UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Mohamad Syahrizal Ahmad
Additional Authors :Kan, Shieh Ting
Saripah Salbiah Syed Abdul Azziz
Khalijah Awang
Yuhanis Mhd Bakri
Mohd Azlan Nafiah
Phirdaou Abbas
Yumi Zuhanis Has-Yun Hashim
Title :Oxoaporphine alkaloids from the barks of Platymitra siamensis Craib (Annonaceae) and their cytotoxicity against MCF-7 cancer cell line
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
Study on the chemical constituents of the dichloromethane (DCM) crude extract of Platymitra siamensis Craib has led to the isolation of four oxoaporphine alkaloids. The compounds were identified as liriodenine (1), Omethylmoschatoline (2), lysicamine (3) and cepharadione-A (4) which were isolated first time from this species. The structures of the isolated compounds were elucidated based on their spectral data (1H, 13C and LCMS) and reports in the literature. Here we observed that, only alkaloid 1 exhibited obvious cytotoxic effects against MCF-7 human breast cancer cells line with IC50 value of 31.26 µM. This work is the first attempt on phytochemical and bioactivity study on the genus of Platymitra.

References

[1] Wiart C, Medicinal Plants of the Asia-Pasific: Drugs for the Future?, World Scientific Publishing Co. Pte. Ltd., Singapore 2006.

[2] Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, Abbott JR, Mols JB, Maas JW, Saunders RMK, Chase MW. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot J Linn Soc. 2012; 169(1): 5-40. [CrossRef]

[3] Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, Thomas AL. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: Implications for character evolution. Bot J Linn Soc. 2003; 142(2): 125-186. [CrossRef]

[4] The Plant List. http://www.theplantlist.org/ (accessed September 17, 2017).

[5] XTBG-Botany. http://xtbg-botany.wikispaces.com/ (accessed August 01, 2017).

[6] Priyadi H, Takao G, Rahmawati I, Supriyanto B, Ikbal Nursal W, Rahman I. Five hundred plant species in Gunung Halimun Salak National Park, West Java: A checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia 2010.

[7] Whitmore TC, Tree flora of Malaya: a manual for forester, first ed., Longman, London 1972.

[8] Hong LT, Lemmens RHMJ, Prawirohatmodjo S, Soerianegara I, Sosef MSM, Wong WC, Plant resources of South East Asia: Timber trees, first ed., Springer-Verlag Berlin Heidelberg, Netherlands 1999.

[9] Lúcio ASSC, Almeida JRGS, da-Cunha EVL, Tavares JF, Filho JMB. Chapter Five-Alkaloids of the Annonaceae: Occurrence and a compilation of their biological activities. In: Knolker HJ. (Eds). The Alkaloids: Chemistry and Biology. Elsevier, Inc., New York, 2015, pp. 233-409.

[10] GLOBOCAN. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (accessed April 11, 2018)

[11] Baguley BC, Leung E. Heterogeneity of phenotype in breast cancer cell lines. In: Gunduz M, Gunduz E. (Eds). Breast Cancer - Carcinogenesis, Cell Growth and Signalling Pathways. InTech Open Ltd., United Kingdom, 2011, pp. 245-256.

[12] Shirazi FH. Remarks in successful cellular ınvestigations for fighting breast cancer using novel synthetic compounds. In: Gunduz M, Gunduz E. (Eds). Breast Cancer – Focusing Tumor Microenvironment, Stem Cells and Metastasis. InTech Open Ltd., United Kingdom, 2011, pp. 85-102.

[13] Gest C, Joimel U, Huang L, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ, Mirshahi P, Laurent M, Fauvel-Lafève F, Cazin L, Vannier JP, Lu H, Soria J, Li H, Varin R, Soria C. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013; 13: 63- 72. [CrossRef]

[14] Chen CY, Wu HM, Chao WY, Lee CH. Review on pharmacological activities of liriodenine. Afr J Pharm Pharmacol. 2013; 7(18): 1067-1070. [CrossRef]

[15] Warthen D, Gooden EL, Jacobson M. Tumor inhibitors: Liriodenine, a cytotoxic alkaloid from Annona glabra. J Pharm Sci. 1969; 58(5): 637-638. [CrossRef]

[16] Yusof H, Din LB, Yaacob WA, Ibrahim N, Yamin BM, Latiff A. The chemical constituents of Ellipeia cuneifolia and their antibacterial activity. Sains Malays. 2015; 44(8): 1125-1128. [CrossRef]

[17] Costa EV, Pinheiro ML, de Souza AD, Barison A, Campos FR, Valdez RH, Ueda-Nakamura T, Filho BP, Nakamura CV. Trypanocidal Activity of oxoaporphine and pyrimidine-β-carboline alkaloids from the branches of Annona foetida Mart. (Annonaceae). Molecules. 2011; 16(11): 9714-9720. [CrossRef]

[18] Omar H, Hashim NM, Zaimi A, Nordin N, Abdelwahab SI, Azizan AH, Hadi AH, Ali HM. Aporphine alkaloids from the leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and their cytotoxic and antibacterial activities. Molecules. 2013; 18(8): 8994-9009. [CrossRef]

[19] Harrigan GG, Gunatilaka AAL, Kingston DGI, Chan GW, Johnson RK. Isolation of bioactive and other oxoaporphine alkaloids from two annonaceous plants, Xylopia aethiopica and Miliusa cf. banacea. J Nat Prod. 1994; 57(1): 68-73. [CrossRef]

[20] Ee GCL, Lim CM, Lim CK, Rahmani M, Shaari K, Bong CF. Alkaloids from Piper sarmentosum and Piper nigrum. Nat Prod Res. 2009; 23(15): 1416-1423. [CrossRef]

[21] Lin CF, Hwang TL, Chien CC, Tu HY, Lay HL. A new hydroxychavicol dimer from the roots of Piper betle. Molecules. 2013; 18(3): 2563-2570. [CrossRef]

[22] Chen CY, Wu YC, Annocherine C. A new C-α hydroxy benzylisoquinoline and other constituents from the leaves of Annona cherimola. J Chin Chem Soc. 2001; 48(6B): 1203-1206. [CrossRef]

[23] Wiart C, Ethnopharmacology of Medicinal Plants: Asia and the Pacific, Humana Press, Inc., USA 2006.

[24] Ee GCL, Lim SK, Lim CM, Dzulkefly K. Alkaloids and carboxylic acids from Piper nigrum. Asian J Chem. 2008; 20(8): 5931-5940.

[25] Habli Z, Toumieh G, Fatfat M, Rahal OM, Gali Muhtasib H. Alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules. 2017; 22(2): 250-271. [CrossRef]

[26] Li ZH, Gao J, Hu PH, Xiong JP. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cell through the upregulation of p53 expression. Oncol Lett. 2017; 14(2): 1979-1984. [CrossRef]

[27] Liu CM, Kao CL, Wu HM, Li WJ, Huang CT, Li HT, Chen CY. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules. 2014; 19(11): 17829-17838. [CrossRef] 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.