| 
               
              UPSI Digital Repository (UDRep)               
              
             | 
            
               | 
          
                        
  | 
                    
                        
  | 
                    ||||||||||||||||||||||||
| Abstract : Perpustakaan Tuanku Bainun | 
| The study aims to formulate the production of 4-cyano-4’-pentylbiphenyl (5CB)
microdroplets within a suitable range to be optically trapped, to optically trap a single
5CB microdroplet in water within a suitable size range, to optically micro-control the
microdroplet using a circularly polarized laser, and to quantitatively determine factors
affecting the optical manipulation of the microdroplet. 0.5 μL 5CB was mixed with the
deionized water and sonicated to produce bipolar and radial 5CB microdroplet
suspensions. The 5CB microdroplet was observed under optical microscopy and its size
distribution was measured using ImageJ, while its stability was measured using UVVis
spectroscopy. A linearly polarized laser beam of 976 nm wavelength was used to
optically trap a single 5CB microdroplet in water at a specific laser power density. A
circularly polarized laser beam was used to optically trap a single 5CB microdroplet to
study its orientation control, rotatability control, and simultaneous translation microcontrol.
A single 5CB microdroplet was trapped and introduced to the
cetyltrimethylammonium bromide (CTAB) solution to study its visual internal
configuration change and optical signal. The finding shows that the size distribution of
5CB microdroplet suspension decreased with time. However, it was stable and
sustained in 1-hour monitoring. The 5CB microdroplet could be linearly translated and
rotated, enabling the simultaneous translation-micro-control. The corner frequency (!!)
and angular speed (") showed an increasing trend with optical power density (#)
increment. Exposing CTAB solution to the trapped 5CB microdroplet changed its
internal configuration from bipolar to radial, optical signal and displacement variance
($"). In conclusion, the trapped 5CB microdroplet could be micro-controlled as a
microactuator while !!, ", and $" measurements were characteristics of microdropletbased
sensors. This study implies that the optical trapping of a single 5CB microdroplet
in water has potential for prospective actuating and sensing applications. | 
| References | 
Aas, M., Jonáš, A., & Kiraz, A. (2013). Lasing in optically manipulated, dye-doped emulsion microdroplets. Optics Communications, 290, 183–187. https://doi.org/10.1016/j.optcom.2012.10.036 
 Adamow, A., Sznitko, L., & Mysliwiec, J. (2017). The influence of homogenization process on lasing performance in polymer-nematic liquid crystal emulsions. Optical Materials, 69, 81–86. https://doi.org/10.1016/j.optmat.2017.04.011 
 Aery, S., Parry, A., Araiza-Calahorra, A., Evans, S. D., Gleeson, H. F., Dan, A., & Sarkar, A. (2023). Ultra-stable liquid crystal droplets coated by sustainable plant- based materials for optical sensing of chemical and biological analytes. Journal of Materials Chemistry C, 11(17), 5831–5845. https://doi.org/10.1039/d3tc00598d 
 Asadinezhad, S., Khodaiyan, F., Salami, M., Hosseini, H., & Ghanbarzadeh, B. (2019). Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. Journal of Food Measurement and Characterization, 13(4), 2501–2509. https://doi.org/10.1007/s11694-019-00170-z 
 Ashkin, A. (1997). Optical trapping and manipulation of neutral particles. Proceeding of the National Academy of Sciences of United States of America, 94(May), 4853– 4860. 
 Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik 2016, 1(2), 1–6. 
 Aziz, W. N. S., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer (OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi, 74(8), 45–48. https://doi.org/10.11113/jt.v74.4722 
 Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology, 685, 1100. 
 Bartoš, D., Wang, L., Anker, A. S., Rewers, M., Aalling-Frederiksen, O., Jensen, K. M. Ø., & Sørensen, T. J. (2022). Synthesis of fluorescent polystyrene nanoparticles: a reproducible and scalable method. PeerJ Materials Science, 4, e22. https://doi.org/10.7717/peerj-matsci.22 
 Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594–612. https://doi.org/10.1063/1.1645654 
 Brasselet, E. (2008). Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers. Physical Review E, 77(041704), 1–7. https://doi.org/10.1103/PhysRevE.77.041704 
 Brasselet, E., Doyon, B., Galstian, T. V, & Dube, L. J. (2003). Optically induced dynamics in nematic liquid crystals: The role of twist deformation and asymmetry. Optic Comunications, 186, 291–302. https://doi.org/10.1103/PhysRevE.67.031706 
 Brasselet, E., & Juodkazis, S. (2009a). Optical angular manipulation of liquid crystal droplets in laser tweezers. Nonlinear Optic Physics, 18(2), 167–194. 
 Brasselet, E., & Juodkazis, S. (2009b). Optical angular manipulation of liquid crystal droplets in laser tweezers. Journal of Nonlinear Optical Physics and Materials, 18(2), 167–194. https://doi.org/10.1142/S0218863509004580 
 Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Optics Communications, 230(4–6), 357–368. https://doi.org/10.1016/j.optcom.2003.11.062 
 Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). Influence of experimental parameters on the laser heating of an optical trap. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-15904-6 
 Chen, Z., Cai, Z., Liu, W., & Yan, Z. (2022). Optical trapping and manipulation for single-particle spectroscopy and microscopy. Journal of Chemical Physics, 157(5). https://doi.org/10.1063/5.0086328 
 Choi, Y., Lee, K., Gupta, K. C., Park, S. Y., & Kang, I. K. (2015). The role of ligand- receptor interactions in visual detection of HepG2 cells using a liquid crystal microdroplet-based biosensor. Journal of Materials Chemistry B, 3(44), 8659– 8669. https://doi.org/10.1039/c5tb01213a 
 Concellón, A. (2023). Liquid Crystal Emulsions: A Versatile Platform for Photonics, Sensing, and Active Matter. Angewandte Chemie - International Edition, 202308857. https://doi.org/10.1002/anie.202308857 
 David, C. B. W., Ayop, S. K., & Kremer, F. (2013). Resolvability Between Bare and DNA-Grafted Microsphere by Flow Resistance Measurement using Optical Tweezers. J. Sci. Math. Lett. UPSI, 1, 28–34. https://ejournal.upsi.edu.my/issuedetails/268 
 Deng, J., Han, D., & Yang, J. (2021). Applications of microfluidics in liquid crystal- based biosensors. Biosensors, 11(10). https://doi.org/10.3390/bios11100385 
 Dienerowitz, M., Mazilu, M., & Dholakia, K. (2010). Optical manipulation of nanoparticles: A review. SPIE Reviews, 1(1), 1–32. https://doi.org/10.1117/1.2992045 
 Dierking, I., & Al-zangana, S. (2017). Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials. Nanomaterials, 7(305). https://doi.org/10.3390/nano7100305 
 Donato, M. G., Mazzulla, A., Pagliusi, P., Magazzù, A., Hernandez, R. J., Provenzano, C., Gucciardi, P. G., Maragò, O. M., & Cipparrone, G. (2016). Light-induced rotations of chiral birefringent microparticles in optical tweezers. Scientific Reports, 6(September). https://doi.org/10.1038/srep31977 
 Duan, R., Hao, X., Li, Y., & Li, H. (2020). Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors and Actuators B : Chemical, 308(November 2019), 127672. https://doi.org/10.1016/j.snb.2020.127672 
 Duan, R., Li, Y., Shi, B., Li, H., & Yang, J. (2020). Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta, 209(October). https://doi.org/10.1016/j.talanta.2019.120513 
 Duan, R., Yanzeng, L., Hanyang, L., & Jun, Y. (2019). Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomedical Optics Express, 10(12), 6073–6083. 
 Eom, N., Sedev, R., Wedding, B., & Connor, J. (2014). Probing Fluid Flow Using the Force Measurement Capability of Optical Trapping. Advanced Power Technology, 25(4), 1249–1253. 
 Esteves, C., Ramou, E., Porteira, A. R. P., Moura Barbosa, A. J., & Roque, A. C. A. (2020). Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. Advanced Optical Materials, 8(11). https://doi.org/10.1002/adom.201902117 
 Fernández-Canto, N., Romero-Rodríguez, M. Á., Ramos-Cabrer, A. M., Pereira- Lorenzo, S., & Lombardero-Fernández, M. (2023). Polarized light microscopy guarantees the use of autochthonous wheat in the production of flour for the Protected Geographical Indication ‘Galician Bread.’ Food Control, 147(November 2022). https://doi.org/10.1016/j.foodcont.2022.109597 
 Ferreira, T., & Rasband, W. (2012). User Guide ImageJ. Image J User Guide, 1.46r. https://doi.org/10.1038/nmeth.2019 
 Garratt, R. C., & Bachega, F. R. (2013). Optical Tweezers. In Biophysics (pp. 1800– 1807). https://doi.org/10.1007/978-3-642-16712-6 
 Gleeson, H. F., Wood, T. A., & Dickinson, M. (2006). Laser manipulation in liquid crystals: An approach to microfluidics and micromachines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1847), 2789–2805. https://doi.org/10.1098/rsta.2006.1855 
 Goswami, D. (2018). Nobel Prize in Physics – 2018. Resonance, 23(12), 1333–1341. https://doi.org/10.1007/s12045-018-0744-6 
 Hamid, M. Y., Ayop, S. K., Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik 2016, 33(2), 2–5. https://doi.org/10.15011/jasma.33.330211 
 Hanemann, T., Haase, W., Svoboda, I., & Fuess, H. (1995). Crystal structure of 4’- pentyl-4-cyanobiphenyl (5CB). Liquid Crystals, 19(5), 699–702. https://doi.org/10.1080/02678299508031086 
 Hegner, M., Gerber, C., Arntz, Y., Zhang, J., & Bertoncini, P. (2003). Biological Single Molecule Applications and Advanced Biosensing. Journal of Chromatography Library, 13, 241–263. 
 Horst, A. Van Der, Forde, N. R., van der Horst, A., & Forde, N. R. (2010). Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Optics Express, 18(8), 7670. https://doi.org/10.1364/oe.18.007670 
 Humar, M., & Muševič, I. (2011). Surfactant sensing based on whispering-gallery- mode lasing in liquid-crystal microdroplets. Optics Express, 19(21), 19836. https://doi.org/10.1364/oe.19.019836 
 Ito, K., Frusawa, H., & Kimura, M. (2012). Precise switching control of liquid crystalline microgears driven by circularly polarized light. Optics Express, 20(4), 1991–1996. 
 Iwabata, K., Sugai, U., Seki, Y., Furue, H., & Sakaguchi, K. (2013). Applications of Biomaterials to Liquid Crystals. Molecules, 4703–4717. https://doi.org/10.3390/molecules18044703 
 Josue H., R. (2012). Optical trapping and manipulation exploiting liquid crystalline systems. 
 Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S., & Misawa, H. (1999). Fast optical switching by a laser-manipulated microdroplet of liquid crystal. Applied Physics Letters, 74(24), 3627–3629. https://doi.org/10.1063/1.123203 
 Khoo, I. C. (2009). Nonlinear optics of liquid crystalline materials. In Physics Reports (Vol. 471, Issues 5–6, pp. 221–267). Elsevier B.V. https://doi.org/10.1016/j.physrep.2009.01.001 
 Kiang-Ia, J., Taeudomkul, R., Prajongtat, P., Tin, P., Pattanaporkratana, A., & Chattham, N. (2021). Anomalous lehmann rotation of achiral nematic liquid crystal droplets trapped under linearly polarized optical tweezers. Molecules, 26(14). https://doi.org/10.3390/molecules26144108 
 Konyshev, I., & Byvalov, A. (2021). Model systems for optical trapping: the physical basis and biological applications The theory of optical trapping at macro-, meso-, and microscopic levels of detail. Biophysical Reviews, 13, 515–529. https://doi.org/10.1007/s12551-021-00823-8 
 Kudo, T., Wang, S., Yuyama, K., & Masuhara, H. (2016). Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation. https://doi.org/10.1021/acs.nanolett.6b00123 
 Kulkarni, S., Kumar, S., & Thareja, P. (2021). Colloidal and fumed particles in nematic liquid crystals: Self-assembly, confinement and implications on rheology. In Journal of Molecular Liquids (Vol. 336, p. 116241). Elsevier B.V. https://doi.org/10.1016/j.molliq.2021.116241 
 Lee, G., Araoka, F., Ishikawa, K., Momoi, Y., & Haba, O. (2013). Photoinduced Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer. Particle & Particle System Characterization, 30, 847–852. https://doi.org/10.1002/ppsc.201300110 
 Lee, K., Gupta, C., Park, S., & Kang, I. (2015a). Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. Journal of Materials Chemistry B. https://doi.org/10.1039/C5TB02131F 
 Li, X., Sha, X. M., Yang, H. S., Ren, Z. Y., & Tu, Z. C. (2023). Ultrasonic treatment regulates the properties of gelatin emulsion to obtain high-quality gelatin film. Food Chemistry: X, 18(April), 100673. https://doi.org/10.1016/j.fochx.2023.100673 
 Liu, Q., Asavei, T., Lee, T., Rubinsztein-dunlop, H., He, S., & Smalyukh, I. I. (2011). Measurement of viscosity of lyotropic liquid crystals by means of rotating laser- trapped microparticles. Optical Society of America, 19(25), 25134–25143. 
 Loussert, C., Delabre, U., & Brasselet, E. (2013). Manipulating the Orbital Angular Momentum of Light at the Micron Scale with Nematic Disclinations in a Liquid Crystal Film. Physical Review Letters, 037802(July), 1–4. https://doi.org/10.1103/PhysRevLett.111.037802 
 Malagnino, N., Pesce, G., Sasso, A., & Arimondo, E. (2002). Measurements of trapping efficiency and stiffness in optical tweeser. Optics Communications, 214, 15–24. 
 Malmqvist, L., & Hertz, H. M. (1992). Trapped particle optical microscopy. Optics Communications, 94(1–3), 19–24. https://doi.org/10.1016/0030-4018(92)90398- B 
 Manzo, C., Paparo, D., Marrucci, L., & Jánossy, I. (2006). Light-induced rotation of dye-doped liquid crystal droplets. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73(5). https://doi.org/10.1103/PhysRevE.73.051707 
 Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133–140. https://doi.org/10.1109/TE.2010.2047107 
 Merola, F., Grilli, S., Coppola, S., Vespini, V., De Nicola, S., Maddalena, P., Carfagna, C., & Ferraro, P. (2013). Pyroelectric manipulation of liquid crystal droplets. Proceeding of SPIE, 8792, 87920V. https://doi.org/10.1117/12.2020555 
 Mertelj, A., & Lisjak, D. (2017). Ferromagnetic nematic liquid crystals. Liquid Crystals Reviews, 5(1), 1–33. https://doi.org/10.1080/21680396.2017.1304835 
 Mirantsev, L. V., de Oliveira, E. J. L., de Oliveira, I. N., & Lyra, M. L. (2016). Defect structures in nematic liquid crystal shells of different shapes. Liquid Crystals Reviews, 4(1), 35–58. https://doi.org/10.1080/21680396.2016.1183151 
 Miura, A., Nakajima, R., Abe, S., & Kitamura, N. (2020). Optical Trapping- Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. Journal of Physical Chemistry A, 124(43), 9035–9043. https://doi.org/10.1021/acs.jpca.0c06179 
 Mohammad, S., Winson, W. T., & Bahman, A. (2014). Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Journal of Biomedical Optics, 11, 115001. https://doi.org/10.1109/iembs.1999.802433 
 Müllenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. Journal of Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305 
 Murazawa, N., Juodkazis, S., Matsuo, S., & Misawa, H. (2005). Control of the Molecular Alignment Inside Liquid- Crystal Droplets by Use of Laser Tweezers. Small, 6, 656–661. https://doi.org/10.1002/smll.200500038 
 Murazawa, N., Juodkazis, S., & Misawa, H. (2005). Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers. Journal of Physics D: Applied Physics, 38(16), 2923–2927. https://doi.org/10.1088/0022- 3727/38/16/027 
 Murazawa, N., Juodkazis, S., & Misawa, H. (2006a). Laser manipulation and characterization of liquid crystal droplets. Proceeding of SPIE, 6326, 1–9. https://doi.org/10.1117/12.685058 
 Murazawa, N., Juodkazis, S., & Misawa, H. (2006b). Laser manipulation of a smectic liquid-crystal droplet. The European Physical Journal E, 439, 435–439. https://doi.org/10.1140/epje/i2006-10033-1 
 Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 2787–2809. https://doi.org/10.1063/1.1785844 
 Neves, A. A. R., Jones, P. H., Luo, L., & Maragò, O. M. (2015). Optical cooling and trapping: introduction. Journal of the Optical Society of America B, 32(5), OCT1. https://doi.org/10.1364/josab.32.00oct1 
 Nieminen, T. A., Du Preez-Wilkinson, N., Stilgoe, A. B., Loke, V. L. Y., Bui, A. A. M., & Rubinsztein-Dunlop, H. (2014). Optical tweezers: Theory and modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 59–80. https://doi.org/10.1016/j.jqsrt.2014.04.003 
 Nishii, H. (2021). Effect of Measurement Parameters on UV-VIS Absorption Spectra. UV Talk Letter, 21, 1–14. 
 Niu, X., Luo, D., Chen, R., Wang, F., Sun, X., & Dai, H. (2016). Optical biosensor based on liquid crystal droplets for detection of cholic acid. Optics Communications, 381, 286–291. https://doi.org/10.1016/j.optcom.2016.07.016 
 Oster, L. M., Shechter, J., Strain, B., Shivrayan, M., Thayumanavan, S. T., & Ross, J. L. (2022). Controlling Liquid Crystal Configuration and Phase Using Multiple Molecular Triggers. Molecules, 27(3), 1–17. https://doi.org/10.3390/molecules27030878 
 Pai, P., Zandrini, T., Mart, R., & Bragheri, F. (2018). Particle Manipulation by Optical Forces in Microfluidic Devices. Micromachines, 9(200), 1–21. https://doi.org/10.3390/mi9050200 
 Palffy-muhoray, P. (2007). The diverse world of liquid crystals. Physics Today, 54(2007), 54–60. https://doi.org/10.1063/1.2784685 
 Parmentier, E. A., Arroyo, P. C., Bibawi, S., Esat, K., & Signorell, R. (2021). Photochemistry of single optically trapped oleic acid droplets. Journal of Aerosol Science, 151(August 2020), 0–10. https://doi.org/https://doi.org/10.1016/j.jaerosci.2020.105660 
 Patel, N., Rawat, S., Joglekar, M., Chhaniwal, V., Dubey, S. K., O’Connor, T., Javidi, B., & Anand, A. (2021). Compact and low-cost instrument for digital holographic microscopy of immobilized micro-particles. Optics and Lasers in Engineering, 137(May 2020). https://doi.org/10.1016/j.optlaseng.2020.106397 
 Paul, D., Chand, R., & Kumar, G. V. P. (2022). Optothermal Evolution of Active Colloidal Matter in a Defocused Laser Trap. ACS Photonics, 9(10), 3440–3449. https://doi.org/10.1021/acsphotonics.2c01083 
 Peddireddy, K., Kumar, P., Thutupalli, S., Herminghaus, S., & Bahr, C. (2012). Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions. Langmuir, 28(34), 12426–12431. https://doi.org/10.1021/la3015817 
 Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-induced heating in optical traps. Biophysical Journal, 84(2 I), 1308–1316. https://doi.org/10.1016/S0006- 3495(03)74946-7 
 Phanphak, S., Pattanaporkratana, A., Limtrakul, J., & Chattham, N. (2014). Precession mechanism of nematic liquid crystal droplets under low power optical tweezers. Ferroelectrics, 468(1), 114–122. https://doi.org/10.1080/00150193.2014.933663 
 Polimeno, P., Magazzù, A., Iatì, M. A., Patti, F., Saija, R., Esposti Boschi, C. D., Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Maragò, O. M. (2018). Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 131–150. https://doi.org/10.1016/j.jqsrt.2018.07.013 
 Popov, N., Honaker, L. W., Popova, M., Usol’tseva, N., Mann, E. K., Jákli, A., & Popov, P. (2017). Thermotropic liquid crystal-assisted chemical and biological sensors. In Materials (Vol. 11, Issue 1, pp. 14–17). https://doi.org/10.3390/ma11010020 
 Popov, Piotr, K. Mann, Elizabeth, Jakli, Antal. (2017). Thermotropic Liquid Crystal Films for Biosensor and Beyond. Journal of Materials Chemistry B. https://doi.org/10.1039/C7TB00809K 
 Prakash, J., Parveen, A., Kumar, Y., & Kaushik, A. (2020). Nanotechnology-assisted liquid crystals-based biosensors : Towards fundamental to advanced applications. Biosensors and Bioelectronics, 168(June), 112562. https://doi.org/10.1016/j.bios.2020.112562 
 Qin, L., Liu, X., & Yu, Y. (2021). Soft Actuators of Liquid Crystal Polymers Fueled by Light from Ultraviolet to Near Infrared. Advanced Optical Materials, 9(7), 1–27. https://doi.org/10.1002/adom.202001743 
 Ribeiro, R. S. R., Dahal, P., Guerreiro, A., & Jorge, P. A. S. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping , manipulation and detection of single cells. Nature Scientific Report, May, 1–14. https://doi.org/10.1038/s41598-017-04490-2 
 Rui, G., Li, Y., Gu, B., Cui, Y., & Zhan, Q. (2021). Optical manipulation of nanoparticles with structured light. In Thin Film Nanophotonics: Conclusions from the Third International Workshop on Thin Films for Electronics, Electro- Optics, Energy and Sensors (TFE3S). LTD. https://doi.org/10.1016/B978-0-12- 822085-6.00008-X 
 Saito, K., & Kimura, Y. (2022). Optically driven liquid crystal droplet rotator. Scientific Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-21146-y 
 Sanders, J. L., Yang, Y., Dickinson, M. R., & Gleeson, H. F. (2013b). Pushing, pulling and twisting liquid crystal systems: Exploring new directions with laser manipulation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1988), 20120265. https://doi.org/10.1098/rsta.2012.0265 
 Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Journal of Biomedical Optics, 19(11), 115001. https://doi.org/10.1117/1.jbo.19.11.115001 
 Scharf, T. (2006). Polarized Light in Liquid Crystals and Polymers. In Polarized Light in Liquid Crystals and Polymers. John Wiley & Sons. https://doi.org/10.1002/9780470074374 
 Sen, A., Kupcho, K. A., Grinwald, B. A., Vantreeck, H. J., & Acharya, B. R. (2013). Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide. Sensors and Actuators, B: Chemical, 178, 222–227. https://doi.org/10.1016/j.snb.2012.12.036 
 Sengupta, A., Herminghaus, S., & Bahr, C. (2014). Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liquid Crystals Reviews, 2(2), 73–110. https://doi.org/10.1080/21680396.2014.963716 
 Shafiei, M., Kazemzadeh, Y., Martyushev, D. A., Dai, Z., & Riazi, M. (2023). Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-31379-0 
 Shechter, J., Atzin, N., Mozaffari, A., Zhang, R., Zhou, Y., Strain, B., Oster, L. M., De Pablo, J. J., & Ross, J. L. (2020). Direct Observation of Liquid Crystal Droplet Configurational Transitions using Optical Tweezers. Langmuir, 36(25), 7074– 7082. https://doi.org/10.1021/acs.langmuir.9b03629 
 Shen, Y., & Dierking, I. (2019). Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Appl. Sci., 9, 2512. 
 Shih, T. W., Hsu, C. L., Chen, L. Y., Huang, Y. C., Chen, C. J., Inoue, Y., & Sugiyama, T. (2021). Optical Trapping-Induced New Polymorphism of β-Cyclodextrin in Unsaturated Solution. Crystal Growth and Design, 21(12), 6913–6923. https://doi.org/10.1021/acs.cgd.1c00822 
 Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative measurements of force and displacement using an optical trap. Biophysical Journal, 70(4), 1813–1822. https://doi.org/10.1016/S0006-3495(96)79746-1 
 Škarabot, M., Osterman, N., Lokar, Ž., & Muševič, I. (2014). Manipulation of particles by laser tweezers-induced gradient of order in the nematic liquid crystal. Optical Trapping and Optical Micromanipulation XI, 9164, 91642B. https://doi.org/10.1117/12.2061308 
 Smalyukh, I. I., Kachynski, A. V, Kuzmin, A. N., & Prasad, P. N. (2006). Laser trapping in anisotropic fluids and polarization-controlled particle dynamics. Proceeding of the National Academy of Sciences of United States of America, 103(48). 
 Smalyukh, I. I., Kaputa, D. S., Kachynski, A. V., Kuzmin, A. N., & Prasad, P. N. (2007). Optical trapping of director structures and defects in liquid crystals using laser tweezers. Optics Express, 15(7), 4359. https://doi.org/10.1364/oe.15.004359 
 Sofi, J. A., & Dhara, S. (2019). Stability of liquid crystal micro-droplets based optical microresonators. Liquid Crystals, 46(4), 629–639. https://doi.org/10.1080/02678292.2018.1515373 
 Sotolongo-Costa, O., Moreno-Vega, Y., Lloveras-González, J. J., & Antoranz, J. C. (1996). Criticality in Droplet Fragmentation. Physical Review Letters, 76(1), 42– 45. https://doi.org/10.1103/PhysRevLett.76.42 
 Srivastava, G., Jaiswal, M., Singh, P., Iqbal, A., Dabrowski, R., & Dhar, R. (2023). Enhanced stability of the nematic phase of 4-pentyl-4ʹ-cyanobiphenyl due to the dispersion of copper nanoparticles. Liquid Crystals, 00(00), 1–14. https://doi.org/10.1080/02678292.2023.2219990 
 Suga, M., Suda, S., Ichikawa, M., & Kimura, Y. (2018). Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 062703, 1–8. https://doi.org/10.1103/PhysRevE.97.062703 
 Sugiyama, T., Yuyama, K., & Masuhara, H. (2012). Laser trapping chemistry: From polymer assembly to amino acid crystallization. Accounts of Chemical Research, 45(11), 1946–1954. https://doi.org/10.1021/ar300161g 
 Supian, F. L., Richardson, T. H., Deasy, M., Kelleher, F., Ward, J. P., & McKee, V. (2010). Interaction between Langmuir and Langmuir-Blodgett films of two calix[4]arenes with aqueous copper and lithium ions. Langmuir, 26(13), 10906– 10912. https://doi.org/10.1021/la100808r 
 Tadros, T. F. (2013). Emulsion Formation and Stability. Taylor, P., Kleman, M., & Lavrentovich, O. D. (2006). Topological point defects in nematic liquid crystals. Philosophical Magazine, 86(September 2012), 37–41. https://doi.org/10.1080/14786430600593016 
 Taylor, P., Ward, A. D., Longhurst, M., & Quirke, N. (2005). The optical trapping of airborne hydrocarbon droplets from an oil mist. Journal of Experimental Nanoscience, 1(1), 75–82. https://doi.org/10.1080/17458080500328003 
 Tsuji, T., Doi, K., & Kawano, S. (2022). Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 52(October 2021), 100533. https://doi.org/10.1016/j.jphotochemrev.2022.100533 
 T-thienprasert, J., Limtrakul, J., Zentgraf, T., Chattham, N., Meyer, F., Schlickriede, C., Chaisakul, P., & Zentgraf, T. (2019). Miniaturized Metalens Based Optical Tweezers on Optical Motors. Crystals, 9(515). 
 Upadhyay, P., Rastogi, M. K., & Kumar, D. (2015). Polarizability study of nematic liquid crystal 4-cyano-4 0 -pentylbiphenyl ( 5CB ) and its nitrogen derivatives. Chemical Physics, 456, 41–46. https://doi.org/10.1016/j.chemphys.2015.03.011 
 Urbanski, M., Reyes, C. G., Noh, J., Sharma, A., Geng, Y., Subba Rao Jampani, V., & Lagerwall, J. P. F. (2017). Liquid crystals in micron-scale droplets , shells and fibers. Journal of Physics: Condensed Matter, 29(13), 53. https://doi.org/10.1088/1361-648X/aa5706 
 Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2012). Laser Trapping-Induced Reconfiguration of Individual Smectic Liquid Crystal Micro-Droplet Showing Size-Dependent Dynamics. SPIE, 8274, 1–8. https://doi.org/10.1117/12.906305 
 Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2013). Polarization and Droplet Size Effects in the Laser-Trapping-Induced Reconfiguration in Individual Nematic Liquid Crystal Microdroplets. The Journal of Physical Chemistry B, 117, 4536– 4540. 
 Usman, A., Uwada, T., & Masuhara, H. (2011). Optical Reorientation and Trapping of Nematic Liquid Crystals Leading to the Formation of Micrometer-Sized Domain. The Journal of Physical Chemistry, 11906–11913. 
 Wang, H., Qin, Q. H., Ji, H., & Sun, Y. (2011). Comparison among different modeling techniques of 3D micromechanical modeling of damage in unidirectional composites. Advanced Science Letters, 4(2), 400–407. https://doi.org/10.1166/asl.2011.1261 
 Wang, X., Bukusoglu, E., & Abbott, N. L. (2017). A practical guide to the preparation of liquid crystal-templated microparticles. Chemistry of Materials, 29(1), 53–61. https://doi.org/10.1021/acs.chemmater.6b02668 
 Wang, Y., Li, H., Zhao, L., Liu, Y., Liu, S., & Yang, J. (2016). Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets. Applied Physics Letters, 109(23). https://doi.org/10.1063/1.4971973 
 Wang, Z., Zhang, Y., Gong, X., Yuan, Z., Feng, S., Xu, T., Liu, T., & Chen, Y. (2020). Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Advanced, 1–7. https://doi.org/10.1039/d0na00107d 
 Wei, Y. Y., Sun, Z. Q., Ren, H. H., & Li, L. (2019). Advances in Microdroplet Generation Methods. Chinese Journal of Analytical Chemistry, 47(6), 795–804. https://doi.org/10.1016/S1872-2040(19)61162-X 
 Wo, T., Wurzbach, I., Kirres, J., Kostidou, A., Kapernaum, N., Litterscheidt, J., Haenle, J. C., Sta, P., Baro, A., Giesselmann, F., & Laschat, S. (2015). Discotic Liquid Crystals. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.5b00190 
 Wood, T. A., Gleeson, H. F., Dickinson, M. R., & Wright, A. J. (2004). Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets. Applied Physics Letters, 84(21), 4292–4294. https://doi.org/10.1063/1.1753067 
 Wright, W. H., Sonek, G. J., & Berns, M. W. (1994). Parametric study of the forces on microspheres held by optical tweezers. Applied Optics, 33(9), 1735–1748. 
 Wu, C. S., Hsieh, P. Y., Yuyama, K. I., Masuhara, H., & Sugiyama, T. (2018). Pseudopolymorph Control of l -Phenylalanine Achieved by Laser Trapping. Crystal Growth and Design, 18(9), 5417–5425. https://doi.org/10.1021/acs.cgd.8b00796 
 Wulff, D., Chan, A., Liu, Q., Gu, F. X., & Aucoin, M. G. (2020). Characterizing internal cavity modulation of corn starch microcapsules. Heliyon, 6(10), e05294. https://doi.org/10.1016/j.heliyon.2020.e05294 
 Xie, M. (2021). Principle of optical tweezers trapping. Autonomous Robot-Aided Optical Manipulation for Biological Cells, 3–13. https://doi.org/10.1016/b978-0- 12-823449-5.00003-4 
 Yan, Wang., Hanyang, Li., Liyuan, Zhao., Yongjun, Liu., Shuangqiang, Liu., & Jun, Yang. (2017). Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Optics Express, 25(2), 3240–3247. 
 Yang, Y., Brimicombe, P. D., Roberts, N. W., Dickinson, M. R., Osipov, M., & Gleeson, H. F. (2008). Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Optics Express, 16(10), 6877–6882. 
 Yeng, M. S. M., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4- pentylbiphenyl (5CB) microdroplet in water using optical tweezers. Proceeding of SPIE, 12479(December), 191. https://doi.org/10.1117/12.2658779 
 Yeng, M. S. M., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and Technology, 9(3), 70–74. 
 Yeng, M. S. M., Ayop, S. K., Mustapa, I. R., & Sasaki, K. (2022). Optical Stiffness of an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a Microdroplet in Water. Central Asia and the Caucasus, 23(1), 3008–3016. 
 Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2022). Optical Manipulation of a Liquid Crystal (LC) Microdroplet by Optical Force. Crystal Research and Technology, n/a(n/a), 2200080. https://doi.org/https://doi.org/10.1002/crat.202200080 
 Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2023). Optical Trapping of a Single Chloroform Microdroplet. Jurnal Teknologi, 85(3), 117–123. https://doi.org/https://doi.org/10.11113/jurnalteknologi.v85.19303 
 Yusof, M. F. M., Ayop, S. K., Supian, F. L., & Juahir, Y. (2020). Optical trapping of organic solvents in the form of microdroplets in water. Chemical Physics Letters, 749(January), 137407. https://doi.org/10.1016/j.cplett.2020.137407 
 Yusuf, M. F. M., & Ayop, S. K. (2020). The trapping of a single chloroform microdroplet in water using optical tweezers. SPIE, 11522(June), 18. https://doi.org/10.1117/12.2573528 
 Zeng, H. (2017). Light Driven Microscopic Robot (Issue October). https://doi.org/10.13140/RG.2.2.28029.46564 
 Zhang, J., Liu, W., Zhu, Z., Yuan, X., & Qin, S. (2016). Towards nano-optical tweezers with graphene plasmons : Numerical investigation of trapping 10-nm particles with mid-infrared light. Nature Publishing Group, November, 1–7. https://doi.org/10.1038/srep38086 
 Zhong, M. C., Wang, Z. Q., & Li, Y. M. (2017). Oscillations of absorbing particles at the water-air interface induced by laser tweezers. Optics Express, 25(3), 2481– 2488. https://doi.org/10.1364/OE.25.002481 
 Zhu, C., Lu, Y., Jiang, L., & Yu, Y. (2021). Liquid Crystal Soft Actuators and Robots toward Mixed Reality. Advanced Functional Materials, 2009835, 1–21. https://doi.org/10.1002/adfm.202009835 
  | 
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research.  |