UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The aims of this study are to reveal the potentials of digital watermarking in medical data
management issues, and proposes a hybrid watermark technique for skin cancer to enforce integrity,
authenticity and confidentiality of the medical information. Dermoscopic image dataset (PH2) was
used for testing purpose, which includes 200 different images. The hybrid watermark is proposed
based on chaotic embedding. The hybrid watermarking includes robust and fragile watermarks embedded
in the region of non interest of the image. The robust watermark utilizes the discrete wavelet
transform to hide the patient information in the frequency domain. The fragile watermark utilizes
the least significant bit to hide the authentication data in the spatial domain. The findings of
this study shows high watermarked image quality and promising robustness under different attacks,
and when compared with other techniques including discrete cosine transform and 2LSB. The Peak
Signal–to-Noise Ratio (PSNR) of the watermarked image is 37.64 dB and the Mean Square Error (MSE)
is 36.7507 dB, which indicate good image equality. In general, the hybrid watermark did not degrade
the image quality and enhanced medical data security and authentication. The proposed hybrid
watermarking can help health organizations to
deal with medical information effectively, especially during storage and transmission.
|
References |
Abdulbaki, A. S. (2012). Skin cancer image segmentation & detection by using unsupervised machine learning.
Aher, M. S. V., & Vasekar, M. S. (2016). A Review: Histogram Equalization Algorithms for Image Enhancement using FPGA. International Journal of Advanced Research in Computer and Communication Engineering, 5(4), 711-714.
Ahmad, M., Gupta, C., & Varshney, A. (2009, March). Digital image encryption based on chaotic map for secure transmission. In Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT'09. International (pp. 292-295). IEEE.
Ahmed, I. N., & Chaya, P. (2014). Segmentation and Classification of Skin Cancer Images. International Journal, 4(5).
Al-Dmour, H., & Al-Ani, A. (2016). Quality optimized medical image information hiding algorithm that employs edge detection and data coding. Computer methods and programs in biomedicine, 127, 24-43.
Al-Qershi, O. M., & Khoo, B. E. (2011). High capacity data hiding schemes for medical images based on difference expansion. Journal of Systems and Software, 84(1), 105-112.
Alwan, I. M., & Mohammed, F. J. (2016). Image Hiding Using Discrete Cosine Transform. Journal Of The College Of Education For Women, 27(1), 393-399.
An, L., Gao, X., Yuan, Y., Tao, D., Deng, C., & Ji, F. (2012). Content-adaptive reliable robust lossless data embedding. Neurocomputing, 79, 1-11.
Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807-816.
Ansari, S., Gupta, N., & Agrawal, S. (2012). A Review on Chaotic Map Based Cryptography. International Journal of Scientific Engineering and Technology.
Anthony, G., Greg, H., & Tshilidzi, M. (2007). Classification of images using support vector machines. arXiv preprint arXiv:0709.3967.
Arsalan, M., Malik, S. A., & Khan, A. (2012). Intelligent reversible watermarking in integer wavelet domain for medical images. Journal of Systems and Software, 85(4), 883-894.
Barani, M. J., Valandar, M. Y., & Ayubi, P. (2015, May). A secure watermark embedding approach based on chaotic map for image tamper detection. In Information and Knowledge Technology (IKT), 2015 7th Conference on (pp. 1-5). IEEE.
Bard, R. L. (2017). High-Frequency Ultrasound Examination in the Diagnosis of Skin Cancer. Dermatologic Clinics.
Bhuiyan, M. A. H., Azad, I., & Uddin, K. (2013). Image processing for skin cancer features extraction. International Journal of Scientific & Engineering Research, 4(2), 1-6.
Bilal, M., Imtiaz, S., Abdul, W., Ghouzali, S., & Asif, S. (2014). Chaos based Zero- steganography algorithm. Multimedia tools and applications, 72(2), 1073-1092.
Bloch, I. (2015). Fuzzy sets for image processing and understanding. Fuzzy Sets and Systems, 281, 280-291.
Botta, M., Cavagnino, D., & Pomponiu, V. (2015). A successful attack and revision of a chaotic system based fragile watermarking scheme for image tamper detection. AEU- International Journal of Electronics and Communications, 69(1), 242-245.
Bremnavas, I., Poorna, B., & Kanagachidambaresan, G. R. (2011). Medical image security using LSB and chaotic logistic map.
Caragata, D., El Assad, S., & Luduena, M. (2015). An improved fragile watermarking algorithm for JPEG images. AEU-International Journal of Electronics and Communications, 69(12), 1783-1794.
Celebi, M. E., Iyatomi, H., Schaefer, G., & Stoecker, W. V. (2009). Lesion border detection in dermoscopy images. Computerized medical imaging and graphics, 33(2), 148-153.
Celik, M. U., Sharma, G., & Tekalp, A. M. (2006). Lossless watermarking for image authentication: a new framework and an implementation. IEEE Transactions on Image Processing,15(4), 1042-1049.
Chadha, A., Mallik, S., & Johar, R. (2012). Comparative study and optimization of feature- extraction techniques for content based image retrieval. arXiv preprint arXiv:1208.6335.
Chakravorty, R., Liang, S., Abedini, M., & Garnavi, R. (2016, August). Dermatologist- like feature extraction from skin lesion for improved asymmetry classification in PH 2 database. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 3855-3858). IEEE.
Chandra, G., Chandra, N., & Verma, S. (2015). A Review on Multiple Chaotic Maps for Image Encryption with Cryptographic Technique. International Journal of Computer Applications, 121(13).
Chang, C. C., & Tseng, H. W. (2009, June). Data hiding in images by hybrid LSB substitution. In Multimedia and Ubiquitous Engineering, 2009. MUE'09. Third International Conference.
Chang, C. C., Chen, K. N., Lee, C. F., & Liu, L. J. (2011). A secure fragile watermarking scheme based on chaos-and-hamming code. Journal of Systems and Software, 84(9), 1462-1470.
Chettri, R., Pradhan, S., & Chettri, L. (2015). Internet of Things: Comparative Study on Classification Algorithms (k-NN, Naive Bayes and Case based Reasoning). International Journal of Computer Applications, 130(12), 7-9.
Chitaliya, N. G., & Trivedi, A. I. (2010, March). Feature extraction using wavelet-pca and neural network for application of object classification & face recognition. In Computer Engineering and Applications (ICCEA), 2010 Second International Conference on (Vol. 1, pp. 510-514). IEEE.
Chitla, A., & Chandra Mohan, M. (2014). Authenticating Medical Images With Lossless Digital Watermarking. International Journal Of Multidisciplinary And Current Research, 2.
Chitla, A., & Chandra Mohan, M. (2014). Authenticating Medical Images With Lossless Digital Watermarking. International Journal Of Multidisciplinary And Current Research, 2.
Çiftçi, G. (2003). Shape Analysis Using Contour-Based and Region-Based Approaches. Doctoral dissertation, Middle East Technical University.
Cui, S., Jiang, H., Wang, Z., & Shen, C. (2017, June). Application of neural network based on SIFT local feature extraction in medical image classification. In Image, Vision and Computing (ICIVC), 2017 2nd International Conference on (pp. 92-97). IEEE.
Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017). Segmentation and Classification of Melanoma and Benign Skin Lesions. Optik-International Journal for Light and Electron Optics.
Das, S., & Kundu, M. K. (2013). Effective management of medical information through ROI- lossless fragile image watermarking technique. Computer methods and programs in biomedicine,111(3), 662-675.
Demidova, L., Nikulchev, E., & Sokolova, Y. (2016). Big data classification using the SVM classifiers with the modified particle swarm optimization and the SVM ensembles. International Journal of Advanced Computer Science and Applications (IJACSA), 7(5), 294-312.
Denil, M., Matheson, D., & De Freitas, N. (2013). Narrowing the gap: Random forests in theory and in practice. Cornell University Library:arXiv preprint arXiv:1310.1415.
Diaconu, A. V. (2016). Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Information Sciences, 355, 314-327.
Dimitrovski, I., Kocev, D., Kitanovski, I., Loskovska, S., & D?eroski, S. (2015). Improved medical image modality classification using a combination of visual and textual features. Computerized Medical Imaging and Graphics, 39, 14-26.
Dobbin, K. K., & Simon, R. M. (2011). Optimally splitting cases for training and testing high dimensional classifiers. BMC medical genomics, 4(1), 1.
Drew, T., Evans, K., Võ, M. L. H., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics in radiology: what can you see in a single glance and how might this guide visual search in medical images?. Radiographics, 33(1), 263-274.
Elgamal, M. (2013). Automatic skin cancer images classification. IJACSA) International Journal of Advanced Computer Science and Applications, 4(3), 287-294.
Fakhari, P., Vahedi, E., & Lucas, C. (2011). Protecting patient privacy from unauthorized release of medical images using a bio-inspired wavelet-based watermarking approach. Digital Signal Processing, 21(3), 433-446.
Fawcett, T., (2003). ROC graphs: notes and practical consideration for researchers, Technical Report, HP Lab, 1-27.
Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Spatz, A., ... & Pehamberger, H. (2012). Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline–Update 2012. European journal of cancer, 48(15), 2375- 2390.
Garcia-Hernandez, J. J., Gomez-Flores, W., & Rubio-Loyola, J. (2016). Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Computers in biology and medicine, 68, 37-48.
Gasparini, F., Corchs, S., and Schettini, R., (2008). Recall or precision-oriented strategies for binary classification of skin pixels. Journal of Electronic Imaging, 17(2), 1-15.
Ghebleh, M., & Kanso, A. (2014). A robust chaotic algorithm for digital image steganography. Communications in Nonlinear Science and Numerical Simulation, 19(6), 1898-1907.
Goel, R., Kumar, V., Srivastava, S., Sinha, A. K. (2017). A Review of Feature Extraction Techniques for Image Analysis. International Conference on Advances in Computational Techniques and Research Practices, Vol. 6(Special Issue 2).
Gonzalez, R.C., Woods, R.E., and Eddins, S.L., (2009). Digital image processing using MATLAB. Gatesmark Publishing, Second Edition, 827 pages Gu, Q., & Gao, T. (2013). A novel reversible robust watermarking algorithm based on chaotic system. Digital Signal Processing, 23(1), 213-217.
Guzella, T.S., and Caminhas, W.M., (2009). A review of machine learning approaches to spam ,filtering. Expert System with Application, 36(7), 10206-10222.
Hamouda, K., Elmogy, M., & El-Desouky, B. S. (2014, December). A fragile watermarking authentication schema based on Chaotic maps and fuzzy cmeans clustering technique. In Computer Engineering & Systems (ICCES), 2014 9th International Conference on (pp. 245-252). IEEE.
Hassan, M. M. (2013). Current studies on intrusion detection system, genetic algorithm and fuzzy logic. Cornell University Library:arXiv preprint arXiv: 1304.3535.
Hasso, M. A. R., & Elyas, R. M. (2014). Fast Image Registration Based on Features Extraction and Accurate Matching Points for Image Stitching. International Journal of Computer Science Issues (IJCSI), 11(5), 138.
Hemamalini, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques. Journal of medical physics/Association of Medical Physicists of India, 35(1), 3.
Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The Beneficial Techniques in Preprocessing Step of Skin Cancer Detection System Comparing. Procedia Computer Science,
Hota, H. S., Shukla, S. P., & Gulhare, K. (2013). Review of intelligent techniques applied for classification and preprocessing of medical image data. International Journal of Computer Science Issues, 10(1/3), 267-272.
Ibrahim, A. S., Sartep, H. J. (2017). Grayscale Image Coloring by Using YCbCr and HSV Color Spaces. IJMTER, VoL. 4(4).
Iftikhar, S., Kamran, M., & Anwar, Z. (2015). A survey on reversible watermarking techniques for relational databases. Security and Communication Networks, 8(15), 2580-2603.
Ingale, S. P., & Dhote, C. A. (2016). Digital Watermarking Algorithm using DWT Technique. IJCSMC, Vol. 5(5), 01 – 0
Jain, S. (2013). Brain cancer classification using GLCM based feature extraction in artificial neural network. International Journal of Computer Science & Engineering Technology, 4(7), 966-970.
Jain, S., jagtap,, V., Pise, N. (2015). Computer aided melanoma skin cancer detection using image processing. Procedia Computer Science, 48, 735-740.
Jasani, D., Patel, P., Patel, S., Ahir, B., Patel, K., & Dixit, M. (2015). Review of shape and texture feature extraction techniques for fruits. International Journal of Computer Science and Information Technologies, 6(6), 4851-4854.
Jaskaran Singh, & Anoop Kumar Patel, (2017). Region of Interest Based Adaptable Watermarking Technique for Medical Images . International Journal of Advances in Electronics and Computer Science ISSN: 2393-2835 Volume-4, Issue-11.
Jianli, L., & Baoqi, Z. (2009, March). The segmentation of skin cancer image based on genetic neural network. In Computer Science and Information Engineering, 2009 WRI World Congress on (Vol. 5, pp. 594-599). IEEE.
Joshi, S., Pandey, B., & Joshi, N. (2015). Comparative analysis of Naive Bayes and J48 classification. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 813-7.
Kadhim, Q. K. (2016). Image Compression Using Discrete Cosine Transform Method. International Journal of Computer Science and Mobile Computing,Vol.5 (9).
Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color modeling and detection methods. Pattern recognition, 40(3), 1106-1122.
Kanan, C., & Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image recognition?. PloS one, 7(1), e29740.
Kanso, A., & Own, H. S. (2012). Steganographic algorithm based on a chaotic map. Communications in Nonlinear Science and Numerical Simulation, 17(8), 3287-3302.
Kapoor, K., & Arora, S. (2015). Colour image enhancement based on histogram equalization. Electrical & Computer Engineering: An International Journal, 4(3), 73-82.
Kaur, D., & Kaur, Y. (2014). Various Image Segmentation Techniques: A Review. International Journal of Computer Science and Mobile Computing, 3(5), 809-814.
Keshari, S., & Modani, S. G. (2011). Image Encryption Algorithm based on Chaotic Map Lattice and Arnold cat map for Secure Transmission 1.
Khalind, O., & Aziz, B. (2013, December). Single-mismatch 2LSB embedding steganography. In Signal Processing and Information Technology (ISSPIT), 2013 IEEE International Symposium on (pp. 000283-000286). IEEE.
Khan, W. (2013). Image segmentation techniques: A survey. Journal of Image and Graphics, 1(4), 166-170.
Khor, H. L., Liew, S. C., & Zain, J. M. (2017). Region of Interest-Based Tamper Detection and Lossless Recovery Watermarking Scheme (ROI-DR) on Ultrasound Medical Images. Journal of digital imaging, 30(3), 328-349.
Kone, C., Le Thanh, N., Flamary, R., & Belleudy, C. (2018). Performance Comparison of the KNN and SVM Classification Algorithms in the Emotion Detection System EMOTICA. International Journal of Sensor Networks and Data Communications.
Koppu, S., & Viswanatham, V. M. (2017). A Fast Enhanced Secure Image Chaoti Cryptosystem Based on Hybrid Chaotic Magic Transform. Modelling and Simulation in Engineering, 2017.
Krishna, M. C., Ranganayakulu, S., Venkatesan, P. (2016). Skin Cancer Detection and Feature Extraction through Clustering Technique. IJIRCCE, Vol. 4(3).
Kumar, M. ( 2003). DIGITAL IMAGE PROCESSING. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, India.
Kumravat, S. (2013). An efficient steganographic scheme using skin tone detection and discrete wavelet transformation. Int J Comput Sci Eng Technol (IJCSET), 4(7), 971-976.
Lau, H. T., & Al-Jumaily, A. (2009, December). Automatically early detection of skin cancer: Study based on nueral netwok classification. In Soft Computing and Pattern Recognition, 2009. SOCPAR'09. International Conference of (pp. 375-380). IEEE.
Lazarov, N., & Ilcheva, Z. (2016, September). A fragile watermarking algorithm for image tamper detection based on chaotic maps. In Intelligent Systems (IS), 2016 IEEE 8th International Conference on (pp. 723-728). IEEE.
Lee, H., & Chen, Y. P. P. (2015). Image based computer aided diagnosis system for cancer detection. Expert Systems with Applications, 42(12), 5356-5365.
Lee, H., & Chen, Y. P. P. (2015). Image based computer aided diagnosis system for cancer detection. Expert Systems with Applications, 42(12), 5356-5365.
Lee, J., Pant, S. R., & Lee, H. S. (2015). An adaptive histogram equalization based local technique for contrast preserving image enhancement. International Journal of Fuzzy Logic and Intelligent Systems, 15(1), 35-44.
Lei, B., & Soon, Y. (2015). Perception-based audio watermarking scheme in the compressed bitstream. AEU-International Journal of Electronics and Communications, 69(1), 188- 197.
Li, S. Q., & Wu, Y. (2010, April). A Robust Chaos-Based Watermarking for Copyright Protection. In Biomedical Engineering and Computer Science (ICBECS), 2010 International Conference on (pp. 1-3). IEEE.
Liao, X., & Wen, Q. Y. (2008, December). Embedding in two least significant bits with wet paper coding. In 2008 International Conference on Computer Science and Software Engineering (pp.555-558). IEEE.
Liu, L., & Miao, S. (2016). A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus, 5(1), 289.
López-Hernández, J., Vazquez-Medina, R., Ortiz-Moctezuma, M. B., & Del-Rio-Correa, J. L. (2012). Digital implementation of a pseudo-random noise generator using chaotic maps. IFAC Proceedings Volumes, 45(12), 209-214.
Lorentzon, M. (2017). Feature extraction for image selection using machine learning. Master thesis, Linköping University, Sweden.
Loussaief, S., & Abdelkrim, A. (2017, July). Machine learning framework for image classification. In Information and Digital Technologies (IDT), 2017 International Conference on (pp. 58-61). IEEE.
Ma, Z., & Tavares, J. M. R. (2015). A review of the quantification and classification of pigmented skin lesions: From dedicated to hand-held devices. Journal of medical systems, 39(11), 177.
Mahmoud, M. K. A., & Al-Jumaily, A. (2011, August). Segmentation of skin cancer images based on gradient vector flow (GVF) snake. In Mechatronics and Automation (ICMA), 2011 International Conference on (pp. 216-220). IEEE.
Mandal, A. K., & Baruah, D. K. (2013). Image Segmentation Using Local Thresholding And Ycbcr Color Space. Journal of Engineering Research and Applications, Vol. 3 (6), pp. 511-514.
Mandloi, G. (2014). A survey on feature extraction techniques for color images. International Journal of Computer Science and Information Technologies, 5(3), 4615-4620.
Manojbhai, D. D., & Rajamenakshi, R. (2016). Large Scale Image feature extraction from medical image analysis. International journal of advanced engineering and research.
Masood, A., & Ali Al-Jumaily, A. (2013). Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. International journal of biomedical imaging, 2013.
Medhi, S., Ahmed, C., & Gayan, R. (2016). A Study on Feature Extraction Techniques in Image Processing. International Journal of Computer Sciences and Engineering, Vol.4 (Special Issue-7).
Mendonca Chahar, P. S., & Thakare, V. (2015). Performance Comparison of Various Filters for Removing Gaussian and Poisson Noises. International Research Journal of Engineering and Technology, 2(5), 1101-1105.
Mhaske, H. R., & Phalke, D. A. (2013, December). Melanoma skin cancer detection and classification based on supervised and unsupervised learning. In Circuits, Controls and Communications (CCUBE), 2013 International conference on (pp. 1-5). IEEE.
Mishra, A., Rai, A., & Yadav, A. (2014). Medical image processing: A challenging analysis. International Journal of Bio-Science and Bio-Technology, 6(2), 187-194.
Mitra, S., & Shankar, B. U. (2015). Medical image analysis for cancer management in natural computing framework. Information Sciences, 306, 111-131.
Mohammadi, S. (2015, September). A chaotic watermarking scheme using discrete cosine transform. In Information Security and Cryptology (ISCISC), 2015 12th International Iranian Society of Cryptology Conference on (pp. 6-10). IEEE.
Moniruzzaman, M., Hawlader, M. A. K., & Hossain, M. F. (2014, May). An image fragile watermarking scheme based on chaotic system for image tamper detection. In Informatics, Electronics & Vision (ICIEV), 2014 International Conference on (pp. 1-6). IEEE.
Moss, H. B., Leslie, D. S., & Rayson, P. (2018). Using JK fold Cross Validation to Reduce Variance When Tuning NLP Models. arXiv preprint arXiv:1806.07139.
Murumkar, O. S., & Gumaste, P. P. (2015). Feature Extraction for Skin Cancer Lesion Detection. International Journal of Science, Engineering and Technology Research (IJSETR), 4(5).
Naheed, T., Usman, I., Khan, T. M., Dar, A. H., & Shafique, M. F. (2014). Intelligent reversible watermarking technique in medical images using GA and PSO. Optik-International Journal for Light and Electron Optics, 125(11), 2515-2525.
Nambakhsh, M. S., Ahmadian, A., & Zaidi, H. (2011). A contextual based double watermarking of PET images by patient ID and ECG signal. Computer methods and programs in biomedicine, 104(3), 418-425.
Nammalwar, P., Ghita, O., & Whelan, P. F. (2009). Segmentation of skin cancer images. Google scholar.
Naseem, M. T., Qureshi, I. M., & Muzaffar, M. Z. (2013, December). Chaos based invertible authentication of medical images. In Emerging Technologies (ICET), 2013 IEEE 9th International Conference on (pp. 1-5). IEEE.
Natanj, S., & Taghizadeh, S. R. (2011). Current Steganography Approaches: A survey. International Journal of Advanced Research in Computer Science and Software Engineering, 1.
Naveed, A., Saleem, Y., Ahmed, N., & Rafiq, A. (2015). Performance evaluation and watermark security assessment of digital watermarking techniques. Science International, 27(2).
Oliveira, R. B., Marranghello, N., Pereira, A. S., & Tavares, J. M. R. (2016). A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Systems with Applications, 61, 53-63.
Orozco, J., & García, C. A. R. (2003, April). Detecting pathologies from infant cry applying scaled conjugate gradient neural networks. In European Symposium on Artificial Neural Networks, Bruges (Belgium) (pp. 349-354).
Patel, M. N., & Tandel, P. (2016). A Survey on Feature Extraction Techniques for Shape based Object Recognition. Image, 137(6).
Patil, A. B., & Shaikh, J. A. (2016). Segmentation and Feature Extraction of Flowers Intended for Image Retrieval: A survey .IJARECE, Vol. 5(1).
Pereira, S. Voloshynovskiy, S., Pun, T. (2000). Optimized wavelet domain watermark embedding strategy using linear programming, in: Proceedings of SPIE on AeroSense, Orlando, Florida, USA, 2000, pp. 490–498.
Pereira, S., & Pun, T. (1999, September). Fast robust template matching for affine resistant image watermarks. In Information Hiding (pp. 199-210).
Preethi, B. C., & Abraham, G. E. (2016). Lung Tissue Extraction Using OTSU Thresholding in Lung Nodule Detection from CT Images. International Journal of Current Trends in Engineering & Technology , 2(06).
Ram, B., Kumar,M. (2013). Digital image watermarking technique using discrete wavelet transform and discrete cosine transform. International journal of Advancements in Research & technology, 2(4), 19-27.
Rawat, S., & Raman, B. (2011). A chaotic system based fragile watermarking scheme for image tamper detection. AEU-International Journal of Electronics and Communications, 65(10), 840-847.
Ren, W., Hu, L., Zhao, K., Chu, J., & Jia, B. (2013). Intrusion Classifier based on Multiple Attribute Selection Algorithms. Journal of Computers, 8(10), 2536-2543.
Renu Bala (2016). Image Edge Detection using Discrete Wavelet Transform. International Journal of Innovative Research in Computer and Communication Engineering, Vol. 4 (Special Issue 4).
Review on Different Chaotic Based Image Encryption Techniques. Intern. Journal of Info. and Computation Tech.Vol. 4(2), pp. 197-206.
Roy, K. K., & Phadikar, A. (2014). Automated Medical Image Segmentation: A Survey. In Proc. of Int. Conf. on Computing, Communication & Manufacturing.
Roy, R., Sarkar, A., & Changder, S. (2013). Chaos based edge adaptive image steganography. Procedia Technology, 10, 138-146.
Sajasi, S., & Eftekhari-Moghadam, A. M. (2013, April). A high quality image hiding scheme based upon Noise Visibility Function and an optimal chaotic based encryption method. In AI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS),
Sathisha, N., Madhusudan, G. N., Bharathesh, S., Babu, K. S., Raja, K. B., & Venugopal, K. R. (2010, July). Chaos based spatial domain steganography using MSB. In Industrial and Information Systems (ICIIS), 2010 International Conference on (pp. 177-182). IEEE.
Scholl, I., Aach, T., Deserno, T. M., & Kuhlen, T. (2011). Challenges of medical image processing. Computer science-Research and development, 26(1), 5-13.
Shahzad, R. K., & Lavesson, N. (2013). Comparative analysis of voting schemes for ensemblebased malware detection. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 4(1), 98-117.
Sharma, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques. Journal of medical physics/Association of Medical Physicists of India, 35(1), 3.
Shaw, G.A., and Burke, H.H.K., (2003). Spectral imaging for remote sensing. Lincoln Laboratory
Shejul, A. A., & Kulkarni, U. L. (2010, February). A DWT based approach for steganography using biometrics. In Data Storage and Data Engineering (DSDE), 2010 International Conference on (pp. 39-43). IEEE.
