UPSI Digital Repository (UDRep)
|
|
|
Abstract : |
The chemically modified multiwalled carbon nanotubes (MWCNTs) paste electrode with chloroplatinum (II) complex for the determination of mercury is presented. The chloroplatinum(II) complex was characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The capability of the electron transfer rate on the surface of modified electrode evaluated is by electrochemical impedance spectroscopy (EIS). The square wave stripping voltammetry (SWSV) technique was employed to investigate the performance of chloroplatinum(II) complexMWCNTs paste electrode for determination of mercury. Several operational parameters such as the composition ratios of the electrode, type of supporting electrolyte, pH of the solution, and the SWSV parameters were thoroughly investigated. Under optimal conditions, the linear range obtained was from 5.0mM to 0.1 mM with limit detection of 3.7mM. The interference from other heavy metals such as Ca2+, Mg2+, Ni2+, Zn2+, Cd2+, Co2+, Ba2+, Mn2+, and Ce3+ did not influence the electrochemical response. The chloroplatinum(II) complex-MWCNTs paste electrode was successfully applied to determine mercury in skin lightening cosmetics with a good recovery (98.9%–101.1%). |
References |
[1] Y.M. Olumide, A.O. Akinkugbe, D. Altraide, T. Mohammed, N. Ahamefule, S.Ayanlowo, C. Onyekonwu, N. Essen, Complications of chronic use of skin lightening cosmetics, Int. J. Dermatol. 47 (2008) 344. [2] T.Y.K. Chan, Inorganic mercury poisoning associated with skin-lightening cosmetic products, Clin. Toxicol. 49 (2011) 886. [3] W. Boonchai, R. Desomchoke, P. Iamtharachai, Trend of contact allergy to cosmetic ingredients in Thais over a period of 10 years, Contact Dermatitis 65 (2011) 311. [4] A.O. Barel, M. Paye, H.I. Maibach, Handbook of Cosmetic Science and Technology, CRC Press, Boca Raton, 2014. [5] F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Low dose mercury toxicity and human health, Environ. Toxicol. Pharmacol. 20 (2005) 351. [6] V.N. Uversky, J. Li, A.L. Fink, Metal-triggered structural transformations,aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure, J. Biol. Chem. 276 (2001) 44284. [7] F. Dieguez-Acuña, W. Polk, M. Ellis, P.L. Simmonds, J.V. Kushleika, J.S. Woods,Nuclear factor kB activity determines the sensitivity of kidney epithelial cells to apoptosis: implications for mercury-induced renal failure, Toxicol. Sci. 82 (2004) 114. [8] N. Ferrua, S. Cerutti, J. Salonia, R. Olsina, L. Martinez, On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry, J. Hazard. Mater. 141 (2007) 693. [9] L. Adlnasab, H. Ebrahimzadeh, A.A. Asgharinezhad, M.N. Aghdam, A. Dehghani, S. Esmaeilpour, A preconcentration procedure for determination of ultra-trace mercury (II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry, Food Anal. Methods 7 (2014) 616. [10] N. Bansal, J. Vaughan, A. Boullemant, T. Leong, Determination of total mercury in bauxite and bauxite residue by flow injection cold vapour atomic absorption spectrometry, Microchem. J. 113 (2014) 36. [11] J.-F. Peng, J.-F. Liu, X.-L. Hu, G.-B. Jiang, Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography,J. Chromatogr. A 1139 (2007) 165. [12] H. Cheng, C. Wu, L. Shen, J. Liu, Z. Xu, Online anion exchange column preconcentration and high performance liquid chromatographic separation with inductively coupled plasma mass spectrometry detection for mercury speciation analysis, Anal. Chim. Acta 828 (2014) 9. [13] X.Y. Jia, Y. Han, C. Wei, T.C. Duan, H.T. Chen, Speciation of mercury in liquid cosmetic samples by ionic liquid based dispersive liquid-liquid microextraction combined with high-performance liquid chromatographyinductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 26 (2011) 1380. [14] C.C. Brombach, B. Chen, W.T. Corns, J. Feldmann, E.M. Krupp, Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry, Spectrochim. Acta - Part B At. Spectrosc. 105 (2015) 103. [15] C. Zheng, Y. Li, Y. He, Q. Ma, X. Hou, Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water, J. Anal. At. Spectrom. 20 (2005) 746. [16] L. Wu, Z. Long, L. Liu, Q. Zhou, Y.I. Lee, C. Zheng, Microwave-enhanced cold vapor generation for speciation analysis of mercury by atomic fluorescence spectrometry, Talanta 94 (2012) 146. [17] Z.H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials, ACS Nano 7 (2013) 4554. [18] A. Afkhami, T. Madrakian, H. Ghaedi, H. Khanmohammadi, Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite, Electrochim. Acta 66 (2012) 255. [19] D.F. Báez, S. Bollo, A comparative study of electrochemical performances of carbon nanomaterial-modified electrodes for DNA detection. Nanotubes or graphene? J. Solid State Electrochem. 20 (2016) 1059. [20] M.H. Pournaghi-Azar, H. Dastangoo, Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladiumpentacyanonitrosylferrate film, J. Electroanal. Chem. 567 (2004) 211. [21] D. Pan, Y. Wang, Z. Chen, T. Lou, W. Qin, Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: An electrochemical sensing platform toward heavy metals, Anal. Chem. 81 (2009) 5088. [22] X. Li, Z. Chen, Y. Zhong, F. Yang, J. Pan, Y. Liang, Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip, Anal. Chim. Acta 710 (2012) 118. [23] S.A. Engelberth, N. Hempel, M. Bergkvist, Chemically modified dendritic starch: A novel nanomaterial for siRNA delivery, Bioconjug. Chem. 26 (2015) 1766. [24] J.M. Zen, A.S. Kumar, S.C. Lee, Y. Shih, Microliter volume determination of cosmetic mercury with a partially crosslinked poly(4-vinylpyridine) modified screen-printed three-electrode portable assembly, Electroanalysis 19 (2007) 2369. [25] A. Mao, H. Li, Z. Cai, X. Hu, Determination of mercury using a glassy carbon electrode modified with nano TiO2 and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant, J. Electroanal. Chem. 751 (2015) 23. [26] E. Bernalte, C. Marín Sánchez, E. Pinilla Gil, Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples, Sens. Actuators B: Chem. 161 (2012) 669. [27] O. Abollino, A. Giacomino, M. Malandrino, S. Marro, E. Mentasti, Voltammetric determination of methylmercury and inorganic mercury with an home made gold nanoparticle electrode, J. Appl. Electrochem. 39 (2009) 2209. [28] J. Wu, L. Li, B. Shen, G. Cheng, P. He, Y. Fang, Polythymine oligonucleotidemodified gold electrode for voltammetric determination of mercury(II) in aqueous solution, Electroanalysis 22 (2010) 479. [29] A. Widmann, C.M.G. Van Den Berg, Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode, Electroanalysis 17 (2005) 825. [30] B.C. Janegitz, L.C.S. Figueiredo-Filho, L.H. Marcolino-Junior, S.P.N. Souza, E.R. Pereira-Filho, O. Fatibello-Filho, Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination, J. Electroanal. Chem. 660 (2011) 209. [31] I.T. Somé, A.K. Sakira, D. Mertens, S.N. Ronkart, J.M. Kauffmann, Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode, Talanta 152 (2016) 335. [32] M.I. Saidin, I. Md Isa, M. Ahmad, N. Hashim, A. Kamari, S.A. Ghani, S.M. Si,Square wave anodic stripping voltammetry of copper(II) at a MWCNT paste electrode modified with a tetracarbonylmolybdenum(0) nanocomposite, Microchim. Acta 183 (2016) 1441. [33] M.I. Saidin, I. Md Isa, M. Ahmad, N. Hashim, S. Ab Ghani, Analysis of trace nickel by square wave stripping voltammetry using chloropalladium(II) complexmodified MWCNTs paste electrode, Sens. Actuators B: Chem. 240 (2017) 848. [34] A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978. [35] Z. Wang, Z. Dai, Carbon nanomaterial-based electrochemical biosensors: an overview, Nanoscale 7 (2015) 6420. [36] I.I. Suni, Impedance methods for electrochemical sensors using nanomaterials,TrAC Trends Anal. Chem. 27 (2008) 604. [37] D. Brealey, Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure, AJP Regul. Integr. Comp. Physiol. 286 (2004) 491R. [38] Y. Li, J. Liu, M. Liu, F. Yu, L. Zhang, H. Tang, B.-C. Ye, L. Lai, Fabrication of ultrasensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam, Electrochem.Commun. 64 (2016) 42. [39] H.R. Zare, Z. Sobhani, M. Mazloum-Ardakani, Electrocatalytic oxidation of hydroxylamine at a rutin multi-wall carbon nanotubes modified glassy carbon electrode: Improvement of the catalytic activity, Sens. Actuators B: Chem. 126 (2007) 641. [40] I. Švancara, K. Vyt�ras, J. Barek, J. Zima, Carbon paste electrodes in modern electroanalysis, Crit. Rev. Anal. Chem. 31 (2001) 311. [41] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001. [42] E.F. Perez, L.T. Kubota, A.a. Tanaka, G. De Oliveira Neto, Anodic oxidation of cysteine catalysed by nickel tetrasulphonated phthalocyanine immobilized on silica gel modified with titanium (IV) oxide, Electrochim. Acta 43 (1998) 1665. [43] A. Giacomino, O. Abollino, M. Malandrino, E. Mentasti, Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode, Talanta 75 (2007) 266. [44] F. Okçu, H. Ertaş, F.N. Ertaş, Determination of mercury in table salt samples by on-line medium exchange anodic stripping voltammetry, Talanta 75 (2008) 442. [45] K. Srogi, Mercury content of hair in different populations relative to fish consumption, Rev. Environ. Contam. Toxicol. 189 (2007) 107. [46] J.G. Osteryoung, R.A. Osteryoung, Square wave voltammetry, Anal. Chem. 57 (1985) 101A. [47] Q. Zhao, Y. Chai, R. Yuan, J. Luo, Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform, Sens. Actuators B: Chem. 178 (2013) 379. [48] J. Wei, D. Yang, H. Chen, Y. Gao, H. Li, Stripping voltammetric determination of mercury(II) based on SWCNT-PhSH modified gold electrode, Sens. Actuators B: Chem. 190 (2014) 968. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |