UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :RA0421 Public health. Hygiene. Preventive Medicine
Main Author :Nurul Fadhilah Binti Abdullah
Title :Lipid metabolism links nutrient-exercise timing to insulin sensitivity in men classified as overweight or obese
Place of Production :Tanjong Malim
Publisher :Fakulti Sains Sukan dan Kejurulatihan
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Context: Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. Objective: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization, and postprandial glucose metabolism. Design: 1) Acute, randomised, crossover design (Acute Study); 2) 6-week, randomised, controlled design (Training Study). Setting: General community. Participants: Men with overweight/obesity (mean±SD, BMI: 30.2±3.5 kg?m-2 for Acute Study, 30.9±4.5 kg?m-2 for Training Study). Interventions: Moderate-intensity cycling performed before versus after mixedmacronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion. Results: Acute Study - exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44±2.63% versus 1.44±4.18% area lipid staining, p < 0.01) and type II fibres (-1.89±2.48% versus 1.83±1.92% area lipid staining, p < 0.05). Training Study - postprandial glycemia was not differentially affected by 6-weeks of exercise training performed before versus after carbohydrate intake (p>0.05). However, postprandial insulinemia was reduced with exercise training performed before, but not after carbohydrate ingestion (p=0.03). This resulted in increased oral glucose insulin sensitivity (25±38 vs -21±32mL?min-1?m-2 ; p=0.01), associated with increased lipid utilization during exercise (r=0.50, p=0.02). Regular exercise before nutrient provision also augmented remodelling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (p

References

1. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulindependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149-155.

2. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-1607.

3. Tricò D, Natali A, Arslanian S, Mari A, Ferrannini E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight. 2018;3(24):Epub: doi: 10.1172/jci.insight.124912.

4. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523- 1529.

5. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96(11):E1756-E1760.

6. Borghouts L, Keizer H. Exercise and insulin sensitivity: a review. Int J Sports Med. 2000;21(1):1-12.

7. Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in metabolic disease. Curr Opin Physiol. 2019;Epub: https://doi.org/10.1016/j.cophys.2019.04.008.

8. Lund S, Pryor PR, Ostergaard S, Schmitz O, Pedersen O, Holman GD. Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle. FEBS Lett. 1998;425(3):472-474.

9. Geiger PC, Han DH, Wright DC, Holloszy JO. How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab. 2006;291(6):E1258-1263.

10. Hansen PA, Wang W, Marshall BA, Holloszy JO, Mueckler M. Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUT1 in skeletal muscle. J Biol Chem. 1998;273(29):18173-18179.

11. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831-838.

12. O'Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D, Glund S, Chibalin AV, Zierath JR, Nolan JJ. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia. 2006;49(12):2983-2992.

13. Andersson A, Sjo?din A, Olsson R, Vessby B. Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am J Physiol Endocrinol Metab. 1998;274(3):432-438.

14. Helge JW, Dela F. Effect of training on muscle triacylglycerol and structural lipids: a relation to insulin sensitivity? Diabetes. 2003;52(8):1881-1887

15. de Lannoy L, Clarke J, Stotz PJ, Ross R. Effects of intensity and amount of exercise on measures of insulin and glucose: Analysis of inter-individual variability. PloS one. 2017;12(5):e0177095.

16. Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100(6):577-588.

17. Chen Y-C, Travers RL, Walhin J-P, Gonzalez JT, Koumanov F, Betts JA, Thompson D. Feeding influences adipose tissue responses to exercise in overweight men. Am J Physiol Endocrinol Metab. 2017;313(1):84-93.

18. Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA, Thompson D, Walhin J-P, Wallis GA, Hamilton DL, Stevenson EJ, Tipton KD, Gonzalez J. Pre-Exercise Breakfast Ingestion versus Extended Overnight Fasting Increases Postprandial Glucose Flux after Exercise in Healthy Men. Am J Physiol Endocrinol Metab. 2018;315(5):1062-1074.

19. Gonzalez JT, Veasey RC, Rumbold PL, Stevenson EJ. Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr. 2013;110(4):721-732.

20. Wallis GA, Gonzalez JT. Is exercise best served on an empty stomach? Proc Nutr Soc. 2019;78(1):110-117.

21. De Bock K, Richter EA, Russell A, Eijnde BO, Derave W, Ramaekers M, Koninckx E, Leger B, Verhaeghe J, Hespel P. Exercise in the fasted state facilitates fibre type?specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol. 2005;564(2):649-660.

22. Cluberton LJ, McGee SL, Murphy RM, Hargreaves M. Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. J Appl Physiol. 2005;99(4):1359-1363.

23. Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab. 2005;289(6):1023-1029.

24. Stocks B, Dent JR, Ogden HB, Zemp M, Philp A. Postexercise skeletal muscle signaling responses to moderate-to high-intensity steady-state exercise in the fed or fasted state. Am J Physiol Endocrinol Metab. 2018;316(2):230-238.

25. Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, Van Veldhoven PP, Hespel P. Training in the fasted state improves glucose tolerance during fat?rich diet. J Physiol. 2010;588(21):4289-4302.

26. Burke LM, Hawley JA. Swifter, higher, stronger: What’s on the menu? Science. 2018;362(6416):781-787.

27. Gonzalez JT, Richardson JD, Chowdhury EA, Koumanov F, Holman GD, Cooper S, Thompson D, Tsintzas K, Betts JA. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults. J Physiol. 2018;596(4):609-622.

28. Wallis GA, Gonzalez JT. Is exercise best served on an empty stomach? Proc Nutr Soc. 2018;78(1):110-117.

29. Farah NM, Gill JM. Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men. Br J Nutr. 2013;109(12):2297-2307.

30. Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity. 2013;21(11):2249-2255.

31. FAO. Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation, Rome, 17-24 October 2001. http://wwwfaoorg/3/y5686e/y5686e07htm#bm073. 2004.

32. Borg G. Perceived exertion: a note on 'history' and methods. Med Sci Sports Exerc. 1973;5(2):90-93.

33. Brouns F, Bjorck I, Frayn K, Gibbs A, Lang V, Slama G, Wolever T. Glycaemic index methodology. Nutr Res Rev. 2005;18(1):145-171.

34. Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell MI, Cermak NM, Van Loon LJ. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab. 2015;309(12):1032-1039.

35. Fletcher G, Eves FF, Glover EI, Robinson SL, Vernooij CA, Thompson JL, Wallis GA. Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am J Clin Nutr. 2017;105(4):864-872.

36. Edinburgh R, Hengist A, Smith HA, Betts JA, Thompson D, Walhin J-P, Gonzalez JT. Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. Br J Nutr. 2017;117(10):1414-1421.

37. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Group EAW. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881-903.

38. Frayn K. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55(2):628-634.

39. Jeukendrup A, Wallis G. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(1):28-37.

40. Thompson D, Batterham AM, Bock S, Robson C, Stokes K. Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J Nutr. 2006;136(4):1037-1042.

41. Villars C, Bergouignan A, Dugas J, Antoun E, Schoeller DA, Roth H, Maingon A-C, Lefai E, Blanc S, Simon C. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. J Appl Physiol. 2012;113(11):1763-1771.

42. Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U, Wareham NJ. Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PloS one. 2015;10(9):Epub: https://doi.org/10.1371/journal.pone.0137206.

43. Mari A, Pacini G, Brazzale AR, Ahrén B. Comparative evaluation of simple insulin sensitivity methods based on the oral glucose tolerance test. Diabetologia. 2005;48(4):748-751.

44. Edinburgh R, Bradley H, Abdullah N, Robinson S, Chrzanowski-Smith O, Walhin J, Joanisse S, Manolopoulos K, Philp A, Hengist A, Chabowski A, Brodsky F, Koumanov F, Betts J, Thompson D, Wallis G, Gonzalez J. Dataset for "Lipid metabolism links nutrient-exercise timing to insulin sensitivity in overweight men". University of Bath Research Data Archive https://doi.org/1015125/BATH-00672. 2019.

45. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(23):4795-4810.

46. Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor δ. Pharmacol Rev. 2009;61(3):373-393.

47. Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 2005;19(8):986-988.

48. Polonsky KS, Rubenstein AH. C-peptide as a measure of the secretion and hepatic extraction of insulin: pitfalls and limitations. Diabetes. 1984;33(5):486-494.

49. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24(3):539-548.

50. Brinkmann C, Weh-Gray O, Brixius K, Bloch W, Predel HG, Kreutz T. Effects of exercising before breakfast on the health of T2DM patients - A randomized controlled trial. Scand J Med Sci Sport.10.1111/sms.13543.

51. Bergman BC, Brooks GA. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol. 1999;86(2):479-487.

52. Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia. 1994;37(10):1044-1050.

53. Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B. Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol. 2001;90(2):670-677.

54. Bergouignan A, Trudel G, Simon C, Chopard A, Schoeller DA, Momken I, Votruba SB, Desage M, Burdge GC, Gauquelin-Koch G. Physical inactivity differentially alters dietary oleate and palmitate trafficking. Diabetes. 2009;58(2):367-376.

55. Lefai E, Blanc S, Momken I, Antoun E, Chery I, Zahariev A, Gabert L, Bergouignan A, Simon C. Exercise training improves fat metabolism  independent of total energy expenditure in sedentary overweight men, but does not restore lean metabolic phenotype. Int J Obes. 2017;41(1):1728-1736.

56. Handschin C, Spiegelman BM. Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism. Endocrine Rev. 2006;27(7):728-735.

57. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115-124.

58. Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2+. Am J Physiol Endocrinol Metab. 2002;282(5):1008-1013.

59. Frøsig C, Jørgensen SB, Hardie DG, Richter EA, Wojtaszewski JF. 5′-AMPactivated protein kinase activity and protein expression are regulated byendurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(3):411-417.

60. Friedrichsen M, Mortensen B, Pehmøller C, Birk JB, Wojtaszewski JF. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol. 2013;366(2):204-214.

61. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017.

62. Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J. Improvement of Insulin Action in Diabetic Transgenic Mice Selectively Overexpressing GLUT4 in Skeletal Muscle. Diabetes. 1996;45(1):23-27.

63. Watt MJ, Holmes AG, Pinnamaneni SK, Garnham AP, Steinberg GR, Kemp BE, Febbraio MA. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab. 2006;290(3):E500-E508.

64. Wojtaszewski JF, Birk JB, Frøsig C, Holten M, Pilegaard H, Dela F. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol. 2005;564(Pt 2):563-573.

65. Hansen PA, Nolte LA, Chen MM, Holloszy JO. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol. 1998;85(4):1218-1222.

66. Fisher JS, Gao J, Han D-H, Holloszy JO, Nolte LA. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab. 2002;282(1):E18-E23.

67. Vassilopoulos S, Esk C, Hoshino S, Funke BH, Chen C-Y, Plocik AM, Wright WE, Kucherlapati R, Brodsky FM. A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science. 2009;324(5931):1192-1196.

68. Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph AP, Abi-Rache L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife. 2019;8.

69. Dannhauser PN, Camus SM, Sakamoto K, Sadacca LA, Torres JA, Camus MD, Briant K, Vassilopoulos S, Rothnie A, Smith CJ, Brodsky FM. CHC22 and CHC17 clathrins have distinct biochemical properties and display differential regulation and function. J Biol Chem. 2017;292(51):20834-20844.

70. Weijers R. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diab Rev. 2012;8(5):390-400.

71. Apostolopoulou M, Strassburger K, Herder C, Knebel B, Kotzka J, Szendroedi J, Roden M. Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia. 2016;59(10):2203-2207.

72. Chowdhury EA, Richardson JD, Holman GD, Tsintzas K, Thompson D, Betts JA. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults. Am J Clin Nutr. 2016;103(3):747-756.

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)