Shen, Q., Diao, R., & Su, P. (2012). Feature Selection Ensemble. Turing-100, 10, 289-306.
Silveira, M., Nascimento, J. C., Marques, J. S., Marçal, A. R., Mendonça, T., Yamauchi, S., ... & Rozeira, J. (2009). Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 3(1), 35-45.
Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons.
Starck, J. L., Murtagh, F., Candès, E. J., & Donoho, D. L. (2003). Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on image processing, 12(6), 706-717.
Subramanian, T., Taqa, A.Y., and Jalab, H.A., (2010). Overview of textual anti-spam filtering ,techniques. International Journal of Physical Science, 5 (12), 1869-1882.
Suksut, K., Chanklan, R., Kaoungku, N., Chaiyakhan, K., Kerdprasop, N., & Kerdprasop, K. (2017). Parameter Optimization for Mammogram Image Classification with Support Vector Machine. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 1).
Tabash, F. K., Rafiq, M. Q., & Izharrudin, M. (2013). Image encryption algorithm based on chaotic map. International Journal of Computer Applications, 64(13).
Tataru, R. L., El Assad, S., & Déforges, O. (2012, December). Improved blind DCT watermarking by using chaotic sequences. In Internet Technology And Secured Transactions, 2012 International Conference for (pp. 46-50). IEEE.
Thabit, R., & Khoo, B. E. (2015). A new robust lossless data hiding scheme and its application to color medical images. Digital Signal Processing, 38, 77-94.
Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18.
Thongkor, K., & Amornraksa, T. (2014, December). Digital image watermarking with partial embedding on blue color component. In APSIPA (pp. 1-4).
Thorat, C. G., & Jadhav, B. D. (2010). A blind digital watermark technique for color image based on integer wavelet transform and SIFT. Procedia Computer Science, 2, 236-241.
Tong, X., Liu, Y., Zhang, M., & Chen, Y. (2013). A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Processing: Image Communication, 28(3), 301-308.
Trabelsi, O., Tlig, L., Sayadi, M., & Fnaiech, F. (2015, March). Skin lesion segmentation using the DS evidence theory based on the FCM using feature parameters. In Systems, Signals & Devices (SSD), 2015 12th International Multi-Conference on (pp. 1-5). IEEE.
Tsai, D. Y., Lee, Y., Sekiya, M., & Ohkubo, M. (2004). Medical image classification using genetic-algorithm based fuzzy-logic approach. Journal of Electronic Imaging, 13(4), 780-788.
Tzotso, A. (2006). A support vector machine approach for object based image analysis. Proceedings of OBIA.
Umbaugh, S.E., (2010). Digital image processing and analysis: human and computer applications with CVIP tools. CRC Press, Second Edition, 977 pages
Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., ... & Vercauteren, T. (2018). DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Wang, J., Sun, Y., Xu, H., Chen, K., Kim, H. J., & Joo, S. H. (2010). An improved section-wise exploiting modification direction method. Signal Processing, 90(11), 2954-2964.
Wang, P., Wei, Z., & Cao, C. (2010, June). A Fragile Watermarking Algorithm Based on Logistic System. In Information and Computing (ICIC), 2010 Third International Conference on (Vol. 4, pp. 304-307). IEEE.
Wisaeng, K. (2013). A Comparison of Different Classification Techniques for Bank Direct Marketing. International Journal of Soft Computing and Engineering (IJSCE), 3(4), 116- 119.
Wu, C. M., & Shih, Y. S. (2013). A simple image tamper detection and recovery based on fragile watermark with one parity section and two restoration sections. Optics and Photonics Journal, 3(02), 103.
Wu, J. K., Kankanhalli, M. S., Lim, J. H., & Hong, D. (2000). Perspectives on content-based multimedia systems (Vol. 9). Springer Science & Business Media.
Xia, R., Zhao, J., & Liu, Y. (2013, October). A robust feature-based registration method of multimodal image using phase congruency and coherent point drift. In Eighth International Symposium on Multispectral ImageProcessing and Pattern Recognition (pp. 891903-891908).
Xiao, D., & Jin, J. (2012, November). A reversible two-level image authentication scheme based on chaotic fragile watermark. In Emerging Technologies for a Smarter World (CEWIT), 2012 9th International Conference & Expo on (pp. 1-6). IEEE.
