UPSI Digital Repository (UDRep)
|
|
|
Abstract : |
Synthesis of carbon nanotubes with different concentrations of ferrocene (C10H10Fe) as catalyst (5.33, 10.66, 13.99- 19.99 wt%) from waste engine oil precursor has been done to study its effects on the growth of carbon nanotubes. Thermal chemical vapor deposition method was used in this study. The synthesis process lasted for 30 minutes under argon gas ambient in constant precursor vaporization and synthesis temperature of 450°C and 750°C respectively. The characterization of prepared samples were done using field emission scanning electron microscopy, micro-Raman spectroscopy and thermogravimetric analysis. High density carbon nanotubes was produced at 17.99 wt% catalyst concentration with purity of 72%. The results show that the structure, diameter size and quality of carbon nanotubes are highly affected by the catalyst concentrations. |
References |
1. Kumar, M. and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010;10(6):3739-58. 2. Poudel, P. and Q. Qiao, Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells. Nano Energy 2014;4:157-75. 3. Szabó, A., Caterina, P., Csató A., Giordano, G., Vuono, D., Nagy, J.B., Synthesis methods of carbon nanotubes and related materials. Mater. 2010;3(5): 3092-140. 4. Rafique, M.M.A. and J. Iqbal, Production of carbon nanotubes by different routes-a review. J. Encapsul. Adsorp. Sci. 2011;1(2):29-34. 5. Lee, C.J., J. Park, and J.A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem. Phys. Lett. 2002;360 (3-4):250-5. 6. Mao, L., J. Qiu, and L. Xing, A facile approach to simultaneous fabrication of microsize hollow and solid carbon spheres from acetylene directly. Mater. Lett. 2008;62 (4-5):581-3. 7. Teo, K.B.K., Singh, C., Chhowalla, M., Milne, W.I., Catalytic synthesis of carbon nanotubes and nanofibers. Encyclopedia Nanosci. Nanotechnol. 2003;10(1). 8. Hamawand, I., T. Yusaf, and S. Rafat, Recycling of waste engine oils using a new washing agent. Energ. 2013;6(2):1023-49. 9. Suriani, A.B., Alfarisa, S., Mohamed, A., Isa, I.M., Kamari, A., Hashim, N., et al., Quasi-aligned Carbon Nanotubes Synthesised from Waste Engine Oil. Mater. Lett. 2015;139:220-3. 10. Zdrojek, M., Gebicki, W., Jastrzebsk, C., Melin, T., Huczko, A., Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solid State Phenomena 2004;99:265-8. 11. Bokobza, L. and J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 2012:6(7):601-8. 12. Murphy, H., P. Papakonstantinou, and T.T. Okpalugo, Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J. Vacuum Sci. Technol. B, 2006:24(2):715-20. 13. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M.S., et al., Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2002;2(6):615-9. 14. Mahajan, A., Kingon, A., Kukovecz, Á., Konya, Z., Vilarinho, P.M., Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater. Lett. 2013; 90:165-8. 15. Ramesh, B.P., Blau, W.J., Tyagi, P.K., Misra, D.S., Ali N., Gracio, J., et al., Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Sol. Films 2006;494(1-2):128- 32. 16. Suriani, A.B., Controlled Growth of Vertically Aligned Carbon Nanotubes from Palm Oil Precursor Using Thermal Chemical Vapour Deposition Method, in Faculty of Applied Science. 2011, Universiti Teknologi MARA: Shah Alam |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |