UPSI Digital Repository (UDRep)
|
|
|
Abstract : |
Tin-doped zinc oxide nanorods (Sn:ZnO NRs) were prepared on magnesium (Mg)–aluminum (Al) codoped ZnO seeded layer-coated glass substrate using lowtemperature solution immersion for ethanol gas sensor applications. The crystallite size, diameter size, and thickness of Sn:ZnO NRs were found to be 46, 84, and 480 nm, respectively; these values were smaller than the values of those of undoped ZnO nanorods (ZnO NRs). Sn:ZnO NRs exhibited a hexagonal-shape structure with c-axis orientation. Sn:ZnO NRs also presented compressive strain and tensile stress with values of −1.61% and 3.75 GPa,respectively. The ethanol gas sensor based on Sn:ZnO NRs obtained a response of 3.8 and response/recovery times of 75 s/53 s to ethanol gas (240 ppm) at 100 °C; thus, Sn:ZnO NRs produced better sensing performance than ZnO NRs. Results demonstrate that Sn:ZnO NRs are very promising in fabricating ethanol gas sensors with high response at low operating temperature. |
References |
1. S. Roy, N. Banerjee, C.K. Sarkar, P. Bhattacharyya, Development of an ethanol sensor based on CBD grown ZnO nanorods. Solid-State Electron. 87, 43–50 (2013) 2. M.Z. Ahmad, A.Z. Sadek, K. Latham, J. Kita, R. Moos, W.Wlodarski, Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing. Sens. Actuator B 187, 295–300,(2013) 3. C.S. Prajapati, P.P. Sahay, Alcohol-sensing characteristics of spray deposited ZnO nano-particle thin films. Sens. Actuator B 160, 1043–1049 (2011) 4. B.-Y. Kim, J.S. Cho, J.-W. Yoon, C.W. Na, C.-S. Lee, J.H. Ahn,Y.C. Kang, J.-H. Lee, Extremely sensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres prepared by Kirkendall diffusion. Sens. Actuator B 234, 353–360 (2016) 5. P.T.H. Van, D.D. Dai, N. Van Duy, N.D. Hoa, N. Van Hieu, Ultrasensitive NO2 gas sensors using tungsten oxide nanowires with multiple junctions self-assembled on discrete catalyst islands via on-chip fabrication, Sens. Actuator B 227, 198–203 (2016) 6. F.H. Saboor, A.A. Khodadadi, Y. Mortazavi, M. Asgari, Microemulsion synthesized silica/ZnO stable core/shell sensors highly selective to ethanol with minimum sensitivity to humidity. Sens. Actuator B 238, 1070–1083 (2017). 7. J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Z. Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sens. Actuator B176, 360–367 (2013) 8. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO: nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007) 9. N. Zhang, K. Yu, L. Li, Z. Zhu, Synthesis of tin-doped zinc oxide microrods for gas sensor application. Mater. Lett. 108,139–141 (2013) 10. M.H. Mamat, M.I. Che Khalin, N.N.H. Nik Mohammad, Z. Khusaimi, N.D. Md Sin, S.S. Shariffudin, M. Mohamed Zahidi, M.R. Mahmood, Effects of annealing environments on the solution-grown, aligned aluminium-doped zinc oxide nanorod-arraybased ultraviolet photoconductive sensor., J. Nanomater. 2012, 189279 (2012) 11. B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low cost hydrothermal method for photonic device applications. J. Alloy. Compd. 658, 435–439 (2016) 12. M.H. Mamat, Z. Khusaimi, M.M. Zahidi, S.A. Bakar, Y.M.Siran, S.A.M. Rejab, A.J. Asis, S. Tahiruddin, S. Abdullah, M.R.Mahmood, Controllable growth of vertically aligned aluminumdoped zinc oxide nanorod arrays by sonicated sol-gel immersion method depending on precursor solution volumes. Jpn. J. Appl. Phys. 50, 06GH04 (2011) 13. P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuator B 169, 74–80 (2012) 14. Z. Ye, T. Wang, S. Wu, X. Ji, Q. Zhang, Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. J. Alloy. Compd. 690, 189–194 (2017) 15. E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C.Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H.Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsedlaser deposition. Appl. Phys. Lett. 82, 3901–3903 (2003) 16. A. Setiawan, Z. Vashaei, M.W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga, H.J. Ko, Characteristics of dislocations in ZnO layers grown by plasma-assisted molecular beam epitaxy under different Zn∕O flux ratios. J. Appl. Phys. 96, 3763–3768 (2004) 17. H. Chik, J. Liang, S.G. Cloutier, N. Kouklin, J.M. Xu, Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84, 3376–3378 (2004) 18. W. Lee, M.-C. Jeong, J.-M. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Mater. 52, 3949–3957 (2004) 19. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl. Surf. Sci. 256,1698–1702 (2010) 20. M.H. Mamat, N.N. Hafizah, M. Rusop, Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering. Mater. Lett. 93, 215–218 (2013) 21. M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering. Ceram. Int. 42, 4107–4119 (2016) 22. M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.F. Malek, M. Rusop, Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods. Sens. Actuator A 171, 241–247 (2011) 23. R. Mohamed, Z. Khusaimi, A. Afaah, A. Aadila, M.H. Mamat, M. Rusop, Effect of annealing temperature of magnesium doped zinc oxide nanorods growth on silicon substrate. J. Nano Res. 26,33–38 (2014) 24. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park,On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuator B 138, 168–173 (2009) 25. X. Li, J. Song, Y. Liu, H. Zeng, Controlling oxygen vacancies and properties of ZnO, Curr. Appl. Phys. 14, 521–527 (2014) 26. N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sensor response formula for sensor based on ZnO nanostructures. Sens. Actuator B 144, 67–72 (2010) 27. Y. Cao, W. Pan, Y. Zong, D. Jia, Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction. Sens. Actuator B 138, 480–484 (2009) 28. X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater. Sci. Eng. C 32,817–821 (2012) 29. I. Muniyandi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Effect of nickel doping on structural, optical,electrical and ethanol sensing properties of spray deposited nanostructured ZnO thin films. Ceram. Int. 40, 7993–8001 (2014) 30. K. Zheng, L. Gu, D. Sun, X. Mo, G. Chen, The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater.Sci. Eng. B 166, 104–107 (2010) 31. S.C. Navale, I.S. Mulla, Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO. Mater. Sci.Eng. C 29, 1317–1320 (2009) 32. H.-K. Park, J.-W. Kang, S.-I. Na, D.-Y. Kim, H.-K. Kim,Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/ AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics. Sol. Energy Mater. Sol. Cells 93, 1994–2002 (2009) 33. M. Ajili, M. Castagné, N.K. Turki, Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53,213–222 (2013) 34. C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, C.-K. Lin,Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032–1036 (2008) 35. M.F. Malek, M.H. Mamat, M.Z. Musa, T. Soga, S.A. Rahman, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process. J. Lum. 160, 165–175 (2015) 36. A. Katoch, G.-J. Sun, S.-W. Choi, J.-H. Byun, S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B 185,411–416 (2013) 37. J.Y. Park, K. Asokan, S.-W. Choi, S.S. Kim, Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties. Sens. Actuators B 152, 254–260 (2011) 38. K. L. Foo, M. Kashif, U. Hashim, W.-W. Liu, Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram. Int. 40,753–761 (2014) 39. M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (0 0 2) orientation enhances the final properties. J. Alloy. Compd. 582, 12–21 (2014) 40. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010) 41. C. Wang, S. Ma, A. Sun, R. Qin, F. Yang, X. Li, F. Li, X. Yang, Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuator B 193, 326–333 (2014) 42. K.C. Park, D.Y. Ma, K.H. Kim, The physical properties of Aldoped zinc oxide films prepared by RF magnetron sputtering.Thin Solid Films 305, 201–209 (1997) 43. K. Raja, P.S. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectroc. Acta A 131, 183–188 (2014) 44. D. Fang, P. Yao, H. Li, Influence of annealing temperature on the structural and optical properties of Mg–Al co-doped ZnO thin films prepared via sol–gel method. Ceram. Int. 40, 5873–5880 (2014). 45. G. Turgut, E. Sönmez, A study of Pb-doping effect on structural, optical, and morphological properties of ZnO thin films deposited by sol–gel spin coating. Metall. Mater. Trans. A 45, 3675–3685 (2014) 46. K.S. Bhupendra, K. Neeraj, Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D 43,465402 (2010) 47. S.H. Mohamed, Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system. J. Phys. Chem. Solids 69, 2378–2384 (2008) 48. W.-L. Lu, P.-K. Hung, C.-I. Hung, C.-H. Yeh, M.-P. Houng, Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods. Mater. Chem. Phys. 130, 619–623 (2011) 49. C.-H. Hsu, D.-H. Chen, Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21,285603 (2010). 50. K. Geunjae, J. Sungmook, Y. Kijung, Multifunctional transparent ZnO nanorod films. Nanotechnology 22, 115705 (2011) 51. J. Zhang, W. Que, Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol. Energy Mater. Sol. Cells 94, 2181–2186 (2010) 52. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32, 696–699 (2010) 53. E.A. Davis, N.F. Mott, electrical and transparent properties of amorphous semiconductor. Philos. Mag. 22, 903–920 (1970) 54. F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot, L. Lombez, M. Paire, S. Borensztajn, C. Broussillou, P.P. Grand, Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell. Sci. Rep. 5, 8961 (2015) 55. V. Srikant, D.R. Clarke, Optical absorption edge of ZnO thin films: the effect of substrate. J. Appl. Phys. 81, 6357–6364 (1997) 56. R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004) 57. M.H. Mamat, M.Z. Sahdan, S. Amizam, H.A. Rafaie, Z. Khusaimi, M. Rusop, Optical and electrical properties of aluminum doped zinc oxide thin films at various doping concentrations, J. Ceram. Soc. Jpn. 117, 1263–1267 (2009) 58. G. WypychG, Handbook of Fillers, 4th edn. (ChemTec Publishing, Toronto, 1999), pp. 244 59. V. Pandey, N. Mehta, S. Tripathi, A. Kumar, Optical band gap and optical constants in Se85Te15-xPbx thin films. J. Optoelectron. Adv. Mater. 7, 2641–2646 (2005) 60. S. Mridha, D. Basak, Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater. Res. Bull. 42,875–882 (2007) 61. S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, J. Zhang, Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors. Electrochim. Acta 90,530–534 (2013) 62. S.K. Mishra, S. Bayan, R. Shankar, P. Chakraborty, R.K. Srivastava, Efficient UV photosensitive and photoluminescence properties of sol–gel derived Sn doped ZnO nanostructures. Sens.Actuator A 211, 8–14 (2014) 63. S. Ameen, M.S. Akhtar, H.-K. Seo, Y.S. Kim, H.S. Shin, Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem. Eng. J. 187, 351–356 (2012) 64. D.-T. Phan, G.-S. Chung, Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties. Sens. Actuator B 187, 191–197 (2013) 65. R.-H. Horng, S.-L. Ou, C.-Y. Huang, P. Ravadgar, C.-I. Wu,Effects of Ga concentration and rapid thermal annealing on the structural, optoelectronic and photoluminescence properties of Ga-doped ZnO thin films. Thin Solid Films 605, 30–36 (2016) |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |