UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Artikel ini membincangkan pemodelan pelbagai jenis kegagalan cerun di Pulau Pinang menggunakan kaedah nisbah kekerapan. Kajian ini menggunakan lima faktor pembolehubah yang mempengaruhi kejadian kegagalan cerun antaranya ialah faktor jarak kegagalan cerun ke jalan, jenis litologi, jenis siri tanih, purata hujan tahunan dan ketinggian topografi. Hasil ketepatan model masing-masing adalah jenis batuan adalah sebanyak 76.15 peratus, jenis tumbang adalah 61.54 peratus, jenis gelongsoran adalah 70 peratus dan jenis aliran adalah 78.46 peratus. Secara keseluruhan ini menunjukkan peta kerentanan pelbagai jenis kegagalan cerun adalah baik. Kaedah nisbah kekerapan sesuai digunakan dan dijadikan panduan dalam pengurusan dan perancangan pembangunan. |
References |
1. Abdul Samad, H., Shaharudin, I., Abdul Hadi, H.S. (2014). From first to second nature: Environmental changes in Malaysia. Geografi, 2(3), 1-11. Diperoleh daripada https://ejournal.upsi.edu.my/GetFinalFile.ashx?file=7cb4824b-3c56-406d-8d3f-df67e89456dd.pdf.
2. Abdul Samad, H. (1990). Pembangunan dan perubahan alam sekitar: Satu tinjauan dari segi masa, in pembangunan dan alam sekitar di Malaysia: Isu dan pengurusannya. Kuala Lumpur: Dewan Bahasa dan Pustaka.
3. Ahmad Fariz, M. (2014). Industrial development in Malaysia transition for sustainability. Geografi, 2(3), 24-36. Diperoleh daripada https://ejournal.upsi.edu.my/GetFinalFile.ashx?file=4585dc18-183e-484e-8fac-5c6887023ed6.pdf.
4. Akgul, A., & Bulut, F. (2007). GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51(8), 1377–1387.
5. Akgun, A., Dag, S., & Bulut, F. (2008). Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54(6), 1127–1143.
6. Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: Proposed classification method. Catena, 104, 219-232.
7. Atkinson, P.M., & Massari, R. (1998). Generalized linear modeling of susceptibility to land sliding in the central Apennines, Italy. Computer & Geosciences, 24, 373–38.
8. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.
9. Bernama. (2011). Empat jam rebut Greg di Keningau, Sabah. http://www.utusan.com.my/gaya-hidup/keluarga/empat-jam-ribut-greg-di-keningau-sabah-1.333992. [Diakses 21.07.16]
10. Bernama. (2009). Jalan utama ke Muzium Perang runtuh. Diperoleh daripada http://ww1.utusan.com.my/utusan/info.asp?y=2009&dt=1103&pub=Utusan_Malaysia&sec=Utara&pg=wu_04.htm. [21.07.2016]
11. Bujang, B.K.H., Faisal, A., David, H. B., Harwant, S. & Husaini, O. (2008). Landslide in Malaysia: Occurrences, assessment, analyses and remediation. Serdang: Penerbit Universiti Putra Malaysia.
12. Caniani, D., Pascale, S., Sdao, F. & Sole, A. (2007). Neural networks and landslide susceptibility: A case study of the urban area of Potenza. Natural Hazards, 45, 55–72.
13. Carro, M., De, A., Luzi, M., & Marzorati, S. (2003). The application of predictive modeling techniques to landslides induced by earthquakes, the case study of the 26 September 1997 Umbria-Marche Earthquake (Italy). Eng Geol. 69, 139–159.
14. Carter, B.G.F. (1994). Geographic information systems for geoscientists, modeling with GIS. Oxford: Pergamon Press, p.398.
15. Chen, H., Lin, G.W., Lu, M. H., Shih, T.Y., Horng, M.J. & Wu, S.J. (2011). Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of Southeastern Taiwan. Geomorphology, 133, 132-142.
16. Choi, J., Oh, H.J., Won, J.S., & Lee, S. (2010). Validation of an artificial neural network model for landslide susceptibility mapping. Environmental Earth Sciences, 60, 473-483.
17. Clerici, A., Perego, S., Tellini, C., & Vescovi, P. (2002). A procedure for landslide susceptibility zonation: By the conditional analysis method. Geomorphology, 48, 349–36.
18. Cruden, D.M., & Varnes, D.J. (1996). Landslide types and processes, special report. Transportation Research Board, National Academy of Sciences, 247, 36-75.
19. Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictictive modelling of rainfall- induced landslide hazard in the Lesser Himalaya of Nepal based on weight of evidence. Geomorphology, 102, 496-510.
20. Dai, F.C., & Lee, C.F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213-228.
21. Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkye) by fuzzy approach. Environmental Geology, 41, 720–730.
22. Fatimah Shafinaz, A. (2005). Penggunaan sistem maklumat geografi untuk meramal keruntuhan cerun di Pulau Pinang.Tesis Ijazah Sarjana Kejuruteraan Awam Universiti Teknologi Malaysia. Tidak diterbitkan
23. Gerrard, A.J. (1981). Soil and landforms an integration of geomorphology and pedology. Deparment of Geography, University of Birmigham.
24. Goetz, J.N., Guthrie, R.H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129 (3-4), 376-386.
25. Gokceoglu, C., Sonmez, H., & Ercaglu, M. (2000). Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Engineering Geology, 55, 227-296.
26. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181–216.
27. Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.T. (2012). Landslide inventory maps: New tools for an old problem. Earth Science Review, 112, 42-66.
28. Highland, L.M & Bobrowsky, P. (2008). The landslide Handbook- A Guide to Understanding landslides.Version 1.0. Geological Survey of Canada.
29. Hong, H., Pourghasemi, H.R., & Pourtaghi, Z.S. (2016). Landslide susceptibility assessment in Lianhua Country (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical model. Geomorphology, 259, 105-118.
30. Ibrahim, I. (1989). Engenering Geology of Kuala Lumpur, Malaysia. Proceeding International Conference of Engineering Geology in Tropica Terrain, Kuala Lumpur, hlm. 262-273.
31. Jabatan Perangkaan Malaysia. (2013). Maklumat asas negeri Pulau Pinang 2013. Putrajaya: Jabatan Perangkaan Malaysia
32. Jabatan Kerja Raya. (2009). National slope master plan 2009–2023. Jabatan Kerja Raya, Malaysia, Kuala Lumpur.
33. Kai, X., Qiang, G., Zhengwei, L., Jie, X., Yanshan, Q., & Chunfang, K. (2015). Landslide susceptibility evaluation based on BPNN and GIS: A case of Guojiaba in The Three Gorges Reservoir Area. International Journal of Geographical Information Science, 29(7), 1111-1124.
34. Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian Journal of Geosciences, 6(8), 2901–2913.
35. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R.P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.
36. Knapen, A., Kitutu, M.G., Poesen, J., Breugelmans, W., Deckers, J., & Muwanga, A. (2006). Landslides in a densely populated county at the footslopes of Mount Elgon Uganda, Characteristics and causal factors. Geomorphology, 73(1-2), 149 -165.
37. Lamelas, M.T., Marinoni, O., Hoppe, A., & Riva, J. (2008). Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Environmental Geology, 54(5), 963–977.
38. Lee, S. & Jasmi Abdul Talib. (2005). Probablistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982-990.
39. Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Jurnal Earth Syst.Sci, 115(6), 661-672.
40. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33–41.
41. Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.
42. Oh, H.J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in a tropical hilly area. Computer Geosciences, 37, 1264–1276.
43. Poudyal, C.P., Chang, C., Hyun-Jo, & Lee, S. (2010). Landslide Susceptibility Maps Comparing Frequency Ratio and Artificial Neural Networks: A case study from the Nepal Himalaya. Environmental Earth Sciences, 61, 1049-1064.
44. Pradhan, B., Lee, S., & Buchroithner, M.F. (2009). Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: A case study in Malaysia. Applied Geomatics, 1, 3–15.
45. Rece, A., & Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquakeinduced landslide hazard assessment. Computer Geoscience, 28, 735–749.
46. Romeo, R. (2000). Seismically induced landslide displacements: a predictive model. Engineering Geology, 58, 337–351.
47. Sharma, L.P., Patel, N., Ghose, M.K., & Debnath, P. (2013). Synergistic application of fuzzy logic and geo-informatics for landslide vulnerability zonation-a case study in Sikkim Himalayas, India. Applied Geomatics, 5, 271-284.
48. Sinar Harian. (2013). Kronologi tragedi Highland Towers. http://www.sinarharian.com.my/nasional/kronologi-tragedi-highland-towers 1.229212. [Diakses pada 21.07.2016]
49. Suzen, M.L., & Doyuran, V.A. (2004). Comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environment Geology, 45, 665–679.
50. Taherynia, M.H., Mohammadi, M., & Ajalloeian, R. (2014). Assessment of slope instability and risk analysis of road cut slopes in Lashotor pass Iran. Journal of Geological Research, 1-12
51. Tjia, H.D. (1987). Geomorfologi. Kuala Lumpur: Dewan Bahasa dan Pustaka.
52. Tunusluoglu, M.C., Gokceoglu, C., Nefeslioglu, H.A, & Sonmez, H. (2008). Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environmental Geology, 54(1), 9–22.
53. Varnes, C.J. (1978). Slope movement types and processes. Washington D.C: National Academy of Sciences. 11-33.
54. Yazid, S., Hanifah, M., Mohmadisa, H., Nasir, N. (2015). Kelestarian bandar kecil Wilayah Lembah Bernam dari perspektif kesejahteraan penduduk. Geografi, 3(2), 28-36. Diperoleh daripada https://ejournal.upsi.edu.my/GetFinalFile.ashx?file=daa89061-a35e-40ee-be1c-0b26815144eb.pdf.
55. Yilmaz, I. (2007). GIS based susceptibility mapping of karst depression in gypsum: A case study Sivas basin (Turkey). Engineering Geology, 90(1-2), 89-103.
56. Youssef, A.M., Pradhan, B., Gaber, A.F., & Buchroithner, M.F. (2009). Geomorphological hazard analysis along the Egyptian red sea coast between Safaga and Quseir. Natural Hazards and Earth System Sciences, 9, 751-766.
57. Zhou, G., Esaki, T., Mitani, Y., Xie, M., & Mori, J. (2003). Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, 68, 373–386. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |