UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :TA Engineering (General). Civil engineering (General)
Main Author :Siti Tasnim Mahamud
Title :Hubung kait penilaian kualiti imej digital dengan kualiti peruasan dalam kegunaan penglihatan komputer
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2017
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Bidang peruasan imej merupakan salah satu komponen yang kritikal di dalam kebanyakan aplikasi penglihatan komputer dan sistem dapatan kembali maklumat. Peruasan biasanya digunakan untuk memisahkan imej ke dalam kawasan yang mempunyai kepentingan semantik, sekaligus menyediakan maklumat tertinggi pada proses seterusnya mengenai struktur imej tersebut. Walau bagaimanapun, kaedah peruasan sedia ada mempunyai masalah dalam menghasilkan peruasan yang sempurna bagi sesetengah keadaan imej. Keadaan kualiti imej yang digunakan semasa proses peruasan merupakan faktor yang dikenalpasti berdasarkan kajian ini. Oleh itu, matlamat kajian adalah untuk melihat hubungan yang terdapat pada kualiti imej dengan keberkesanan kaedah peruasan dalam memisahkan objek yang dipilih daripada latar belakang imej dengan sempurna. Terdapat dua fasa utama di dalam pembangunan kajian ini iaitu penilaian kualiti imej digital dan penggunaan algoritma peruasan interaktif. Penilaian Kualiti Imej Digital (PKID) digunakan untuk mengukur kualiti imej dengan menggunakan empat metrik yang dipilih. Kemudian, hasil peruasan yang menggunakan empat peruasan interaktif diukur kualiti peruasannya dengan pengukuran ketepatan sempadan dan objek. Akhir sekali, hubungan sekaitan di antara skor kualiti imej dengan kualiti hasil peruasan dinilai bagi melihat sama ada kualiti imej benar-benar memainkan peranan penting semasa proses peruasan imej. Analisis daripada keputusan kajian ini menunjukkan algoritma peruasan menghasilkan prestasi yang baik pada imej yang mempunyai skor PKID yang sederhana. Namun demikian, kualiti hasil peruasan terus merosot apabila kualiti imej semakin teruk terutamanya bagi imej yang mempunyai degradasi jenis hingar dan mampatan Joint Photographic Experts Group (JPEG). Dapatan ini menunjukkan masalah yang biasa dihadapi semasa proses peruasan dan hal ini mendorong kepada cadangan kajian pada masa akan datang yang melibatkan pembenaman sistem PKID ke dalam aplikasi-aplikasi yang menggunakan peruasan dalam kegunaan penglihatan komputer.

References

Abbadi, N. K. El, Abdul, A., & Qazzaz, A. (2015). Detection and segmentation of

human face. International Journal of Advanced Research in Computer and

Communication Engineering, 4(2), 90–94.

 

Achanta, R. (2011). Finding objects of interest in images using saliency and

superpixels. EPFL, 4908.

 

Adamek, T. (2006). Using contour information and segmentation for object

registration, modeling and retrieval. Electronic Engineering. Dublin City

University.

 

Adams, R., & Bischof, L. (1994). Seeded region growing. Transactions on Pattern

Analysis and Machine Intelligence, 16(6), 641–647.

 

Ballard, D. H., & Brown, C. M. (1982). Computer vision. Englewood Cliffs, NJ:

Prenice-Hall.

 

Bentley, J. L. (1975). Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9), 509–517.

 

Bevilacqua, A., & Bevilacqua, R. (2002). Effective object segmentation in a traffic

monitoring application. Indian Conference on Computer Vision, Graphics and

Image Processing, (pp. 125–130).

 

Bezdek, J. C., Hall, L. O., & Clarke, L. (1993). Review of MR image segmentation

techniques using pattern recognition. Medical Physics, 20(4), 1033–1048.

 

Bhattacharyya, S., & Dutta, P. (2012). Handbook of Research on Computational

Intelligence for Engineering, Science, and Business (Vol. I). IGI Global.

 

Boykov, Y. Y., & Jolly, M.P. (2001). Interactive graph cuts for optimal boundary &

region segmentation of objects in ND images. Proceedings Eighth IEEE

International Conference on Computer Vision. ICCV 2001, 1(July), 105-112.

 

?adík, M., Herzog, R., Mantiuk, R., Myszkowski, K., & Seidel, H.-P. (2012). New

measurements reveal weaknesses of image quality metrics in evaluating

graphics artifacts. Proceedings of the 5th ACM SIGGRAPH Conference on

Computer Graphics and Interactive Techniques in Asia, 1–10.

 

Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours.

International Journal of Computer Vision, 22(1), 61–79.

 

Chandler, D. M. (2013). Seven challenges in image quality assessment: past, present,

and future research. ISRN Signal Processing, 2013, 1–53.

 

Chandler, D. M., & Larson, E. C. (2010). Most apparent distortion: full-reference

image quality assessment and the role of strategy. Journal of Electronic

Imaging, 19(1), 11006.

 

Chen, M. J., & Bovik, A. C. (2011). Fast structural similarity index algorithm.

Journal of Real-Time Image Processing, 6, 281–287.

 

Cheng, M. M., Mitra, N. J., Huang, X., Torr, P., & Hu, S. M. (2014). Salient object

detection and segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 409–416.

 

Chetouani, A., Beghdadi, A., & Deriche, M. (2010). Image distortion analysis and

classification scheme using a neural approach. Visual Information Processing

(EUVIP), 2010 2nd European Workshop, 183–186.

 

Cooray, S. (2003). Semi-automatic Video Object Segmentation for Multimedia

Applications. Dublin City University.

 

Cormen, T. H. (2009). Introduction to algorithms. MIT press.

Definition of a Digital Image. (n.d.). Diambil pada Februari 12, 2016, daripada

https://www.bowdoin.edu/dam/digimage/index.shtml

 

Digital Image. (n.d.). Diambil pada Februari 12, 2016, daripada

http://support.esri.com/other-resources/gis-dictionary/term/digital image

 

Dumic, E., Grgic, S., & Grgic, M. (2014). IQM2 - New image quality measure based

on steerable pyramid wavelet transform and structural similarity index. Signal,

Image and Video Processing, 8(6), 1159–1168.

 

Egiazarian, K., Astola, J., Ponomarenko, N., Lukin, V., Battisti, F., & Carli, M.

(2006). A New Full-Reference Quality Metrics based on HVS, Proceedings of

the Second International Workshop on Video Processing and Quality Metrics

(Vol. 4, pp. 2–5).

 

Estrada, F. J., & Jepson, A. D. (2009). Benchmarking image segmentation algorithms.

International Journal of Computer Vision, 85(2), 167–181.

 

Falcão, A. X., Udupa, J. K., & Miyazawa, F. K. (2000). An ultra-fast user-steered

image segmentation paradigm: Live wire on the fly. IEEE Transactions on

Medical Imaging, 19(1), 55–62.

 

Fan, J., Yau, D. K., Elmagarmid, A. K., & Aref, W. G. (2001). Automatic image

segmentation by integrating color-edge extraction and seeded region growing.

IEEE Transactions on Image Processing, 10(10), 1454–1466.

 

Friedland, G., Jantz, K., & Rojas, R. (2005). SIOX: Simple interactive object

extraction. Multimedia, Seventh IEEE International Symposium On. IEEE, (pp.

253–260).

 

Gao, X., Wang, T., & Li, J. (2005). A content-based image quality metric.

International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and

Granular-Soft Computing, (pp. 231–240). Springer Berlin Heidelberg.

 

Ge, F., Wang, S., & Liu, T. (2007). New benchmark for image segmentation

evaluation. Journal of Electronic Imaging, 16(3), 33011.

 

Glasbey, C. A., & Horgan, G. W. (1995). Image Analysis for the Biological Science

(Vol. 1). Chichester: Wiley.

 

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing. Prentice Hall.

 

Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori

estimation for binary images. Journal of the Royal Statistical Society. Series B

(Methodological), 51(2), 271–279.

 

Gupta, R., Bansal, D., & Singh, C. (2014). A Survey on Various Objective Image

Quality Assessment Techniques, 7, 99–104.

 

He, L., Gao, F., Hou, W., & Hao, L. (2013). Objective image quality assessment: A

survey. International Journal of Computer Mathematics, (March 2014), 1–15.

 

Hildebrandt, P. W., Hutchinson, I. G., Wilson, S. E., Williams, G. L., Mintz, J.,

Brown, S. G., … Dunn, M. H. (2008). Visual communication system. U.S.

Patent No. 7,427,983. Washington, DC: U.S. Patent and Trademark Office.

 

Huang, T. (1996). Computer Vision: Evolution And Promise. 19th CERN School of

Computing, 21–25.

 

Ilushkina, N., & Avdeev, O. (n.d.). Image Quality Measures for Wavelet-Based

Compression Algorithm. Diambil pada Mac 2, 2015, daripada

http://ticsp.cs.tut.fi/images/e/e0/Cr1036.pdf?

 

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for

rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(11), 1254–1259.

 

Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A

review. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(1), 4–37.

 

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour model.

International Journal on Computer Vision, 1, 321–331.

 

Larson, E. C., & Chandler, D. M. (2008). Unveiling relationships between regions of

interest and image fidelity metrics. Electronic Imaging 2008, (pp. 68222A–

68222A–16). International Society for Optics and Photonics.

 

Lehman, A. (2005). JMP for Basic Univariate and Multivariate Statistics: A Step-by-

Step Guide. SAS Institute Inc., Cary, NC, 481.

 

Li, C., & Bovik, A. (2009). Three-component weighted structural similarity index.

IS&T/SPIE Electronic Imaging, 1(1), 1–9.

 

Li, Y., Sun, J., Tang, C.K., & Shum, H.Y. (2004). Lazy snapping. ACM Transactions

on Graphics, 23(3), 303.

 

Li-Baboud, Y.-S., Cardone, A., Chalfoun, J., Bajcsy, P., & Elliott, J. (2013).

Understanding the Impact of Image Quality on Segmentation Accuracy. SPIE

Newsroom, 4–6.

 

Liu, A., Lin, W., Member, S., & Narwaria, M. (2012). Image Quality Assessment

Based on Gradient Similarity, 21(4), 1500–1512.

 

Lukin, V. V., Ponomarenko, N. N., Krivenko, S. S., Egiazarian, K. O., & Astola, J. T.

(2008). Image Filter Effectiveness Characterization Based on HVS, Electronic

Imaging 2008, 68140Z-68140Z. International Society for Optics and Photonics

 

Maintz, T. (2005). Digital and Medical Image Processing. Universiteit Utrecht.

Diambil daripada http://www.cs.uu.nl/docs/vakken/ibv/reader/chapter10.pdf

 

Mannan, F. (n.d.). Interactive Image Segmentation. Diambil daripada

http://www.cs.mcgill.ca/~fmanna/ecse626/InteractiveImageSegmentation_Repo

rt.pdf

 

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. Proceedings Eighth IEEE International

Conference on Computer Vision. ICCV 2001, 2(July), 416–423.

 

McGuinness, K., & O’Connor, N. E. (2011). Toward automated evaluation of

interactive segmentation. Computer Vision and Image Understanding, 115(6),

868–884.

 

Mehnert, A., & Jackway, P. (1997). An improved seeded region growing algorithm.

Pattern Recognition Letters, 18(10), 1065–1071.

 

Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality

assessment in the spatial domain. Image Processing, IEEE Transactions,

21(12), 4695–4708.

 

Mohammadi, P. (2014). Subjective and Objective Quality Assessment of image: A

survey. arXiv Preprint, (June), 1–50

 

Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: From natural

scene statistics to perceptual quality. IEEE Transactions on Image Processing,

20(12), 3350–3364.

 

Morris, O. J., Lee, M. de J., & Constantinides, A. G. (1986). Graph theory for image

analysis: an approach based on the shortest spanning tree. Communications,

Radar and Signal Processing, IEEE Proceedings F, 133(2), 146–152.

 

Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual

search. Nature, 434(7031), 387–91.

 

Ning, J., Zhang, L., Zhang, D., & Wu, C. (2009). Interactive image segmentation by

maximal similarity based region merging. Pattern Recognition, 43(2), 445–456.

Olabarriaga, S. D., & Smeulders, A. W. (2001). Interaction in the segmentation of

medical images: A survey. Medical Image Analysis, 5(2), 127–142.

 

Pappas, T. N., Safranek, R. J., & Chen, J. (2005). Perceptual criteria for image quality

evaluation. Handbook of Image and Video Processing, 908, 939–959.

 

Pearson, K. (1895). Note on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58, 240–242.

 

Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., & Lukin, V. (2009). Metrics

performance comparison for color image database. Proc. Fourth International

Workshop on Video Processing and Quality Metrics for Consumer Electronics

(Vol. 27).

 

Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., & Carli, M. (2011).

Modified image visual quality metrics for contrast change and mean shift

accounting. CAD Systems in Microelectronics (CADSM), 2011 11th

International Conference The Experience of Designing and Application, 305-

311.

 

Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., … Kuo,

C. J. (2015). Image database TID2013 : Peculiarities , results and perspectives.

Signal Processing : Image Communication, 30, 57–77.

 

Ponomarenko, N., Krivenko, S., & Egiazarian, K. (2010). Weighted MSE based

metrics for characterization of visual quality of image denoising methods.

Proceedings of the 8th International Workshop on Video Processing and

Quality Metrics for Consumer Electronics (VPQM'14).

 

Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Astola, J., Carli, M., &

Battisti, F. (2009). TID2008 – A database for evaluation of full-reference visual

quality assessment metrics. Advances of Modern Radioelectronics, 10(4), 30-45.

 

Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image

Denoising using Scale Mixtures of Gaussians in the Wavelet Domain. IEEE

Transactions on Image Processing, 12(11), 1338–1351.

 

Protiere, A., & Sapiro, G. (2007). Interactive image segmentation via adaptive

weighted distances. IEEE Transactions on Image Processing, 16(4), 1046–

1057.

 

Rofsky, N. M. (2015). The importance of image quality: In the eyes of the beholder?

Journal of Magnetic Resonance Imaging, 41(4), 861–865.

 

Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: Interactive foreground

extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3),

309.

 

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a

metric for image retrieval. International Journal of Computer Vision, 40(2), 99–

121.

 

Saad, M. A., Bovik, A. C., & Charrier, C. (2012). Blind image quality assessment: A

natural scene statistics approach in the DCT domain. IEEE Trans. Image

Processing, 21(8), 3339–3352.

 

Salembier, P., & Garrido, L. (2000). Binary partition tree as an efficient

representation for image processing, segmentation, and information retrieval.

IEEE Transactions on Image Processing, 9(4), 561–576.

 

Shapiro, L., & Stockman, G. (2001). Computer Vision. Prentice Hall.

 

Sharma, N., & M. Aggarwal, L. (2010). Automated medical image segmentation

techniques. Journal of Medical Physics, 35(1), 3.

 

Sheikh, H. R., Sabir, M. F., & Bovik, A. C. (2006). A statistical evaluation of recent

full reference image quality assessment algorithms. IEEE Transactions on

Image Processing : A Publication of the IEEE Signal Processing Society,

15(11), 3440–51.

 

Shi, R., Ngan, K. N., & Li, S. (2013). The objective evaluation of image object

segmentation quality. Advanced Concepts for Intelligent Vision Systems, Acivs

2013, (pp. 470–479).

 

Shi, R., Ngan, K. N., Li, S., Paramesran, R., & Li, H. (2015). Visual quality

evaluation of image object segmentation: subjective assessment and objective

measure. IEEE Transactions on Image Processing, 24(12), 5033–5045.

 

Singh, P., & Chandler, D. M. (2013). F-MAD: A feature-based extension of the most

apparent distortion algorithm for image quality assessment. IS&T/SPIE

Electronic Imaging, 86530I-86530I. International Society for Optics and

Photonics.

 

Sless, D. (1981). Learning and visual communication. London: Croom Helm.

 

Soundararajan, R., & Bovik, A. C. (2013). Survey of information theory in visual

quality assessment. Signal, Image and Video Processing, 7(3), 391–401.

 

Sprawls, P. (1995). Image characteristics and quality. The Physical Principles of

Medical Imaging (Online Textbook). Diambil pada Januari 21, 2016 daripada

http://www. sprawls. org/ppmi2/IMAGCHAR/(accessed on August 2, 2010).

 

Sykes, A. O. (2007). An introduction to regression analysis. American Statistician,

61(1), 101–101.

 

Tang, H., & Joshi, N. (2011). Learning a blind measure of perceptual image quality.

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference, 1,

305–312.

 

Thung, K., & Raveendran, P. (2009). A survey of image quality measures. Technical

Postgraduates (TECHPOS), 2009 International Conference for IEEE, 1–4.

 

Tong, Y., Konik, H., Cheikh, F., & Tremeau, A. (2010). Full Reference Image Quality

Assessment Based On Saliency Map Analysis. Journal of Imaging Science and

Technology, 54(3), 30501–30503.

 

Tseng, L. Y., & Yang, S. B. (2001). A genetic approach to the automatic clustering

problem. Pattern Recognition, 34(2), 415–424.

 

Wang, Z., & Bovik, A. C. (2002). A universal image quality index. Signal Processing

Letter, IEEE, 9(3), 81–84.

 

Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis

Lectures on Image, Video, and Multimedia Processing, 2(1), 1-156.

 

Wang, Z., & Li, Q. (2011). Information content weighting for perceptual image

quality assessment. IEEE Transactions on Image Processing : A Publication of

the IEEE Signal Processing Society, 20(5), 1185–98.

 

Wang, Z., Bovik, A. C., & Lu, L. (2002). Why is Image Quality Assessment So

Difficult?. Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE

International Conference, (Vol.4, pp. IV-3313).

 

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality

assessment: From error visibility to structural similarity. IEEE Transactions on

Image Processing : A Publication of the IEEE Signal Processing Society, 13(4),

600–12.

 

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multi-scale Structural Similarity

for Image Quality Assessment. In IEEE Asilomar Conference on Signals,

Systems and Computers (Vol. 2, pp. 9–13).

 

Wyszecki, G., & Styles, W. G. (2000). Colour Science: Concepts and methods,

quantitative data and formulae (Edisi ke-2). Wiley.

 

Yang, S., & Mitra, S. (2005). Statistical and adaptive approaches for optimal

segmentation in medical images. Handbook of Biomedical Image Analysis, 267–

314.

 

Yang, Y. H., Buckley, M. J., Dudoit, S., & Speed, T. P. (2002). Comparison of

methods for image analysis on cDNA microarray data. Journal of

Computational and Graphical Statistics, 11(1), 108–136.

 

Yau, C. (2013). R Tutorial with Bayesian Statistics Using OpenBUGS.

 

Ye, P., & Doermann, D. (2012). No-reference image quality assessment using visual

codebooks. IEEE Transactions on Image Processing : A Publication of the

IEEE Signal Processing Society, 21(7), 3129–38.

 

Yuan, T., Zheng, X., Hu, X., Zhou, W., & Wang, W. (2014). A method for the

evaluation of image quality according to the recognition effectiveness of objects

in the optical remote sensing image using machine learning algorithm. PloS

One, 9(1), e86528.

 

Zadeh, L. (1978). Fuzzy Sets as a Basis for Possibility. Fuzzy Sets and Systems, (Vol.

1, pp. 3–28).


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)