R.H., Rahim, A., & Ramli, M.R. (2016, December 11-13). Compact rectifier design for RF energy harvesting [Paper presentation]. IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Langkawi, Malaysia. https://doi.org/10.1109/apace.2016.7916437. 

 

Zhang, H., Krooswyk, S., & Ou, J. (2015). Transmission line fundamentals. In: High speed digital design: Design of high-speed interconnects and signaling, pp. 1–26. Elsevier. https://doi.org/10.1016/b978-0-12-418663-7.00001-0. 

 

Zhang, J-W., Bai, X., Han, W-Y., Zhao, B-H., Xu, L-J., & Wei, J-J. (2018). The design of radio frequency energy harvesting and radio frequency-based wireless power transfer system for battery-less self-sustaining applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21658. https://doi.org/10.1002/mmce.21658. 

 

Zhao, Y.-L., Tang, J., Huang, H.-P., Wang, Z., Chen, T.-L., Chiang, C.-W., & Chiang, P.-C. (2020). Development of IoT technologies for air pollution prevention and improvement. Aerosol and Air Quality Research, 20(12), 2874–2888. https://doi.org/10.4209/aaqr.2020.05.0255. 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.