UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10−8–7.0 × 10−7 M (R2 = 0.9876), 1.0 × 10−6–1.0 × 10−5 M (R2 = 0.9836) and 3.0 × 10−5–3.0 × 10−4 M (R2 = 0.9827) with a limit of detection of 4.4 × 10−9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02% |
References |
1. Rosu, D.; Mustata, F.; Tudorachi, N.; Musteata, V.E.; Rosu, L.; Varganici, C.D. Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Adv. 2015, 5, 45679–45687. 2. Vom Saal, F.S.; Hughes, C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005, 113, 926–933. 3. Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosens. Bioelectron. 2012, 35, 193–199. 4. Welshons, W.V.; Thayer, K.A.; Judy, B.M.; Taylor, J.A.; Curran, E.M.; vom Saal, F.S. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ. Health Perspect. 2003, 111, 994–1006. 5. Segner, H.; Navas, J.M.; Schäfers, C.; Wenzel, A. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tets with zebrafish in vivo. Ecotoxicol. Environ. Saf. 2003, 54, 315–322. 6. Chapin, R.E.; Adams, J.; Boekelheide, K.; Gray, L.E.; Hayward, S.W.; Lees, P.S.; McIntyre, B.S.; Portier, K.M.; Schnorr, T.M.; Selevan, S.G.; et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defect Res. B 2008, 83, 157–395. 7. Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. 8. Sun, Y.; Irie, M.; Kishikawa, N., Wada, M.; Kuroda, N.; Nakashima, K. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed. Chromatogr. 2004, 18, 501–507. 9. Ferrer, E.; Santoni, E.; Vittori, S.; Font, G.; Mañes, J.; Sagratini, G. Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry in powdered milk and infant formulas. Food Chem. 2011, 126, 360–367. 10. Azzouz, A.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continous solid-phase extraction and gas chromatography-mass spectrometry. J. Pharm. Biomedic. Anal. 2016, 119, 16–26. 11. Zhuang, Y.F.; Zhou, M.; Gu, J.; Li, X.M. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A. Spectrochim. Acta A 2014, 122, 153–157. 12. Zhang, X.F.; Zhu, D.; Huang, C.P.; Sun, Y.H., Lee, Y.I. Sensitive detection of bisphenol A in complex samples by in-column molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem. J. 2015, 121, 1–5. 13. Zhang, J.; Zhao, S.Q.; Zhang, K.; Zho, J.Q. Cd-doped ZnO quantum dots-based immunoassay for the quantitative determination of bisphenol A. Chemosphere 2014, 95, 105–110. 14. Amjadi, M.; Manzoori, J.L.; Hallaj, T. A novel chemiluminescence method for determination of bisphenol A based on the carbon dot-enhanced HCO3—H2O2. J. Lumin. 2015, 158, 160–164. 15. Kaddar, N.; Bendridi, N.; Harthé, C.; de Ravel, M.R.; Bienvenu, A-L.; Cuilleron, C-Y.; Mappus, E.; Pugeat, M.; Déchaud, H. Development of radioimmunoassay for the measurement of bisphenol A in biological samples. Anal. Chim. Acta 2009, 645, 1–4. 16. Li, H.; Wang, W.; Lv, Q.; Xi, G.; Bai, H.; Zhang, Q. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochem. Commun. 2016, 68, 104–107. 17. Huang, Y.; Li, X.; Zheng, S. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe. Talanta 2016, 160, 241–246. 18. Huang, K.J.; Liu, Y.J.; Liu, Y.M.; Wang, L.L. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J. Hazard. Mater. 2014, 276, 207–215. 19. Goulart, L.A.; Mascaro, L.H. GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochim. Acta 2016, 196, 48–55. 20. Nilkahd, B.; Khalilzadeh, M.A. Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J. Mol. Liq. 2016, 215, 253–257. 21. Santana, E.R.; de Lima, C.A.; Piovesa, J.V.; Spinelli, A. An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sens. Actuators B 2017, 240, 487–496. 22. Hou, C.; Tang, W.; Zhang, C.; Wang, Y.; Zhu, N. A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochim. Acta 2014, 144, 324–331. 23. Peng, L.; Dong, S.; Xie, H.; Gu, G.; He, Z.; Lu, J.; Huang, T. Sensitive simultaneous determination of diethylstilbestrol and bisphenol A based on Bi2WO6 nanoplates modified carbon paste electrode. J. Electroanal. Chem. 2014, 726, 15–20. 24. Wardani, N.I.; Isa, I.M.; Hashim, N.; Ghani, S.A. Zinc layered hydroxide-2(3-chlorophenoxy)propionate modified multiwalled carbon nanotubes paste electrode for the determination of nanomolar levels copper(II). Sens. Actuators B 2014, 198, 243–248. 25. Isa, I.M.; Sharif, S.N.M.; Hashim, N.; Ghani, S.A. Amperometric determination of nanomolar mercury (II) by layered double nanocomposite of zinc/aluminium hydroxide-3(4-methoxyphenyl) propionate modified single-walled carbon nanotube paste electrode. Ionics 2015, 21, 2949–2958. 26. Isa, I.M.; Fasyir, M.R.; Hashim, N.; Ghani, S.A.; Bakar, S.A.; Mohamed, A.; Kamari, A. A highly sensitive mercury (II) sensor using Zn/Al layered double hydroxide-3(4-hydroxyphenyl) propionate modified multi-walled carbon nanotube paste electrode. Int. J. Electrochem. Sci. 2015, 10, 6227–6240. 27. Sharif, S.N.M.; Hashim, N.; Isa, I.M.; Ali, N.M.; Bakar, S.A.; Hussein, M.Z.; Mamat, M.; Bakar, N.A.; Mahamod, W.R.W. Preparation and characterization of novel paddy cultivation herbicide nanocomposite from zinc/aluminium layered double hydroxide and quinclorac anion. Mater. Res. Innov. 2018, 1–6, doi:10.1080/14328917.2018.1452586. 28. Concenco, G.; Silva, A.F.; Ferreira, E.A.; Galon, L.; Noldin, J.A.; Aspiazu, I.; Ferreira, F.A.; Silva, A.A. Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha 2009, 27, 541–548. 29. Sljukic, B.; Banks, C.E.; Crossley, A.; Compton, R.G. Iron (III) oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide. Electroanalysis 2006, 18, 1757–1762. 30. Keyvanfard, M.; Shakeri, R.; -Maleh, H.K.; Alizad, K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater. Sci. Eng. C 2013, 33, 811–816. 31. Zeng, Y.; Zhu, Z.; Du, D.; Lin, Y. Nanomaterial-based electrochemical biosensors for food safety. J. Electroanal. Chem. 2016, 781, 147–154. 32. D’Souza, O.J.; Mascarenhas, R.J.; Thomas, T.; Basavaraja, B.M.; Saxena, A.K.; Mukhopadhyay, K.; Roy, D. Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of paracetamol. J. Elec. Chem. 2015, 739, 49–57. 33. Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.; Mundo, F.R.D.; Advincula, R.C. Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A. Macromoleculec 2011, 44, 6669–6682. 34. Su, B.; Shao, H.; Li, N.; Chen, X.; Chai, Z.; Chen, X. A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 2017, 166, 126–132. 35. Osteryoung, J.G.; Osteryoung, R.A. Square-wave voltammetry. Anal. Chem. 1985, 57,101A-102A. 36. Dong, X.; Qi, X.; Liu, N.; Yang, Y.; Piao, Y. Direct electrochemical detection of bisphenol A using a highly conductive graphite nanoparticles film electrode. Sensors 2017, 17, 836. 37. Cosio, M.S.; Pellicano, A.; Brunetti, B.; Fuenmayor, C.A. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sens. Actuators B 2017, 246, 673–679. 38. Ghanam, A.; Lahcen, A.A.; Amine, A. Electroanalytical determination of bisphenol A: Investigation of electrode surface fouling using various carbon materials. J. Electroanal. Chem. 2017, 789, 58–66. 39. Zhan, T.; Song, Y.; Li, X.; Hou, W. Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Mater. Sci. Eng. C 2016, 64, 354–361. 40. Zhan, T.; Song, Y.; Tan, Z.; Hou, W. Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sens. Actuators B 2017, 238, 962–971. 41. Zhou, Y.; Yang, L.; Li, S.; Dang, Y. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens. Actuators B 2017, 245, 238–246. 42. Messaoud, N.B.; Ghica, M.E. Dridi, C.; Ali, M.B.; Brett, C.M.A. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B 2017, 253, 513–522. 43. Shim, K.; Kim, J.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M.S.A.; Kim, J.H. Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic nanoparticles on screen-printed carbon electrode. Sens. Actuators B 2017, 255, 2800–2808. 44. Hu, X.; Feng, Y.; Wang, H.; Zhao, F.; Zeng, B. A novel bisphenol A electrochemical sensor based on a molecularly imprinted polymer/carbon nanotubes-Au nanoparticles/boron-doped ordered mesoporous carbon composite. Anal. Methods 2018, 10, 4543–4548. 45. Koyun, O.; Gorduk, S.; Gencten, M.; Sahin, Y. A novel copper (II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New J. Chem. 2019, 43, 85–92. 46. Shi, R.; Yuan, X.; Liu, A.; Xu, M.; Zhao, Z. Determination of bisphenol A in beverages by an electrochemical sensor based on Rh2O3/reduced grapheme oxide composites. Appl. Sci. 2018, 8, 2535–2545. 47. Messaoud, N.B.; Lahcen, A.A.; Dridi, C.; Amine, A. Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of bisphenol A. Sens. Actuators B 2018, 276, 304–312. 48. Butmee, P.; Tumcharern, G.; Saejueng, P.; Stankovic, D.; Ortner, A.; Jitcharoen, J.; Kalcher, K.; Samphao, A. A direct and sensitive electrochemical sensing platfor baed on ionic liquid functionalized grapheme nanoplatelets for the detection of bisphenol A. J. Electroanal. Chem. 2019, 833, 370–379.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |