UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Kajian dijalankan untuk memetakan kepadatan penduduk negeri Pulau Pinang menerusi aplikasi kaedah koroplet dan kaedah dasimetrik. Data banci penduduk pada tahun 2010 telah digunakan dalam kajian ini. Data banci penduduk negeri Pulau Pinang mengikut mukim, iaitu 22 buah mukim bagi Seberang Perai Tengah, 16 buah mukim bagi Seberang Perai Utara dan Seberang Perai Selatan, 7 buah mukim bagi Timur Laut dan 22 buah mukim bagi Barat Daya. Guna tanah bagi negeri Pulau Pinang juga merupakan salah satu data input penting bagi kaedah dasimetrik. Oleh itu, guna tanah di negeri Pulau Pinang telah dihasilkan menerusi interpretasi imej satelit Landsat tahun 2010 kepada lapan jenis guna tanah iaitu badan air, hutan, kelapa sawit, rekreasi, padi, bakau, tepu bina dan tanah lapang. Pemetaan kepadatan penduduk menggunakan kaedah koroplet dan kaedah dasimetrik dilaksanakan dan didapati bahawa kaedah dasimetrik dilihat lebih efektif dalam menggambarkan keadaan yang sebenar di lapangan (negeri Pulau Pinang) berbanding dengan kaedah koroplet yang hanya diwakili oleh satu warna sahaja dalam setiap poligon atau mukim yang terlibat, iaitu warna yang gelap (tinggi kepadatan penduduk) dan warna yang pudar (rendah kepadatan penduduk). Hasil kaedah pemetaan dasimetrik pula menunjukkan taburan penduduk adalah tidak sekata walaupun dalam satu mukim atau poligon yang sama. Secara umumnya, peta dasimetrik menghasilkan taburan spatial kepadatan penduduk mengikut nilai kesesuaian menghuni berdasarkan taburan guna tanah. |
References |
1. Bielecka, E. (2005). A dasymetric population density map of Poland. Proceedings of International Cartographic Conference, 9-15 July 2015.
2. Bowers, K., & Hirschfield, A. (1999). Exploring links between crime and disadvantage in north-west England: An analysis using geographical information systems. International Journal of Geographical Information Science, 13(2), 159-184. doi:10.1080/136588199241409.
3. Cockx, K., & Canters, F. (2015). Incorporating spatial non-stationarity to improve dasymetric mapping of population. Applied Geography, 63, 220-230.
4. Eicher, C. L., & Brewer, C. A. (2001). Dasymetric mapping and areal interpolation: Implementation and evaluation. Cartography and Geographic Information Science, 28, 125-138.
5. Fisher, P. F., & Langford, M. (1996). Modeling sensitivity to accuracy in classified imagery: A study of areal interpolation by dasymetric mapping. Professional Geographer, 48, 299-309.
6. Holloway, S. R., Schumacher, J., & Redmond, R. L. (1997). People & place: Dasymetric mapping using arc/info. Missoula: Wildlife Spatial Analysis Lab, University of Montana.
7. Holt, J. B., Lo, C. P., & Holder, T. W. (2004). Dasymetric estimation of population density and areal interpolation of census data. Cartography and Geographic Information Science, 31, 103-121.
8. Jabatan Perangkaan Malaysia. (2010). Laporan banci penduduk 2010. Putrajaya: Jabatan Perangkaan Malaysia.
9. Jia, P., Qiu, Y., & Gaughan, A. (2014). A fine-scale spatial population distribution on the high-resolution gridded population surface and application in alachua county, Florida. Applied Geography, 50, 99-107.
10. Kressler, F., & Steinnocher, K. (2009). Object-oriented analysis of image and LiDAR data and its potential for a dasymetric mapping application. Dlm. T. Balschke, S. Lang, & G. J. Hay, Object-Based Image Analysis (pp. 611-623). Berlin, Germany: Springer.
11. Lam, K. C., & Hay, A. N. (2017). Mengesan perubahan guna tanah dan litupan bumi menggunakan kaedah penderiaan jauh di daerah Miri, Sarawak. Geografi, 5(3), 84-93. Diperoleh daripada https://ejournal.upsi.edu.my/GetFinalFile.ashx?file=97d53b49-b0cd-4215-a888-c02797ce2bd2.pdf
12. Langford, M., & Higgs, G. (2006). Measuring potential access to primary healthcare services: The influence of alternative spatial representations of population. The Professional Geographer, 58(3), 294-306. doi:10.1111/j.1467-9272.2006.00569.x
13. Maantay, J. A., Maroko, A. R., & Herrmann, C. (2007). Mapping population distribution in the urban environment: The Cadestral-based Expert Dasymetric System (CEDS). Cartography and Geographic Information Science, 34, 77-102.
14. Maantay, J. A., Maroko, A. R., & Porter-Morgan, H. (2013). Research note - A new method for mapping population and understanding the spatial dynamics of disease in urban areas: Asthma in the Bronx, New York. Urban Geography, 29(7), 724–738. doi:10.2747/0272-3638.29.7.724
15. Mennis, J. (2003). Generating surface models of population using dasymetric mapping. The Professional Geographer, 55, 31-42.
16. Mennis, J., & Hultgren, T. (2006). Intelligent dasymetric mapping and its application to areal interpolation. Cartography and Geographic Information Science, 33, 179-194.
17. Mitsova, D., Esnard, A., & Li, Y. (2012). Using enhanced dasymetric mapping techniques to improve the spatial accuracy of sea level rise vulnerability assessments. Coastal Conservation, 16, 355-372.
18. Mrozinski, R. D., & Cromley. R. G. (1999). Singly-and doubly-constrained methods of areal interpolation for vector-based GIS. Transactions in GIS, 3(3), 285-301.
19. Poulsen, E., & Kennedy, L. W. (2004). Using dasymetric mapping for spatially aggregated crime data. Journal of Quantitative Criminology, 20(3), 243-262. doi:0748-4518/04/0900-0243/0
20. Sharifah Mastura Syed Abdullah. (1999). Pengenalan penderiaan jauh. Bangi: Pusat Pencerapan Bumi, Jabatan Geografi, Universiti Kebangsaan Malaysia.
21. Shepard, C. C., Agonstini, V. N., Gilmer, B., Allen, T., Stone, J., Brooks, W., & Beck, M. W. (2011). Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Natural Hazards, 60, 727-745.
22. Tapp, A. F. (2010). Areal interpolation and dasymetric mapping methods using local ancillary data sources. Cartography and Geographic Science, 37, 215-228.
23. Thatcher, C. A., Brock, J. C., & Pandleton, E. A. (2013). Economic vulnerability to sea level rise along the northern U.S. Gulf Coast. Coastal Research, 63, 234-243.
24. Wright, J. K. (1936). A method of mapping densities of population with cape code as an example. Geographic Review, 26, 103-110.
25. Xie, Z. (2006). A framework for interpolating the population surface at the residential housing-unit level. GIScience & Remote Sensing, 43, 1-19.
26. Zandbergen, P. A. (2011). Dasymetric mapping using high resolution address point datasets. Transactions in GIS, 15, 5-27. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |