UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Muhamad Safuan Mat Yeng@Mat Zin
Title :Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2024
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file

Abstract : Perpustakaan Tuanku Bainun
The study aims to formulate the production of 4-cyano-4’-pentylbiphenyl (5CB) microdroplets within a suitable range to be optically trapped, to optically trap a single 5CB microdroplet in water within a suitable size range, to optically micro-control the microdroplet using a circularly polarized laser, and to quantitatively determine factors affecting the optical manipulation of the microdroplet. 0.5 μL 5CB was mixed with the deionized water and sonicated to produce bipolar and radial 5CB microdroplet suspensions. The 5CB microdroplet was observed under optical microscopy and its size distribution was measured using ImageJ, while its stability was measured using UVVis spectroscopy. A linearly polarized laser beam of 976 nm wavelength was used to optically trap a single 5CB microdroplet in water at a specific laser power density. A circularly polarized laser beam was used to optically trap a single 5CB microdroplet to study its orientation control, rotatability control, and simultaneous translation microcontrol. A single 5CB microdroplet was trapped and introduced to the cetyltrimethylammonium bromide (CTAB) solution to study its visual internal configuration change and optical signal. The finding shows that the size distribution of 5CB microdroplet suspension decreased with time. However, it was stable and sustained in 1-hour monitoring. The 5CB microdroplet could be linearly translated and rotated, enabling the simultaneous translation-micro-control. The corner frequency (!!) and angular speed (") showed an increasing trend with optical power density (#) increment. Exposing CTAB solution to the trapped 5CB microdroplet changed its internal configuration from bipolar to radial, optical signal and displacement variance ($"). In conclusion, the trapped 5CB microdroplet could be micro-controlled as a microactuator while !!, ", and $" measurements were characteristics of microdropletbased sensors. This study implies that the optical trapping of a single 5CB microdroplet in water has potential for prospective actuating and sensing applications.

References

Aas, M., Jonáš, A., & Kiraz, A. (2013). Lasing in optically manipulated, dye-doped 

emulsion microdroplets. Optics Communications, 290, 183–187. 

https://doi.org/10.1016/j.optcom.2012.10.036 

 

Adamow, A., Sznitko, L., & Mysliwiec, J. (2017). The influence of homogenization 

process on lasing performance in polymer-nematic liquid crystal emulsions. 

Optical Materials, 69, 81–86. https://doi.org/10.1016/j.optmat.2017.04.011 

 

Aery, S., Parry, A., Araiza-Calahorra, A., Evans, S. D., Gleeson, H. F., Dan, A., & 

Sarkar, A. (2023). Ultra-stable liquid crystal droplets coated by sustainable plant-

based materials for optical sensing of chemical and biological analytes. Journal of 

Materials Chemistry C, 11(17), 5831–5845. https://doi.org/10.1039/d3tc00598d 

 

Asadinezhad, S., Khodaiyan, F., Salami, M., Hosseini, H., & Ghanbarzadeh, B. (2019). 

Effect of different parameters on orange oil nanoemulsion particle size: 

combination of low energy and high energy methods. Journal of Food 

Measurement and Characterization, 13(4), 2501–2509. 

https://doi.org/10.1007/s11694-019-00170-z 

 

Ashkin, A. (1997). Optical trapping and manipulation of neutral particles. Proceeding 

of the National Academy of Sciences of United States of America, 94(May), 4853–

4860. 

 

Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple 

Determination of the Stiffness of an Optical Trap Using Video Microscopy and 

Particle Tracking. Buletin Optik 2016, 1(2), 1–6. 

 

Aziz, W. N. S., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer 

(OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi, 

74(8), 45–48. https://doi.org/10.11113/jt.v74.4722 

 

Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian 

Symposium for Precision Engineering and Nanotechnology, 685, 1100. 

 

Bartoš, D., Wang, L., Anker, A. S., Rewers, M., Aalling-Frederiksen, O., Jensen, K. M. 

Ø., & Sørensen, T. J. (2022). Synthesis of fluorescent polystyrene nanoparticles: 

a reproducible and scalable method. PeerJ Materials Science, 4, e22. 

https://doi.org/10.7717/peerj-matsci.22 

 

Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical 

tweezers. Review of Scientific Instruments, 75(3), 594–612. 

https://doi.org/10.1063/1.1645654 

 

Brasselet, E. (2008). Statics and dynamics of radial nematic liquid-crystal droplets 

manipulated by laser tweezers. Physical Review E, 77(041704), 1–7. 

https://doi.org/10.1103/PhysRevE.77.041704 

 

Brasselet, E., Doyon, B., Galstian, T. V, & Dube, L. J. (2003). Optically induced 

dynamics in nematic liquid crystals: The role of twist deformation and asymmetry. 

Optic Comunications, 186, 291–302. 

https://doi.org/10.1103/PhysRevE.67.031706 

 

Brasselet, E., & Juodkazis, S. (2009a). Optical angular manipulation of liquid crystal 

droplets in laser tweezers. Nonlinear Optic Physics, 18(2), 167–194. 

 

Brasselet, E., & Juodkazis, S. (2009b). Optical angular manipulation of liquid crystal 

droplets in laser tweezers. Journal of Nonlinear Optical Physics and Materials, 

18(2), 167–194. https://doi.org/10.1142/S0218863509004580 

 

Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position 

detector for simultaneous measurements of force constants and local viscosity in 

optical tweezers. Optics Communications, 230(4–6), 357–368. 

https://doi.org/10.1016/j.optcom.2003.11.062 

 

Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). 

Influence of experimental parameters on the laser heating of an optical trap. 

Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-15904-6 

 

Chen, Z., Cai, Z., Liu, W., & Yan, Z. (2022). Optical trapping and manipulation for 

single-particle spectroscopy and microscopy. Journal of Chemical Physics, 

157(5). https://doi.org/10.1063/5.0086328 

 

Choi, Y., Lee, K., Gupta, K. C., Park, S. Y., & Kang, I. K. (2015). The role of ligand-

receptor interactions in visual detection of HepG2 cells using a liquid crystal 

microdroplet-based biosensor. Journal of Materials Chemistry B, 3(44), 8659–

8669. https://doi.org/10.1039/c5tb01213a 

 

Concellón, A. (2023). Liquid Crystal Emulsions: A Versatile Platform for Photonics, 

Sensing, and Active Matter. Angewandte Chemie - International Edition, 

202308857. https://doi.org/10.1002/anie.202308857 

 

David, C. B. W., Ayop, S. K., & Kremer, F. (2013). Resolvability Between Bare and 

DNA-Grafted Microsphere by Flow Resistance Measurement using Optical 

Tweezers. J. Sci. Math. Lett. UPSI, 1, 28–34. 

https://ejournal.upsi.edu.my/issuedetails/268 

 

Deng, J., Han, D., & Yang, J. (2021). Applications of microfluidics in liquid crystal-

based biosensors. Biosensors, 11(10). https://doi.org/10.3390/bios11100385 

 

Dienerowitz, M., Mazilu, M., & Dholakia, K. (2010). Optical manipulation of 

nanoparticles: A review. SPIE Reviews, 1(1), 1–32. 

https://doi.org/10.1117/1.2992045 

 

Dierking, I., & Al-zangana, S. (2017). Lyotropic Liquid Crystal Phases from 

Anisotropic Nanomaterials. Nanomaterials, 7(305). 

https://doi.org/10.3390/nano7100305 

 

Donato, M. G., Mazzulla, A., Pagliusi, P., Magazzù, A., Hernandez, R. J., Provenzano, 

C., Gucciardi, P. G., Maragò, O. M., & Cipparrone, G. (2016). Light-induced 

rotations of chiral birefringent microparticles in optical tweezers. Scientific 

Reports, 6(September). https://doi.org/10.1038/srep31977 

 

Duan, R., Hao, X., Li, Y., & Li, H. (2020). Detection of acetylcholinesterase and its 

inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors 

and Actuators B : Chemical, 308(November 2019), 127672. 

https://doi.org/10.1016/j.snb.2020.127672 

 

Duan, R., Li, Y., Shi, B., Li, H., & Yang, J. (2020). Real-time, quantitative and sensitive 

detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. 

Talanta, 209(October). https://doi.org/10.1016/j.talanta.2019.120513 

 

Duan, R., Yanzeng, L., Hanyang, L., & Jun, Y. (2019). Detection of heavy metal ions 

using whispering gallery mode lasing in functionalized liquid crystal 

microdroplets. Biomedical Optics Express, 10(12), 6073–6083. 

 

Eom, N., Sedev, R., Wedding, B., & Connor, J. (2014). Probing Fluid Flow Using the 

Force Measurement Capability of Optical Trapping. Advanced Power Technology, 

25(4), 1249–1253. 

 

Esteves, C., Ramou, E., Porteira, A. R. P., Moura Barbosa, A. J., & Roque, A. C. A. 

(2020). Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing 

Technologies. Advanced Optical Materials, 8(11). 

https://doi.org/10.1002/adom.201902117 

 

Fernández-Canto, N., Romero-Rodríguez, M. Á., Ramos-Cabrer, A. M., Pereira-

Lorenzo, S., & Lombardero-Fernández, M. (2023). Polarized light microscopy 

guarantees the use of autochthonous wheat in the production of flour for the 

Protected Geographical Indication ‘Galician Bread.’ Food Control, 

147(November 2022). https://doi.org/10.1016/j.foodcont.2022.109597 

 

Ferreira, T., & Rasband, W. (2012). User Guide ImageJ. Image J User Guide, 1.46r. 

https://doi.org/10.1038/nmeth.2019 

 

Garratt, R. C., & Bachega, F. R. (2013). Optical Tweezers. In Biophysics (pp. 1800–

1807). https://doi.org/10.1007/978-3-642-16712-6 

 

Gleeson, H. F., Wood, T. A., & Dickinson, M. (2006). Laser manipulation in liquid 

crystals: An approach to microfluidics and micromachines. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 364(1847), 2789–2805. https://doi.org/10.1098/rsta.2006.1855 

 

Goswami, D. (2018). Nobel Prize in Physics – 2018. Resonance, 23(12), 1333–1341. 

https://doi.org/10.1007/s12045-018-0744-6 

 

Hamid, M. Y., Ayop, S. K., Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution 

of an Optically Trapped Bead in Water. Buletin Optik 2016, 33(2), 2–5. 

https://doi.org/10.15011/jasma.33.330211 

 

Hanemann, T., Haase, W., Svoboda, I., & Fuess, H. (1995). Crystal structure of 4’-

pentyl-4-cyanobiphenyl (5CB). Liquid Crystals, 19(5), 699–702. 

https://doi.org/10.1080/02678299508031086 

 

Hegner, M., Gerber, C., Arntz, Y., Zhang, J., & Bertoncini, P. (2003). Biological Single 

Molecule Applications and Advanced Biosensing. Journal of Chromatography 

Library, 13, 241–263. 

 

Horst, A. Van Der, Forde, N. R., van der Horst, A., & Forde, N. R. (2010). Power 

spectral analysis for optical trap stiffness calibration from high-speed camera 

position detection with limited bandwidth. Optics Express, 18(8), 7670. 

https://doi.org/10.1364/oe.18.007670 

 

Humar, M., & Muševič, I. (2011). Surfactant sensing based on whispering-gallery-

mode lasing in liquid-crystal microdroplets. Optics Express, 19(21), 19836. 

https://doi.org/10.1364/oe.19.019836 

 

Ito, K., Frusawa, H., & Kimura, M. (2012). Precise switching control of liquid 

crystalline microgears driven by circularly polarized light. Optics Express, 20(4), 

1991–1996. 

 

Iwabata, K., Sugai, U., Seki, Y., Furue, H., & Sakaguchi, K. (2013). Applications of 

Biomaterials to Liquid Crystals. Molecules, 4703–4717. 

https://doi.org/10.3390/molecules18044703 

 

Josue H., R. (2012). Optical trapping and manipulation exploiting liquid crystalline 

systems. 

 

Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S., & Misawa, H. (1999). Fast optical 

switching by a laser-manipulated microdroplet of liquid crystal. Applied Physics 

Letters, 74(24), 3627–3629. https://doi.org/10.1063/1.123203 

 

Khoo, I. C. (2009). Nonlinear optics of liquid crystalline materials. In Physics Reports 

(Vol. 471, Issues 5–6, pp. 221–267). Elsevier B.V. 

https://doi.org/10.1016/j.physrep.2009.01.001 

 

Kiang-Ia, J., Taeudomkul, R., Prajongtat, P., Tin, P., Pattanaporkratana, A., & 

Chattham, N. (2021). Anomalous lehmann rotation of achiral nematic liquid 

crystal droplets trapped under linearly polarized optical tweezers. Molecules, 

26(14). https://doi.org/10.3390/molecules26144108 

 

Konyshev, I., & Byvalov, A. (2021). Model systems for optical trapping: the physical 

basis and biological applications The theory of optical trapping at macro-, meso-, 

and microscopic levels of detail. Biophysical Reviews, 13, 515–529. 

https://doi.org/10.1007/s12551-021-00823-8 

 

Kudo, T., Wang, S., Yuyama, K., & Masuhara, H. (2016). Optical Trapping-Formed 

Colloidal Assembly with Horns Extended to the Outside of a Focus through Light 

Propagation. https://doi.org/10.1021/acs.nanolett.6b00123 

 

Kulkarni, S., Kumar, S., & Thareja, P. (2021). Colloidal and fumed particles in nematic 

liquid crystals: Self-assembly, confinement and implications on rheology. In 

Journal of Molecular Liquids (Vol. 336, p. 116241). Elsevier B.V. 

https://doi.org/10.1016/j.molliq.2021.116241 

 

Lee, G., Araoka, F., Ishikawa, K., Momoi, Y., & Haba, O. (2013). Photoinduced 

Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer. 

Particle & Particle System Characterization, 30, 847–852. 

https://doi.org/10.1002/ppsc.201300110 

 

Lee, K., Gupta, C., Park, S., & Kang, I. (2015a). Anti-IgG-anchored liquid crystal 

microdroplets for label free detection of IgG. Journal of Materials Chemistry B. 

https://doi.org/10.1039/C5TB02131F 

 

Li, X., Sha, X. M., Yang, H. S., Ren, Z. Y., & Tu, Z. C. (2023). Ultrasonic treatment 

regulates the properties of gelatin emulsion to obtain high-quality gelatin film. 

Food Chemistry: X, 18(April), 100673. 

https://doi.org/10.1016/j.fochx.2023.100673 

 

Liu, Q., Asavei, T., Lee, T., Rubinsztein-dunlop, H., He, S., & Smalyukh, I. I. (2011). 

Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-

trapped microparticles. Optical Society of America, 19(25), 25134–25143. 

 

Loussert, C., Delabre, U., & Brasselet, E. (2013). Manipulating the Orbital Angular 

Momentum of Light at the Micron Scale with Nematic Disclinations in a Liquid 

Crystal Film. Physical Review Letters, 037802(July), 1–4. 

https://doi.org/10.1103/PhysRevLett.111.037802 

 

Malagnino, N., Pesce, G., Sasso, A., & Arimondo, E. (2002). Measurements of trapping 

efficiency and stiffness in optical tweeser. Optics Communications, 214, 15–24. 

 

Malmqvist, L., & Hertz, H. M. (1992). Trapped particle optical microscopy. Optics 

Communications, 94(1–3), 19–24. https://doi.org/10.1016/0030-4018(92)90398-

 

Manzo, C., Paparo, D., Marrucci, L., & Jánossy, I. (2006). Light-induced rotation of 

dye-doped liquid crystal droplets. Physical Review E - Statistical, Nonlinear, and 

Soft Matter Physics, 73(5). https://doi.org/10.1103/PhysRevE.73.051707  

 

Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical 

trapping phenomena: A simulation for undergraduates. IEEE Transactions on 

Education, 54(1), 133–140. https://doi.org/10.1109/TE.2010.2047107 

 

Merola, F., Grilli, S., Coppola, S., Vespini, V., De Nicola, S., Maddalena, P., Carfagna, 

C., & Ferraro, P. (2013). Pyroelectric manipulation of liquid crystal droplets. 

Proceeding of SPIE, 8792, 87920V. https://doi.org/10.1117/12.2020555 

 

Mertelj, A., & Lisjak, D. (2017). Ferromagnetic nematic liquid crystals. Liquid Crystals 

Reviews, 5(1), 1–33. https://doi.org/10.1080/21680396.2017.1304835 

 

Mirantsev, L. V., de Oliveira, E. J. L., de Oliveira, I. N., & Lyra, M. L. (2016). Defect 

structures in nematic liquid crystal shells of different shapes. Liquid Crystals 

Reviews, 4(1), 35–58. https://doi.org/10.1080/21680396.2016.1183151 

 

Miura, A., Nakajima, R., Abe, S., & Kitamura, N. (2020). Optical Trapping-

Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of 

Dimethylsulfoxide Microdroplets. Journal of Physical Chemistry A, 124(43), 

9035–9043. https://doi.org/10.1021/acs.jpca.0c06179 

 

Mohammad, S., Winson, W. T., & Bahman, A. (2014). Comparative study of methods 

to calibrate the stiffness of a single-beam gradient-force optical tweezers over 

various laser trapping powers. Journal of Biomedical Optics, 11, 115001. 

https://doi.org/10.1109/iembs.1999.802433 

 

Müllenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an 

optical trapping system for enhanced lateral trap stiffness at depth. Journal of 

Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305 

 

Murazawa, N., Juodkazis, S., Matsuo, S., & Misawa, H. (2005). Control of the 

Molecular Alignment Inside Liquid- Crystal Droplets by Use of Laser Tweezers. 

Small, 6, 656–661. https://doi.org/10.1002/smll.200500038 

 

Murazawa, N., Juodkazis, S., & Misawa, H. (2005). Characterization of bipolar and 

radial nematic liquid crystal droplets using laser-tweezers. Journal of Physics D: 

Applied Physics, 38(16), 2923–2927. https://doi.org/10.1088/0022-

3727/38/16/027 

 

Murazawa, N., Juodkazis, S., & Misawa, H. (2006a). Laser manipulation and 

characterization of liquid crystal droplets. Proceeding of SPIE, 6326, 1–9. 

https://doi.org/10.1117/12.685058 

 

Murazawa, N., Juodkazis, S., & Misawa, H. (2006b). Laser manipulation of a smectic 

liquid-crystal droplet. The European Physical Journal E, 439, 435–439. 

https://doi.org/10.1140/epje/i2006-10033-1 

 

Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific 

Instruments, 75(9), 2787–2809. https://doi.org/10.1063/1.1785844 

 

Neves, A. A. R., Jones, P. H., Luo, L., & Maragò, O. M. (2015). Optical cooling and 

trapping: introduction. Journal of the Optical Society of America B, 32(5), OCT1. 

https://doi.org/10.1364/josab.32.00oct1 

 

Nieminen, T. A., Du Preez-Wilkinson, N., Stilgoe, A. B., Loke, V. L. Y., Bui, A. A. 

M., & Rubinsztein-Dunlop, H. (2014). Optical tweezers: Theory and modelling. 

Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 59–80. 

https://doi.org/10.1016/j.jqsrt.2014.04.003 

 

Nishii, H. (2021). Effect of Measurement Parameters on UV-VIS Absorption Spectra. 

UV Talk Letter, 21, 1–14. 

 

Niu, X., Luo, D., Chen, R., Wang, F., Sun, X., & Dai, H. (2016). Optical biosensor 

based on liquid crystal droplets for detection of cholic acid. Optics 

Communications, 381, 286–291. https://doi.org/10.1016/j.optcom.2016.07.016 

 

Oster, L. M., Shechter, J., Strain, B., Shivrayan, M., Thayumanavan, S. T., & Ross, J. 

L. (2022). Controlling Liquid Crystal Configuration and Phase Using Multiple 

Molecular Triggers. Molecules, 27(3), 1–17. 

https://doi.org/10.3390/molecules27030878 

 

Pai, P., Zandrini, T., Mart, R., & Bragheri, F. (2018). Particle Manipulation by Optical 

Forces in Microfluidic Devices. Micromachines, 9(200), 1–21. 

https://doi.org/10.3390/mi9050200 

 

Palffy-muhoray, P. (2007). The diverse world of liquid crystals. Physics Today, 

54(2007), 54–60. https://doi.org/10.1063/1.2784685 

 

Parmentier, E. A., Arroyo, P. C., Bibawi, S., Esat, K., & Signorell, R. (2021). 

Photochemistry of single optically trapped oleic acid droplets. Journal of Aerosol 

Science, 151(August 2020), 0–10. 

https://doi.org/https://doi.org/10.1016/j.jaerosci.2020.105660 

 

Patel, N., Rawat, S., Joglekar, M., Chhaniwal, V., Dubey, S. K., O’Connor, T., Javidi, 

B., & Anand, A. (2021). Compact and low-cost instrument for digital holographic 

microscopy of immobilized micro-particles. Optics and Lasers in Engineering, 

137(May 2020). https://doi.org/10.1016/j.optlaseng.2020.106397 

 

Paul, D., Chand, R., & Kumar, G. V. P. (2022). Optothermal Evolution of Active 

Colloidal Matter in a Defocused Laser Trap. ACS Photonics, 9(10), 3440–3449. 

https://doi.org/10.1021/acsphotonics.2c01083 

 

Peddireddy, K., Kumar, P., Thutupalli, S., Herminghaus, S., & Bahr, C. (2012). 

Solubilization of thermotropic liquid crystal compounds in aqueous surfactant 

solutions. Langmuir, 28(34), 12426–12431. https://doi.org/10.1021/la3015817 

 

Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-induced heating in optical 

traps. Biophysical Journal, 84(2 I), 1308–1316. https://doi.org/10.1016/S0006-

3495(03)74946-7 

 

Phanphak, S., Pattanaporkratana, A., Limtrakul, J., & Chattham, N. (2014). Precession 

mechanism of nematic liquid crystal droplets under low power optical tweezers. 

Ferroelectrics, 468(1), 114–122. https://doi.org/10.1080/00150193.2014.933663 

 

Polimeno, P., Magazzù, A., Iatì, M. A., Patti, F., Saija, R., Esposti Boschi, C. D., 

Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Maragò, O. M. (2018). 

Optical tweezers and their applications. Journal of Quantitative Spectroscopy and 

Radiative Transfer, 218, 131–150. https://doi.org/10.1016/j.jqsrt.2018.07.013 

 

Popov, N., Honaker, L. W., Popova, M., Usol’tseva, N., Mann, E. K., Jákli, A., & 

Popov, P. (2017). Thermotropic liquid crystal-assisted chemical and biological 

sensors. In Materials (Vol. 11, Issue 1, pp. 14–17). 

https://doi.org/10.3390/ma11010020 

 

Popov, Piotr, K. Mann, Elizabeth, Jakli, Antal. (2017). Thermotropic Liquid Crystal 

Films for Biosensor and Beyond. Journal of Materials Chemistry B. 

https://doi.org/10.1039/C7TB00809K 

 

Prakash, J., Parveen, A., Kumar, Y., & Kaushik, A. (2020). Nanotechnology-assisted 

liquid crystals-based biosensors : Towards fundamental to advanced applications. 

Biosensors and Bioelectronics, 168(June), 112562. 

https://doi.org/10.1016/j.bios.2020.112562 

 

Qin, L., Liu, X., & Yu, Y. (2021). Soft Actuators of Liquid Crystal Polymers Fueled by 

Light from Ultraviolet to Near Infrared. Advanced Optical Materials, 9(7), 1–27. 

https://doi.org/10.1002/adom.202001743 

 

Ribeiro, R. S. R., Dahal, P., Guerreiro, A., & Jorge, P. A. S. (2017). Fabrication of 

Fresnel plates on optical fibres by FIB milling for optical trapping , manipulation 

and detection of single cells. Nature Scientific Report, May, 1–14. 

https://doi.org/10.1038/s41598-017-04490-2 

 

Rui, G., Li, Y., Gu, B., Cui, Y., & Zhan, Q. (2021). Optical manipulation of 

nanoparticles with structured light. In Thin Film Nanophotonics: Conclusions 

from the Third International Workshop on Thin Films for Electronics, Electro-

Optics, Energy and Sensors (TFE3S). LTD. https://doi.org/10.1016/B978-0-12-

822085-6.00008-X 

 

Saito, K., & Kimura, Y. (2022). Optically driven liquid crystal droplet rotator. Scientific 

Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-21146-y 

 

Sanders, J. L., Yang, Y., Dickinson, M. R., & Gleeson, H. F. (2013b). Pushing, pulling 

and twisting liquid crystal systems: Exploring new directions with laser 

manipulation. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 371(1988), 20120265. 

https://doi.org/10.1098/rsta.2012.0265 

 

Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative study of methods to 

calibrate the stiffness of a single-beam gradient-force optical tweezers over 

various laser trapping powers. Journal of Biomedical Optics, 19(11), 115001. 

https://doi.org/10.1117/1.jbo.19.11.115001 

 

Scharf, T. (2006). Polarized Light in Liquid Crystals and Polymers. In Polarized Light 

in Liquid Crystals and Polymers. John Wiley & Sons. 

https://doi.org/10.1002/9780470074374 

 

Sen, A., Kupcho, K. A., Grinwald, B. A., Vantreeck, H. J., & Acharya, B. R. (2013). 

Liquid crystal-based sensors for selective and quantitative detection of nitrogen 

dioxide. Sensors and Actuators, B: Chemical, 178, 222–227. 

https://doi.org/10.1016/j.snb.2012.12.036 

 

Sengupta, A., Herminghaus, S., & Bahr, C. (2014). Liquid crystal microfluidics: 

surface, elastic and viscous interactions at microscales. Liquid Crystals Reviews, 

2(2), 73–110. https://doi.org/10.1080/21680396.2014.963716 

 

Shafiei, M., Kazemzadeh, Y., Martyushev, D. A., Dai, Z., & Riazi, M. (2023). Effect 

of chemicals on the phase and viscosity behavior of water in oil emulsions. 

Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-31379-0 

 

Shechter, J., Atzin, N., Mozaffari, A., Zhang, R., Zhou, Y., Strain, B., Oster, L. M., De 

Pablo, J. J., & Ross, J. L. (2020). Direct Observation of Liquid Crystal Droplet 

Configurational Transitions using Optical Tweezers. Langmuir, 36(25), 7074–

7082. https://doi.org/10.1021/acs.langmuir.9b03629 

 

Shen, Y., & Dierking, I. (2019). Perspectives in Liquid-Crystal-Aided Nanotechnology 

and Nanoscience. Appl. Sci., 9, 2512. 

 

Shih, T. W., Hsu, C. L., Chen, L. Y., Huang, Y. C., Chen, C. J., Inoue, Y., & Sugiyama, 

T. (2021). Optical Trapping-Induced New Polymorphism of β-Cyclodextrin in 

Unsaturated Solution. Crystal Growth and Design, 21(12), 6913–6923. 

https://doi.org/10.1021/acs.cgd.1c00822 

 

Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative 

measurements of force and displacement using an optical trap. Biophysical 

Journal, 70(4), 1813–1822. https://doi.org/10.1016/S0006-3495(96)79746-1 

 

Škarabot, M., Osterman, N., Lokar, Ž., & Muševič, I. (2014). Manipulation of particles 

by laser tweezers-induced gradient of order in the nematic liquid crystal. Optical 

Trapping and Optical Micromanipulation XI, 9164, 91642B. 

https://doi.org/10.1117/12.2061308 

 

Smalyukh, I. I., Kachynski, A. V, Kuzmin, A. N., & Prasad, P. N. (2006). Laser trapping 

in anisotropic fluids and polarization-controlled particle dynamics. Proceeding of 

the National Academy of Sciences of United States of America, 103(48). 

 

Smalyukh, I. I., Kaputa, D. S., Kachynski, A. V., Kuzmin, A. N., & Prasad, P. N. 

(2007). Optical trapping of director structures and defects in liquid crystals using 

laser tweezers. Optics Express, 15(7), 4359. https://doi.org/10.1364/oe.15.004359 

 

Sofi, J. A., & Dhara, S. (2019). Stability of liquid crystal micro-droplets based optical 

microresonators. Liquid Crystals, 46(4), 629–639. 

https://doi.org/10.1080/02678292.2018.1515373 

 

Sotolongo-Costa, O., Moreno-Vega, Y., Lloveras-González, J. J., & Antoranz, J. C. 

(1996). Criticality in Droplet Fragmentation. Physical Review Letters, 76(1), 42–

45. https://doi.org/10.1103/PhysRevLett.76.42 

 

Srivastava, G., Jaiswal, M., Singh, P., Iqbal, A., Dabrowski, R., & Dhar, R. (2023). 

Enhanced stability of the nematic phase of 4-pentyl-4ʹ-cyanobiphenyl due to the 

dispersion of copper nanoparticles. Liquid Crystals, 00(00), 1–14. 

https://doi.org/10.1080/02678292.2023.2219990 

 

Suga, M., Suda, S., Ichikawa, M., & Kimura, Y. (2018). Self-propelled motion 

switching in nematic liquid crystal droplets in aqueous surfactant solutions. 

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 062703, 1–8. 

https://doi.org/10.1103/PhysRevE.97.062703 

 

Sugiyama, T., Yuyama, K., & Masuhara, H. (2012). Laser trapping chemistry: From 

polymer assembly to amino acid crystallization. Accounts of Chemical Research, 

45(11), 1946–1954. https://doi.org/10.1021/ar300161g 

 

Supian, F. L., Richardson, T. H., Deasy, M., Kelleher, F., Ward, J. P., & McKee, V. 

(2010). Interaction between Langmuir and Langmuir-Blodgett films of two 

calix[4]arenes with aqueous copper and lithium ions. Langmuir, 26(13), 10906–

10912. https://doi.org/10.1021/la100808r 

 

Tadros, T. F. (2013). Emulsion Formation and Stability. 

Taylor, P., Kleman, M., & Lavrentovich, O. D. (2006). Topological point defects in 

nematic liquid crystals. Philosophical Magazine, 86(September 2012), 37–41. 

https://doi.org/10.1080/14786430600593016 

 

Taylor, P., Ward, A. D., Longhurst, M., & Quirke, N. (2005). The optical trapping of 

airborne hydrocarbon droplets from an oil mist. Journal of Experimental 

Nanoscience, 1(1), 75–82. https://doi.org/10.1080/17458080500328003 

 

Tsuji, T., Doi, K., & Kawano, S. (2022). Optical trapping in micro- and 

nanoconfinement systems: Role of thermo-fluid dynamics and applications. 

Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 

52(October 2021), 100533. https://doi.org/10.1016/j.jphotochemrev.2022.100533 

 

T-thienprasert, J., Limtrakul, J., Zentgraf, T., Chattham, N., Meyer, F., Schlickriede, 

C., Chaisakul, P., & Zentgraf, T. (2019). Miniaturized Metalens Based Optical 

Tweezers on Optical Motors. Crystals, 9(515). 

 

Upadhyay, P., Rastogi, M. K., & Kumar, D. (2015). Polarizability study of nematic 

liquid crystal 4-cyano-4 0 -pentylbiphenyl ( 5CB ) and its nitrogen derivatives. 

Chemical Physics, 456, 41–46. https://doi.org/10.1016/j.chemphys.2015.03.011 

 

Urbanski, M., Reyes, C. G., Noh, J., Sharma, A., Geng, Y., Subba Rao Jampani, V., & 

Lagerwall, J. P. F. (2017). Liquid crystals in micron-scale droplets , shells and 

fibers. Journal of Physics: Condensed Matter, 29(13), 53. 

https://doi.org/10.1088/1361-648X/aa5706 

 

Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2012). Laser Trapping-Induced 

Reconfiguration of Individual Smectic Liquid Crystal Micro-Droplet Showing 

Size-Dependent Dynamics. SPIE, 8274, 1–8. https://doi.org/10.1117/12.906305 

 

Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2013). Polarization and Droplet 

Size Effects in the Laser-Trapping-Induced Reconfiguration in Individual Nematic 

Liquid Crystal Microdroplets. The Journal of Physical Chemistry B, 117, 4536–

4540. 

 

Usman, A., Uwada, T., & Masuhara, H. (2011). Optical Reorientation and Trapping of 

Nematic Liquid Crystals Leading to the Formation of Micrometer-Sized Domain. 

The Journal of Physical Chemistry, 11906–11913. 

 

Wang, H., Qin, Q. H., Ji, H., & Sun, Y. (2011). Comparison among different modeling 

techniques of 3D micromechanical modeling of damage in unidirectional 

composites. Advanced Science Letters, 4(2), 400–407. 

https://doi.org/10.1166/asl.2011.1261 

 

Wang, X., Bukusoglu, E., & Abbott, N. L. (2017). A practical guide to the preparation 

of liquid crystal-templated microparticles. Chemistry of Materials, 29(1), 53–61. 

https://doi.org/10.1021/acs.chemmater.6b02668 

 

Wang, Y., Li, H., Zhao, L., Liu, Y., Liu, S., & Yang, J. (2016). Tunable whispering 

gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets. 

Applied Physics Letters, 109(23). https://doi.org/10.1063/1.4971973 

 

Wang, Z., Zhang, Y., Gong, X., Yuan, Z., Feng, S., Xu, T., Liu, T., & Chen, Y. (2020). 

Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale 

Advanced, 1–7. https://doi.org/10.1039/d0na00107d 

 

Wei, Y. Y., Sun, Z. Q., Ren, H. H., & Li, L. (2019). Advances in Microdroplet 

Generation Methods. Chinese Journal of Analytical Chemistry, 47(6), 795–804. 

https://doi.org/10.1016/S1872-2040(19)61162-X 

 

Wo, T., Wurzbach, I., Kirres, J., Kostidou, A., Kapernaum, N., Litterscheidt, J., Haenle, 

J. C., Sta, P., Baro, A., Giesselmann, F., & Laschat, S. (2015). Discotic Liquid 

Crystals. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.5b00190 

 

Wood, T. A., Gleeson, H. F., Dickinson, M. R., & Wright, A. J. (2004). Mechanisms 

of optical angular momentum transfer to nematic liquid crystalline droplets. 

Applied Physics Letters, 84(21), 4292–4294. https://doi.org/10.1063/1.1753067 

 

Wright, W. H., Sonek, G. J., & Berns, M. W. (1994). Parametric study of the forces on 

microspheres held by optical tweezers. Applied Optics, 33(9), 1735–1748. 

 

Wu, C. S., Hsieh, P. Y., Yuyama, K. I., Masuhara, H., & Sugiyama, T. (2018). 

Pseudopolymorph Control of l -Phenylalanine Achieved by Laser Trapping. 

Crystal Growth and Design, 18(9), 5417–5425. 

https://doi.org/10.1021/acs.cgd.8b00796 

 

Wulff, D., Chan, A., Liu, Q., Gu, F. X., & Aucoin, M. G. (2020). Characterizing internal 

cavity modulation of corn starch microcapsules. Heliyon, 6(10), e05294. 

https://doi.org/10.1016/j.heliyon.2020.e05294 

 

Xie, M. (2021). Principle of optical tweezers trapping. Autonomous Robot-Aided 

Optical Manipulation for Biological Cells, 3–13. https://doi.org/10.1016/b978-0-

12-823449-5.00003-4 

 

Yan, Wang., Hanyang, Li., Liyuan, Zhao., Yongjun, Liu., Shuangqiang, Liu., & Jun, 

Yang. (2017). Tapered optical fiber waveguide coupling to whispering gallery 

modes of liquid crystal microdroplet for thermal sensing application. Optics 

Express, 25(2), 3240–3247. 

 

Yang, Y., Brimicombe, P. D., Roberts, N. W., Dickinson, M. R., Osipov, M., & 

Gleeson, H. F. (2008). Continuously rotating chiral liquid crystal droplets in a 

linearly polarized laser trap. Optics Express, 16(10), 6877–6882. 

 

Yeng, M. S. M., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4- 

pentylbiphenyl (5CB) microdroplet in water using optical tweezers. Proceeding of 

SPIE, 12479(December), 191. https://doi.org/10.1117/12.2658779 

 

Yeng, M. S. M., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot 

Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and 

Technology, 9(3), 70–74. 

 

Yeng, M. S. M., Ayop, S. K., Mustapa, I. R., & Sasaki, K. (2022). Optical Stiffness of 

an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a 

Microdroplet in Water. Central Asia and the Caucasus, 23(1), 3008–3016. 

 

Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2022). Optical Manipulation of a Liquid 

Crystal (LC) Microdroplet by Optical Force. Crystal Research and Technology, 

n/a(n/a), 2200080. https://doi.org/https://doi.org/10.1002/crat.202200080 

 

Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2023). Optical Trapping of a Single 

Chloroform Microdroplet. Jurnal Teknologi, 85(3), 117–123. 

https://doi.org/https://doi.org/10.11113/jurnalteknologi.v85.19303 

 

Yusof, M. F. M., Ayop, S. K., Supian, F. L., & Juahir, Y. (2020). Optical trapping of 

organic solvents in the form of microdroplets in water. Chemical Physics Letters, 

749(January), 137407. https://doi.org/10.1016/j.cplett.2020.137407 

 

Yusuf, M. F. M., & Ayop, S. K. (2020). The trapping of a single chloroform 

microdroplet in water using optical tweezers. SPIE, 11522(June), 18. 

https://doi.org/10.1117/12.2573528 

 

Zeng, H. (2017). Light Driven Microscopic Robot (Issue October). 

https://doi.org/10.13140/RG.2.2.28029.46564 

 

Zhang, J., Liu, W., Zhu, Z., Yuan, X., & Qin, S. (2016). Towards nano-optical tweezers 

with graphene plasmons : Numerical investigation of trapping 10-nm particles 

with mid-infrared light. Nature Publishing Group, November, 1–7. 

https://doi.org/10.1038/srep38086 

 

Zhong, M. C., Wang, Z. Q., & Li, Y. M. (2017). Oscillations of absorbing particles at 

the water-air interface induced by laser tweezers. Optics Express, 25(3), 2481–

2488. https://doi.org/10.1364/OE.25.002481 

 

Zhu, C., Lu, Y., Jiang, L., & Yu, Y. (2021). Liquid Crystal Soft Actuators and Robots 

toward Mixed Reality. Advanced Functional Materials, 2009835, 1–21. 

https://doi.org/10.1002/adfm.202009835 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.