Xiao, D., & Shih, F. Y. (2012). An improved hierarchical fragile watermarking scheme using chaotic sequence sorting and subblock post-processing. Optics Communications, 285(10), 2596-2606.
Xie, S., Lawnizak, A. T., Lio, P., & Krishnan, S. (2013). Feature extraction by multi-scale principal component analysis and classification in spectral domain. Engineering, 5(10), 268.
Xingyang, Z., & Jiyin, S. (2009, October). A novel clor image fragile watermarking based on the extended channel. In Broadband Network & Multimedia Technology, 2009. ICBNMT' 09. 2nd IEEE International Conference on (pp. 422-428). IEEE.
Xu, H., Wang, J., & Kim, H. J. (2010). Near-optimal solution to pair-wise LSB matching via an immune programming strategy. Information Sciences, 180(8), 1201-1217.
Yadav, M., & Dhankhar, A.(2015) Image Steganography Techniques: A Review. IJIRST, Vol. 2
Yaiprasert, C., Jaroensutasinee, K., and Jaroensutasinee, M., (2007). The pixel value dataapproach for rainfall forecasting based on GOES-9 satellite image sequence analysis. World Academy of Science, Engineering and Technology, 3(8), 186-191.
Yang, M., Kpalma, K., & Ronsin, J. (2008). A survey of shape feature extraction techniques. Pattern Recognition, IN-TECH, pp.43-90, 2008.
Yogamangalam, R., & Karthikeyan, B. (2013). Segmentation techniques comparison in image processing. International Journal of Engineering and Technology (IJET), 5(1), 307-313.
Yu, H., Yang, J., & Han, J. (2003, August). Classifying large data sets using SVMs with hierarchical clusters. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 306-315). ACM.
Yu, L., Zhao, Y., Ni, R., & Li, T. (2010). Improved adaptive LSB steganography based on chaos and genetic algorithm. EURASIP Journal on Advances in Signal Processing, 2010(1), 876946.
Yuan, X., Situ, N., & Zouridakis, G. (2008). Automatic segmentation of skin lesion images using evolution strategies. Biomedical signal processing and control, 3(3), 220-228.
Zaidan, A. A. (2013). Anti-pornography algorithm based on multi-agent learning in skin detector and pornography classifier (Doctoral dissertation, Multimedia University (Malaysia)).
Zaidan, A. A., Karim, H. A., Ahmad, N. N., Alam, G. M., & Zaidan, B. B. (2010). A new hybrid module for skin detector using fuzzy inference system structure and explicit rules. International Journal of Physical Sciences, 5(13), 2084-2097.
Zainal, A. (2011). An adaptive intrusion detection model for dynamic network traffic patterns using machine learning techniques. Doctoral dissertation, Universiti Teknologi Malaysia, Faculty of Computer Science and Information System.
Zhang, J., Zhang, Q., & Lv, H. (2013). A novel image tamper localization and recovery algorithm based on watermarking technology. Optik-International Journal for Light and Electron
Zhang, J., Zhang, Q., & Lv, H. (2013). A novel image tamper localization and recovery algorithm based on watermarking technology. Optik-International Journal for Light and Electron Optics, 124(23), 6367-6371.
Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 43.
Zhongqin, W., Lu, H., Yang, S., Qiang, Z., & Chaoxia, W. (2015, October). Study of digital watermark based on chaos algorithm. In Cyberspace Technology (CCT 2015), Third International Conference on (pp. 1-5). IET.
Zhongqin, W., Lu, H., Yang, S., Qiang, Z., & Chaoxia, W. (2015, October). Study of digital watermark based on chaos algorithm. In Cyberspace Technology (CCT 2015), Third International Conference on (pp. 1-5). IET.
Zhu, H. (2003). Medical image processing overview. University of Calgary.
Zhu, P., & Zhao, M. S. (2010, July). A chaotic system based watermarking algorithm for image copyright protection. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 6, pp. 220-222). IEEE.
Zhu, Y., & Huang, C. (2012). An improved median filtering algorithm for image noise reduction. Physics Procedia, 25, 609-616.
Zouridakis, G., Doshi, M., & Mullani, N. (2004, September). Early diagnosis of skin cancer based on segmentation and measurement of vascularization and pigmentation in nevoscope images. In Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE (Vol. 1, pp. 1593-1596). IEEE.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |