UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Rika Noor Safitri
Title :Enhancement of field electron emission properties of carbon nanotubes zinc oxide nanocomposites using single and multi step methods (IR)
Publisher :Fakulti Sains dan Matematik
Year of Publication :2015
Notes :masters
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This study aimed to enhance the field electron emission (FEE) properties of carbon nanotubes (CNTs) synthesized from waste cooking palm oil combined with zinc oxide (ZnO) to produce CNTs/ZnO nanocomposites. The methods used in this study were single and multi-step depositions. The single-step deposition method was done by directly mixing the CNTs and ZnO precursors and they were synthesized using thermal chemical vapor deposition (TCVD) method for 30 minutes. Meanwhile, the multi-step deposition process was carried out by combining TCVD and sol-gel immersion methods to fabricate CNTs/ZnO nanocomposites. There were three different ZnO nanostructures namely nanorods, nanoflowers and nanorods-nanoflakes which were composited with CNTs via multi-step deposition process. The obtained samples were analyzed using electron microscopy, energy dispersive X-ray, micro- Raman spectroscopy, X-ray diffraction spectroscopy, photoluminescence spectroscopy and four-point probe current-voltage measurement. The field emission properties of the samples were also studied using FEE measurement. The findings showed that the turn-on and threshold fields of CNTs/ZnO nanocomposites decreased as compared to pristine CNTs. Other than that, different nanostructures of ZnO contributed to the FEE performance of CNTs/ZnO nanocomposites. The best FEE properties were given by the growth of CNTs on ZnO nanoflowers, which has the lowest turn-on field of 0.8 V/?m at current density of 1 ?A/cm2 and a high field enhancement factor of 9417. Larger emission site density and lower screening effect in this sample were believed to affect the FEE performance. As a conclusion, the fabrication of CNTs/ZnO nanocomposites have successfully enhanced the FEE properties of CNTs. Implication of this study is that it provide a new insight on advancing the synthesis of CNTs/ZnO nanocomposites for electron emission devices.
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)