UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QA75 Electronic computers. Computer science
ISSN :2289-7844
Main Author :Saniron Shamsul, Ali Othman Zulaiha,
Title :Model penempatan guru berasaskan perlombongan data
Place of Production :Universiti Pendidikan Sultan Idris
Year of Publication :2016

Full Text :
Tujuan artikel ini adalah untuk mengenalpasti teknik pengelasan terbaik dan penerokaan pengetahuan baru terhadap data permohonan penempatan di Kementerian Pendidikan Malaysia (KPM). Eksperimen dijalankan terhadap lebih 23,000 rekod untuk sesi 2014 menggunakan enam teknik pengelasan. Artikel ini memaparkan dua fasa eksperimen. Fasa pertama fokus kepada faktor demografi, persekitaran dan keperluan perjawatan manakala fasa kedua pula mempunyai faktor tambahan iaitu faktor kemanusian. Hasil kajian mendapati model pengelasan terbaik di fasa pertama ialah 97.66% manakala di fasa kedua 98.07%. Kajian juga mendapati teknik pengelasan terbaik adalah konsisten iaitu Kstar berbanding J48, Jadual Keputusan, OneR, SMO dan Naïve Bayes. Daripada hasil kajian ini dapat disimpulkan Kstar adalah teknik terbaik pengelasan data penempatan guru untuk digunakan melombong data penempatan bagi tahun yang seterusnya. Adalah diharapkan ianya dapat menghasilkan keputusan terbaik untuk membantu pihak pengurusan KPM membuat keputusan dalam proses permohonan pertukaran dan penempatan guru.

References
1. Chaplot, N. (2015). Astrological prediction for profession doctor using classification techniques of artificial intelligence. International Journal of Computer Applications. 122(15), pp. 28–31. 2. Gera, M. & Goel, S. (2015). A model for predicting the eligibility for placement of students using data mining technique. Published in Proceedings of the 2015 International Conference on Computing, Communication & Automation. Paper No. 21. 3. Halawa, M. S. (2015). Predicting student personality based on a data-driven model from student behavior on LMS and social networks. Published in Proceedings of the 5th International Conference on Digital Information Processing and Communications. pp. 294–299. 4. Hamidah, J, (2011). Kerangka kerja sistem sokongan keputusan cerdas untuk pengurusan bakat. Bangi: Penerbit UKM. 5. Hamidah, J., Abdul Razak, H., & Zulaiha, A.O. (2009). Classification techniques for talent forecasting in human resource management. In: R. H. Q. Yang, J. P. J. Gama, and X. Meng (Eds). Advanced Data Mining and Application. Beijing, China: Springer-Verlag Berlin Heidelberg. pp. 496-503. 6. Hamidah, J., Abdul Razak, H., & Zulaiha, A.O. (2009). Classification for Talent Management using Decision Tree Induction Techniques. Published in Proceedings of 2nd Data Mining and Optimization Seminar. pp. 15-20. 7. Jafri Abu (2010). Pelaksanaan penempatan guru mengikut tugas dan kepuasan kerja di sekolah menengah kebangsaan di Malaysia. Phd Thesis: UKM. 8. Manning, C. D., Raghavan, P., & Schutze, H. (2009). An introduction to information retrieval. England: Cambridge University Press. 9. Mohamed, W. N. H. W., Najib, M., Salleh, M. & Omar, A. H. (2012). A comparative study of reduced error pruning method in decision tree algorithms. Published in Proceedings of the 2012 International Conference on Control System, Computing and Engineering. pp. 23–25. 10. Nassar, O. A. & Al Saiyd, N. A. (2013). The integrating between web usage mining and data mining techniques. Published in Proceedings of the 5th International Conference on Computer Science and Information Technology. pp. 243–247. 11. Pentaho, Decision Table. Retrieved Dec 31, 2016 from http://wiki.pentaho.com/display/DATAMINING/Decision Table. 12. Pentaho, Kstar. Retrieved Dec 31, 2016 from http://wiki.pentaho.com/display/DATAMINING/KStar. 13. Pentaho, Kstar. Retrieved Dec 31, 2016 from http://wiki.pentaho.com/display/DATAMINING/SMO. 14. Pentaho, NaiveBayes. Retrieved Dec 31, 2016 from http://wiki.pentaho.com/display/DATAMINING/NaiveBayes. 15. Perkhidmatan, S. P., Kementerian, K. S., Negeri, S. K., Perkhidmatan, S. P., Kementerian, K. S., Kementerian, K. S., Menteri, 16. J. P. et al. (2004). Panduan Pertukaran Pegawai Awam. Pekeliling Perkhidmatan Bilangan 3 Tahun 2004. 17. Pratiwi, O. N. (2013). Predicting student placement class using data mining. Published in Proceedings of International Conference on Teaching, Assessment and Learning for Engineering. pp. 618–621. 18. Refonaa, J. (2015). Analysis and prediction of natural disaster using spatial data mining technique. Published in Proceedings of International Conference on Circuuits, Power and Computing Technologies. pp. 1–6. 19. Romero, C. & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics PART C: Applications and Reviews. 40(6), pp. 601-618. 20. Sadath, L. (2013). Data mining: A tool for knowledge management in human resource. International Journal of Innovative Technology and Exploring Engineering. 2(6), pp. 154–159. 21. Vera, C. M., Morales, C. R., & Soto, S. V. (2013). Predicting school failure and dropout by using data mining techniques. IEEE Journal of Latin-American Learning Technologie. 8(1), pp 7-14. 22. Witten, I. H. & Frank, E. (2011). Data mining: Practical machine learning tools and techniques. Amsterdam: Elsevier.

This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.