UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This research aimed to modify and examine the role of new graphene-compatible
surfactants and the mechanism in the stabilisation of graphene incorporated into
biopolymer matrix namely natural rubber latex (NRL) and cellulose for the
preparation of conductive nanocomposites. The surfactants were systematically
designed and synthesised to have enhanced compatibility with graphene as compared to commercially
available common surfactants. The modifications are centred on variation of surfactant
chain degree as well as aromatic numbers on surfactant tail, aromatisation on surfactant
headgroup, ion exchange of hydrophilic headgroup, and metal incorporation on surfactant
headgroup. The graphene-compatible surfactants have been investigated by a range of
techniques including proton nuclear magnetic resonance (¹H NMR) spectroscopy, air – water
(a/w) surface tension measurement, and zeta potential measurement. The performance of the
synthesised surfactants for the dispersion of graphene in biopolymer was studied by field
emission scanning electron microscopy (FESEM), high-resolution transmission electron
microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). The electrical
conductivities of the nanocomposites were also measured using four point probe
measurement. The aggregated structures of surfactants in aqueous phase and in graphene
dispersion were examined using small-angle neutron scattering (SANS) analysis. Research
finding showed that aromatisation is a crucial factor influencing surfactant compatibility with
graphene surfaces where the intensity is enhanced with increasing the number of aromatic
groups on surfactant molecular structure. The synthesised surfactants exhibit more uniform
dispersion of graphene compared to commercial surfactants used in this study. The
highest electrical conductivity achieved for nanocomposite with NRL was 1.08 x 10?² S cm?¹
while for cellulose was
2.71 x 10?? S cm?¹. Analysis using SANS showed that the most efficient surfactants for both
nanocomposites exhibited micelle shape similar with graphene which are stacked-disk and
layered structure. In conclusion, the presence of higher aromatic groups in the
surfactant structure gives rise to relative graphene-compatibility and thus the
nanocomposites final properties. In implication, the results obtained are beneficial for
the development efficient surfactants for carbon nanomaterial and low-
dimensional nanomaterial based technology.
|
References |
Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 7(16), 6944- 6956.
Abdul Khalil, H. P. S., Alwani, M. S., & Omar, A. K. M. (2007). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220-232.
Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.
Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate polymers, 99, 649-665.
Abdul Khalil, H. P. S., Ireana Yusra, A. F., Bhat, A. H., & Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.
Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H., & Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.
Adamczyk, Z., Para, G., & Warszy?ski , P. (1999). Influence of ionic strength on surface tension of cetyltrimethylammonium bromide. Langmuir, 15(24), 8383- 8387.
Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites-a review. Carbohydrate polymers, 198, 249-260.
Aguilar-Bolados, H., Brasero, J., Lopez-Manchado, M. A., & Yazdani-Pedram, M. (2014). High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Composites Part B: Engineering, 67(0), 449-454.
Alanyal?o?lu, M., Segura, J. J., Oró-Solè, J., & Casañ-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon, 50(1), 142-152.
Alexander, S., Smith, G. N., James, C., Rogers, S. E., Guittard, F., Sagisaka, M., & Eastoe, J. (2014). Low surface energy surfactants with branched hydrocarbon architectures. Langmuir, 30(12), 3413–3421.
Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1-2), 1-63.
Alila, S., Boufi, S., Belgacem, M. N., & Beneventi, D. (2005). Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir, 21(18), 8106-8113.
Alqus, R., Eichhorn, S. J., & Bryce, R. A. (2015). Molecular dynamics of cellulose amphiphilicity at the graphene-water interface. Biomacromolecules, 16(6), 1771-1783.
An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K. M., Washington, M., Nayak, S. K., Talapatra, S., & Kar, S. (2010). Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Letters, 10(11), 4295-4301.
Andrews, L. J. (1954). Aromatic molecular complexes of the electron donor-acceptor type. Chemical Reviews, 54(5), 713-776.
Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., & Ma, J. (2014). Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55(1), 201-210.
Aswal, V. K., & Goyal, P. S. (1998). Mixed micelles of alkyltrimethylammonium halides a small-angle neutron-scattering study. Physica B: Condensed Matter, 245(1), 73-80.
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.
Bandyopadhyay, S., Shelley, J. C., Tarek, M., Moore, P. B., & Klein, M. L. (1998). Surfactant aggregation at a hydrophobic surface. The Journal of Physical Chemistry B, 102(33), 6318-6322.
Baniasadi, H., Ramazani S.A, A., Mashayekhan, S., & Ghaderinezhad, F. (2014). Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synthetic Metals, 196(0), 199-205.
Bari, R., Tamas, G., Irin, F., Aquino, A. J. A., Green, M. J., & Quitevis, E. L. (2014). Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 463(0), 63-69.
Barras, R., Cunha, I., Gaspar, D., Fortunato, E., Martins, R., & Pereira, L. (2017). Printable cellulose-based electroconductive composites for sensing elements in paper electronics. Flexible and Printed Electronics, 2(1), 014006.
Baur, J., & Silverman, E. (2007). Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bulletin, 32(04), 328-334.
Bergström, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study of aggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). Langmuir, 14(14), 3754-3761.
Bergström, M., & Pedersen, J. S. (1999). Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics, 1(18), 4437-4446.
Berr, S. S. (1987). Solvent isotope effects on alkytrimethylammonium bromide micelles as a function of alkyl chain length. Journal of Physical Chemistry, 91(18), 4760-4765.
Berr, S. S., & Jones, R. R. M. (1989). Small-angle neutron scattering from aqueous solutions of sodium perfluorooctanoate above the critical micelle concentration. The Journal of Physical Chemistry, 93(6), 2555-2558.
Bhatnagar, A., & Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites. Journal of Reinforced Plastics and Composites, 24(12), 1259- 1268.
Bijma, K., Blandamer, M. J., & Engberts, J. B. F. N. (1998). Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridinium surfactants. 2. Microcalorimetry. Langmuir, 14(1), 79-83.
Biswal, N. R., & Paria, S. (2010). Effect of electrolyte solutions on the adsorption of surfactants at PTFE-water interface. Industrial & Engineering Chemistry Research, 49(15), 7060-7067.
Björk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of aromatic and anti-aromatic systems on graphene through π−π stacking. The Journal of Physical Chemistry Letters, 1(23), 3407-3412.
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351-355.
Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., & Stubos, A. K. (2009). Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 5(16), 1841-1845.
Bowers, J., Butts, C. P., Martin, P. J., Vergara-Gutierrez, M. C., & Heenan, R. K. (2004). Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 20(6), 2191-2198.
Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., & Schmidt, A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants. Angewandte Chemie, 124(10), 2464-2466.
Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., & Heenan, R. (2011). Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir, 27(8), 4563-4571.
Brown, P., Butts, C. P., Eastoe, J., Fermin, D., Grillo, I., Lee, H.-C., Parker, D., Plana, D., & Richardson, R. M (2012). Anionic surfactant ionic liquids with 1-butyl- 3-methyl-imidazolium cations: characterization and application. Langmuir, 28(5), 2502-2509.
Brown, P., Butts, C. P., Eastoe, J., Grillo, I., James, C., & Khan, A. (2012). New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 395(0), 185-189.
Brown, W., & Zhao, J. (1993). Adsorption of sodium dodecyl sulfate on polystyrene latex particles using dynamic light scattering and zeta potential measurements. Macromolecules, 26(11), 2711-2715.
Brumfiel, G. (2012). Britain's big bet on graphene: Manchester institute will focus on commercial applications of atom-thick carbon sheets. Nature, 488(7410), 140- 141.
Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E. A., Tulyani, S., & Vincitore, A. (2013). Surface tension model for surfactant solutions at the critical micelle concentration. Journal of Colloid and Interface Science.
Buwalda, R. T., Stuart, M. C. A., & Engberts, J. B. F. N. (2000). Wormlike micellar and vesicular phases in aqueous solutions of single-tailed surfactants with aromatic counterions. Langmuir, 16(17), 6780-6786.
Bystrzejewski, M., Huczko, A., Lange, H., Gemming, T., Büchner, B., & Rümmeli, M. H. (2010). Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid and Interface Science, 345(2), 138-142.
Carrasco, P. M., Montes, S., García, I., Borghei, M., Jiang, H., Odriozola, I., Cabañero, G., & Ruiz, V. (2014). High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon, 70(0), 157-163.
Cataldi, P., Bayer, I. S., Bonaccorso, F., Pellegrini, V., Athanassiou, A., & Cingolani, R. (2015). Foldable conductive cellulose fiber networks modified by graphene nanoplatelet-bio-based composites. Advanced Electronic Materials, 1(12), 1500224(1500221-1500228).
Chan, A. J., Steenkeste, K., Canette, A., Eloy, M., Brosson, D., Gaboriaud, F., & Fontaine-Aupart, M.-P. (2015). Natural rubber-filler interactions: what are the parameters? Langmuir, 31(45), 12437-12446.
Chan, C. H., Joy, J, Maria, H. J., & Thomas, S. (2013). Natural rubber-based composites and nanocomposites: state of the art, new challenges and opportunities. In Thomas, S., Maria, H. J., Joy, J., Chan, C. H., & Pothen, L. A. (Eds.) Natural Rubber Materials: Volume 2: Composites and Nanocomposites (pp. 1 – 32). Cambridge: Royal Society of Chemistry.
Chen, K., & Xue, D. (2014). Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 436(Supplement C), 41-46.
Chen, Y., Zhang, B., Liu, G., Zhuang, X., & Kang, E.-T. (2012). Graphene and its derivatives: switching ON and OFF. Chemical Society Reviews, 41(13), 4688- 4707.
Chen, Y., Zhang, X., Zhang, D., Yu, P., & Ma, Y. (2011). High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 49(2), 573-580.
Cheng, D. C. H., & Gulari, E. (1982). Micellization and intermicellar interactions in aqueous sodium dodecyl benzene sulfonate solutions. Journal of Colloid and Interface Science, 90(2), 410-423.
Cheng, H., Hu, C., Zhao, Y., & Qu, L. (2014). Graphene fiber: a new material platform for unique applications. NPG Asia Mater, 6, e113.
Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 18(4), 275-297.
Cho, H. M., Gross, A. S., & Chu, J.-W. (2011). Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. Journal of the American Chemical Society, 133(35), 14033-14041.
Chua, C. K., & Pumera, M. (2013). Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 1(5), 1892-1898.
Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291-312.
Ciesielski, A., & Samori, P. (2013). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398.
Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19(23), 3680-3695.
Coleman, J. N. (2012). Liquid exfoliation of defect-free graphene. Accounts of Chemical Research, 46(1), 14-22.
Collins, A. M. (2012). Nanotechnology cookbook practical, reliable and jargon-free experimental procedures (1?? ed.). Oxford: Elsevier.
Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6(6), 711-723.
Cooper, A. J., Wilson, N. R., Kinloch, I. A., & Dryfe, R. A. W. (2014). Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon, 66(Supplement C), 340-350.
Cornish, K., Wood, D. F., & Windle, J. J. (1999). Rubber particles from four different species, examined by transmission electron microscopy and electron- paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 210(1), 85-96.
Coro?, M., Pog?cean, F., Ro?u, M.-C., Socaci, C., Borodi, G., Mageru?an, L., Biri?, A. R., & Pruneanu, S. (2015). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6(4), 2651- 2661.
Cristadoro, A., Ai, M., Räder, H. J., Rabe, J. P., & Müllen, K. (2008). Electrical field- induced alignment of nonpolar hexabenzocoronene molecules into columnar structures on highly oriented pyrolitic graphite investigated by STM and SFM. The Journal of Physical Chemistry C, 112(14), 5563-5566.
Cui, S., Canet, R., Derre, A., Couzi, M., & Delhaes, P. (2003). Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon, 41(4), 797-809.
Das, A., Kasaliwal, G. R., Jurk, R., Boldt, R., Fischer, D., Stöckelhuber, K. W., & Heinrich, G. (2012). Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 72(16), 1961-1967.
Das, S., Irin, F., Tanvir Ahmed, H. S., Cortinas, A. B., Wajid, A. S., Parviz, D., Jankowski, A. F., Kato, M., & Green, M. J. (2012). Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer, 53(12), 2485-2494.
de Heer, W. A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., & Conrad, E. (2011). Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proceedings of the National Academy of Sciences, 108(41), 16900-16905.
de Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadoswki, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143(1-2), 92-100.
De, S., Aswal, V. K., & Ramakrishnan, S. (2010). Phenyl-ring-bearing cationic surfactants: effect of ring location on the micellar structure. Langmuir, 26(23), 17882-17889.
Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim, 14(633-52), 58.
Di Crescenzo, A., Demurtas, D., Renzetti, A., Siani, G., De Maria, P., Meneghetti, M., Prato, M., & Fontana, A. (2009). Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1- hexadecyl-3-vinyl-imidazolium bromide in aqueous solution. Soft Matter, 5(1), 62-66.
Di Crescenzo, A., Di Profio, P., Siani, G., Zappacosta, R., & Fontana, A. (2016). Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates. Langmuir, 32(26), 6559-6570.
Díez-Pascual, A. M., Vallés, C., Mateos, R., Vera-López, S., Kinloch, I. A., & Andrés, M. P. S. (2018). Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene. Soft Matter, 14(29), 6013-6023.
Doane, T. L., Chuang, C.-H., Hill, R. J., & Burda, C. (2012). Nanoparticle ζ- potentials. Accounts of Chemical Research, 45(3), 317-326.
Docherty, K. M., & Kulpa Jr, C. F. (2005). Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7(4), 185-189.
Domi´nguez, H. (2007). Self-aggregation of the SDS surfactant at a solid-liquid interface. The Journal of Physical Chemistry B, 111(16), 4054-4059.
Dong, B., Li, N., Zheng, L., Yu, L., & Inoue, T. (2007). Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir, 23(8), 4178-4182.
Doucet, M., Cho, J. H., Alina, G., Bakker, J., Bouwman, W., Butler, P., Campbell, Kieran., Gonzales, M., Heenan, R., Jackson, A., Juhas, P., King, S., Kienzle, P., Krzywon, J., Markvardsen, A., Nielsen, T., O'Driscoll, L., Potrzebowski, W., Ferraz Leal, R., Richter, T., Rozycko, P., Snow, T., & Washington, A. SasView Version 4.1.2. Retrieved June 23, 2017. https://zenodo.org/record/825675
Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3), 751-758.
Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S., & Bielawski, C. W. (2011). Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 21(10), 3443-3447.
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
Drummond, C. J., Albers, S., & Furlong, D. N. (1992). Polymer-surfactant interactions:(Hydroxypropyl) cellulose with ionic and ion-ionic surfactants. Colloids and surfaces, 62(1-2), 75-85.
Ducker, W. A., & Grant, L. M. (1996). Effect of substrate hydrophobicity on surfactant surface-aggregate geometry. The Journal of Physical Chemistry, 100(28), 11507-11511.
Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398.
Eastoe, J. (2003). Surfactant chemistry. Bristol: Bristol University.
Eastoe, J., & Gold, S. (2005). Self-assembly in green solvents. Physical Chemistry Chemical Physics, 7(7), 1352-1362.
Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K., & Penfold, J. (2000). Adsorption of ionic surfactants at the air-solution interface. Langmuir, 16(10), 4511-4518.
Eastoe, J., Paul, A., Downer, A., Steytler, D. C., & Rumsey, E. (2002). Effects of fluorocarbon surfactant chain structure on stability of water-in-carbon dioxide microemulsions. Links between aqueous surface tension and microemulsion stability. Langmuir, 18(8), 3014-3017.
Egerton, R. F. (2005). Phsyical principles of electron microscopy. New York: Springer.
El Seoud, O. A., Pires, P. A. R., Abdel-Moghny, T., & Bastos, E. L. (2007). Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3- methylimidazolium chlorides. Journal of Colloid and Interface Science, 313(1), 296-304.
Elworthy, P. H., & Mysels, K. J. (1966). The surface tension of sodium dodecylsulfate solutions and the phase separation model of micelle formation. Journal of Colloid and Interface Science, 21(3), 331-347.
Eriksson, J. C., & Ljunggren, S. (1990). Model calculations on the transitions between surfactant aggregates of different shapes. Langmuir, 6(5), 895-904.
Evans, D. F., & Ninham, B. W. (1986). Molecular forces in the self-organization of amphiphiles. The Journal of Physical Chemistry, 90(2), 226-234.
Fan, W., Zhang, C., Tjiu, W. W., & Liu, T. (2013). Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. Journal of Materials Research, 28(04), 611-619.
Feigin, L. A., & Svergun, D. I. (1987). Structure analysis by small-angle X-ray and neutron scattering. New York: Springer.
Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydrate polymers, 87(1), 644-649.
Fennel Evans, D., & Wennerstrom, H. (1994). The colloidal domain: Where physics, chemistry, biology and technology meet. New York: Wiley-VCH Weinheim.
Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57.
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman Spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.
Florio, G. M., Werblowsky, T. L., Müller, T., Berne, B. J., & Flynn, G. W. (2005). Self-assembly of small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. The Journal of Physical Chemistry B, 109(10), 4520-4532.
Food and Agricultural Organization of the United Nation: Statistic (FAOSTAT). Production quantities of rubber by country average 1994 - 2016 (Publication). Retrieved May 31, 2018, from Food and Agricultural Organization of the United Nations: http://www.fao.org/faostat/en/#data/QC.
Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskkula, H., & Paul, D. R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer, 43(22), 5915-5933.
Fukushima, T., & Aida, T. (2007). Ionic liquids for soft functional materials with carbon nanotubes. Chemistry - A European Journal, 13(18), 5048-5058.
Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., & Aida, T. (2003). Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300(5628), 2072-2074.
Galbraith, J. W., Giles, C. H., Halliday, A. G., Hassan, A. S. A., McAllister, D. C., Macaulay, N., Macmillan, N. W. (1958). Adsorption at inorganic surfaces. III. The mechanism of adsorption of organic solutes, including dyes, by graphite. Journal of Applied Chemistry, 8(7), 416-424.
Galgano, P. D., & El Seoud, O. A. (2010). Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. Journal of Colloid and Interface Science, 345(1), 1-11.
Galgano, P. D., & El Seoud, O. A. (2011). Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants. Journal of Colloid and Interface Science, 361(1), 186-194.
Garg, G., Hassan, P. A., Aswal, V. K., & Kulshreshtha, S. K. (2005). Tuning the structure of SDS micelles by substituted anilinium ions. The Journal of Physical Chemistry B, 109(4), 1340-1346.
Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191.
Geng, Y., Romsted, L. S., Froehner, S., Zanette, D., Magid, L. J., Cuccovia, I. M., & Chaimovich, H. (2005). Origin of the sphere-to-rod transition in cationic micelles with aromatic counterions: specific ion hydration in the interfacial region matters. Langmuir, 21(2), 562-568.
George, G., Sisupal, S. J., Tomy, T., Kumaran, A., Vadivelu, P., Suvekbala, V., Sivaram, S., & Ragupathy, L. (2018). Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparing biocompatible polymer nanocomposites. Scientific Reports, 8(1), 11228.
Ghislandi, M., Tkalya, E., Alekseev, A., Koning, C., & de With, G. (2015). Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions. Applied Materials Today, 1(2), 88-94.
Ghislandi, M., Tkalya, E., Marinho, B., Koning, C. E., & de With, G. (2013). Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites. Composites Part A: Applied Science and Manufacturing, 53(0), 145-151.
Ghislandi, M., Tkalya, E., Schillinger, S., Koning, C. E., & de With, G. (2013). High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. Composites Science and Technology, 80(0), 16-22.
Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene for device applications. Nano Letters, 7(11), 3394-3398.
Glanzer, S., & Sax, A. F. (2013). Carbon nanotubes dressed by aromatic molecules. Molecular Physics, 111(16-17), 2427-2438.
Glover, A. J., Adamson, D. H., & Schniepp, H. C. (2012). Charge-driven selective adsorption of sodium dodecyl sulfate on graphene oxide visualized by atomic force microscopy. Journal of Physical Chemistry C, 116, 20080-20085.
Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers. West Sussex: John Wiley & Sons.
Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, 7(3), 583-587.
Granite, M., Radulescu, A., & Cohen, Y. (2012). Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with Pluronic F127 and poly (vinylpyrrolidone). Langmuir, 28(30), 11025-11031.
Grant, L. M., Tiberg, F., & Ducker, W. A. (1998). Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. The Journal of Physical Chemistry B, 102(22), 4288-4294.
Greaves, T. L., & Drummond, C. J. (2008). Ionic liquids as amphiphile self-assembly media. Chemical Society Reviews, 37(8), 1709-1726.
Green, A. A., & Hersam, M. C. (2009a). Emerging methods for producing monodisperse graphene dispersions. The Journal of Physical Chemistry Letters, 1(2), 544-549.
Green, A. A., & Hersam, M. C. (2009b). Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 9(12), 4031- 4036.
Griffith, A., & Notley, S. M. (2012). pH dependent stability of aqueous suspensions of graphene with adsorbed weakly ionisable cationic polyelectrolyte. Journal of Colloid and Interface Science, 369(1), 210-215.
Grimme, S. (2008). Do special noncovalent π–π stacking interactions really exist? Angewandte Chemie International Edition, 47(18), 3430-3434.
Grossiord, N. (2007). A latex-based concept for making carbon nanotube/polymer nanocomposites (Doctoral dissertation, Technische Universiteit Eindhoven, Netherlands). Retrieved from https://pure.tue.nl/ws/files/3247483/200712265.pdf
Grossiord, N., Hermant, M.-C., & Tkalya, E. (2012). Electrically conductive polymer- graphene composites prepared using latex technology. In V. Mittal (Ed.), Polymer-graphene nanocomposites (pp. 66-85). Cambridge: RSC Publishing.
Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., & Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12), 2866-2872.
Grossiord, N., van der Schoot, P., Meuldijk, J., & Koning, C. E. (2007). Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution. Langmuir, 23(7), 3646-3653.
Grunlan, J. C., Mehrabi, A. R., Bannon, M. V., & Bahr, J. L. (2004). Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Advanced Materials, 16(2), 150-153.
Guardia, L., Paredes, J. I., Rozada, R., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2014). Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 4(27), 14115-14127.
Halle, B., Landgren, M., & Jönsson, B. (1988). The shape of ionic micelles. Journal de Physique, 49(7), 1235-1259.
Hassan, P. A., Fritz, G., & Kaler, E. W. (2003). Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt. Journal of Colloid and Interface Science, 257(1), 154-162.
Hassan, P. A., Raghavan, S. R., & Kaler, E. W. (2002). Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir, 18(7), 2543-2548.
Hassan, P. A., Rana, S., & Verma, G. (2014). Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir, 31(1), 3-12.
Hassan, P. A., Sawant, S. N., Bagkar, N. C., & Yakhmi, J. V. (2004). Polyaniline nanoparticles prepared in rodlike micelles. Langmuir, 20(12), 4874-4880.
Hayter, J. B., & Penfold, J. (1983). Determination of micelle structure and charge by neutron small-angle scattering. Colloid & Polymer Science, 261(12), 1022- 1030.
Hazell, G., Hinojosa-Navarro, M., McCoy, T. M., Tabor, R. F., & Eastoe, J. (2016). Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up. Journal of Colloid and Interface Science, 464, 285-290.
He, Y., Li, Z., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in an ionic liquid. Journal of the American Chemical Society, 128(8), 2745-2750.
Heinze, T. (2015). Cellulose: structure and properties. In O. J. Rojas (Ed.), Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (pp. 1-52). Raleigh: Springer.
Hernández, M., Bernal, M. d. M., Verdejo, R., Ezquerra, T. A., & López-Manchado, M. A. (2012). Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology, 73(0), 40-46.
Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2009). Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 26(5), 3208-3213.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., & Gun’Ko, Y. K. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 3(9), 563.
Hollamby, M. J. (2013). Practical applications of small-angle neutron scattering. Physical Chemistry Chemical Physics, 15, 10566-10579.
Holland, N. B., Ruegsegger, M., & Marchant, R. E. (1998). Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants. Langmuir, 14(10), 2790-2795.
Holmberg, K., Jönsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymers in aqueous solution (Vol. 2). Surrey: John Wiley & Sons, Ltd.
Hou, M., Xu, M., & Li, B. (2018). Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustainable Chemistry & Engineering, 6(3), 2983-2990.
Hsieh, A. G., Korkut, S., Punckt, C., & Aksay, I. A. (2013). Dispersion stability of functionalized graphene in aqueous sodium dodecyl sulfate solutions. Langmuir, 29(48), 14831-14838.
Hsieh, A. G., Punckt, C., Korkut, S., & Aksay, I. A. (2013). Adsorption of sodium dodecyl sulfate on functionalized graphene measured by conductometric titration. The Journal of Physical Chemistry B, 117(26), 7950-7958.
Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Bloking, J. T., McGehee, M. D., Wagberg, L., & Cui, Y. (2012). Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science, 6(2), 513-518.
Huang, L., Wu, B., Yu, G., & Liu, Y. (2011). Graphene: learning from carbon nanotubes. Journal of Materials Chemistry, 21(4), 919-929.
Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Hunter, C. A., & Sanders, J. K. M. (1990). The nature of. pi.-. pi. interactions. Journal of the American Chemical Society, 112(14), 5525-5534.
Hunter, R. J. (1981). Zeta potential in colloid science: principles and applications (Vol. 2). London: Academic press.
Imae, T. (1996). SANS investigation of supramolecular assemblies constructed in aqueous alkyldimethylamine oxide solutions with organic additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 291-304.
Imae, T., Kakitani, M., Kato, M., & Furusaka, M. (1996). Effect of organic additives or counterions on the supramolecular assembly structures constructed by amphiphiles. A small-angle neutron scattering investigation. The Journal of Physical Chemistry, 100(51), 20051-20055.
Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2), 269-273.
Israelachvili, J., & Pashley, R. (1982). The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300(5890), 341-342.
Israelachvili, J. (2011). Intermolecular and surface forces: revised third edition. Boston: Academic Press.
Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.
Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., & Shahir, A. A. (2014). Modifying effect of imidazolium-based ionic liquids on surface activity and self- assembled nanostructures of sodium dodecyl sulfate. The Journal of Physical Chemistry B, 118(15), 4140-4150.
Jiang, D.-E., Sumpter, B. G., & Dai, S. (2006). How do aryl groups attach to a graphene sheet? The Journal of Physical Chemistry B, 110(47), 23628-23632.
Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions of carbon nanotubes. Journal of Colloid and Interface Science, 260(1), 89-94.
Jiang, S., Gui, Z., Bao, C., Dai, K., Wang, X., Zhou, K., Shi, Y., Lo, S., & Hu, Y. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chemical Engineering Journal, 226(0), 326-335.
Jiao, J., Dong, B., Zhang, H., Zhao, Y., Wang, X., Wang, R., & Yu, L. (2012). Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. The Journal of Physical Chemistry B, 116(3), 958-965.
John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate polymers, 71(3), 343-364.
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22(2), 935-969.
Juhué, D., & Lang, J. (1993). Effect of surfactant postadded to latex dispersion on film formation: a study by atomic force microscopy. Langmuir, 9(3), 792-796.
Juhué, D., & Lang, J. (1994). Latex film surface morphology studied by atomic force microscopy: effect of a non-ionic surfactant postadded to latex dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 87(3), 177-185.
Kabe, R., Feng, X., Adachi, C., & Müllen, K. (2014). Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri- hexabenzocoronene. Chemistry - An Asian Journal, 9(11), 3125-3129.
Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.
Kang, H., Zuo, K., Wang, Z., Zhang, L., Liu, L., & Guo, B. (2014). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Composites Science and Technology, 92(0), 1-8.
Kang, Y.-R., Li, Y.-L., Hou, F., Wen, Y.-Y., & Su, D. (2012). Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale, 4(10), 3248- 3253.
Kastrisianaki-Guyton, E. S., Chen, L., Rogers, S. E., Cosgrove, T., & Van Duijneveldt, J. S. (2015). Adsorption of F127 onto single-walled carbon nanotubes characterized using small-angle neutron scattering. Langmuir, 31(10), 3262-3268.
Katsnelson, M. I. (2007). Graphene: carbon in two dimensions. Materials Today, 10(1-2), 20-27.
Kim, B. S., Hayes, R. A., & Ralston, J. (1995). The adsorption of anionic naphthalene derivatives at the graphite-aqueous solution interface. Carbon, 33(1), 25-34.
Kim, H. (2009). Processing, morphology and properties of graphene reinforced polymer nanocomposites (Doctoral dissertation, University of Minnesotta). Retrieved from https://conservancy.umn.edu/handle/11299/56729.
Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16), 6515-6530.
Kim, H., Kobayashi, S., AbdurRahim, M. A., Zhang, M. J., Khusainova, A., Hillmyer, M. A., Abdala, A. A., & Macosko, C. W. (2011). Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 52(8), 1837-1846.
Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197-213.
Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research, 45(8), 1356-1364.
Kim, J. S., Hong, S., Park, D., & Shim, S. (2010). Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromolecular Research, 18(6), 558-565.
Kim, J. S., Yun, J. H., Kim, I., & Shim, S. E. (2011). Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature. Journal of Industrial and Engineering Chemistry, 17(2), 325-330.
Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574.
Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., & Gardner, D. J. (2016). Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydrate polymers, 136, 1144-1151.
Klemm, D., Schumann, D., Kramer, F., Heßler, N., Koth, D., & Sultanova, B. (2009). Nanocellulose materials-different cellulose, different functionality. Paper presented at the Macromolecular symposia.
Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents. Journal of the American Oil Chemists Society, 30(2), 74-80.
Koga, H., Nogi, M., Komoda, N., Nge, T. T., Sugahara, T., & Suganuma, K. (2014). Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Materials, 6(3), e93.
Kotlarchyk, M., & Chen, S. H. (1983). Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. The Journal of chemical physics, 79(5), 2461-2469.
Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36-41.
Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375.
Kumar, S., Sharma, D., & Sharma, D. (2006). Small-angle neutron scattering studies on sodium dodecylbenzenesulfonate-tetra-n-butylammonium bromide systems. Journal of surfactants and detergents, 9(1), 77-82.
Kyowa. What is surface tension? Retrieved April 23, 2018, from http://www.face- kyowa.co.jp/english/
Lagaly, G. (1999). Editorial. Applied clay science, 15(1-2), 1-9.
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose- Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90(2), 735-764.
LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1), 11-29.
Lechner, C., & Sax, A. F. (2014). Adhesive forces between aromatic molecules and graphene. The Journal of Physical Chemistry C, 118(36), 20970-20981.
Lewis, K. E., & Robinson, C. P. (1970). The interaction of sodium dodecyl sulfate with methyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 32(3), 539-546.
Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101-105.
Li, Z. X., Lu, J. R., Thomas, R. K., & Penfold, J. (1997). Neutron reflectivity studies of the adsorption of aerosol-ot at the air-water interface: the structure of the sodium salt. The Journal of Physical Chemistry B, 101(9), 1615-1620.
Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 42(19), 7254-7259.
Lin, S., Shih, C.-J., Sresht, V., Rajan, A. G., Strano, M. S., & Blankschtein, D. (2016). Understanding the colloidal dispersion stability of 1D and 2D materials: perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 244, 36-53.
Lin, S., Shih, C.-J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32), 12810-12823.
Lindman, B., Karlström, G., & Stigsson, L. (2010). On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76-81.
Lisunova, M. O., Lebovka, N. I., Melezhyk, O. V., & Boiko, Y. P. (2006). Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. Journal of Colloid and Interface Science, 299(2), 740-746.
Liu, J., Notarianni, M., Will, G., Tiong, V. T., Wang, H., & Motta, N. (2013). Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 29(43), 13307-13314.
Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., Liu, X., Gopal Sahoo, N., :I, C., Shen, Z., & Lin, J. (2013). Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2(3), 377-386.
Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One–step ionic– liquid–assisted electrochemical synthesis of ionic– functionalized graphene sheets directly from graphite. Advanced Functional Materials, 18(10), 1518- 1525.
Liu, S., Wu, B., & Yang, X. (2014). Electrolyte-induced reorganization of SDS self- assembly on graphene: a molecular simulation study. ACS Applied Materials & Interfaces, 6(8), 5789-5797.
Liu, X., Wang, L.-Y., Zhao, L.-F., He, H.-F., Shao, X.-Y., Fang, G.-B., Wan, Z.-G., & Zeng, R.-C. (2016). Research progress of graphene-based rubber nanocomposites. Polymer Composites, 39(4), 1006-1022.
Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S., & Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131(10), 3611-3620.
Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High- concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4(6), 3155-3162.
Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 34(5), 431-448.
Lu, J., Yang, J.-x., Wang, J., Lim, A., Wang, S., & Loh, K. P. (2009). One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 3(8), 2367-2375.
?uczak, J., Hupka, J., Thöming, J., & Jungnickel, C. (2008). Self-organization of imidazolium ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329(3), 125-133.
Magid, L. J., Li, Z., & Butler, P. D. (2000). Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride: a small-angle neutron scattering study. Langmuir, 16, 10028-10036.
Mahajan, R. K., Vohra, K. K., Kaur, N., & Aswal, V. K. (2008). Organic additives and electrolytes as cloud point modifiers in octylphenol ethoxylate solutions. Journal of surfactants and detergents, 11(3), 243-250.
Malaysia Rubber Board. (2018). Natural Rubber Market Review. Retrieved. from http://www3.lgm.gov.my/Digest/digest/digest-5-2018.pdf.
Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D., & Hansma, P. K. (1994). Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir, 10(12), 4409-4413.
Mariano, M., El Kissi, N., & Dufresne, A. (2014). Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. Journal of Polymer Science Part B: Polymer Physics, 52(12), 791-806.
Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term "pi-stacking". Chemical Science, 3(7), 2191-2201.
Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003). Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B, 107(48), 13357-13367.
Matos, C. F., Galembeck, F., & Zarbin, A. J. G. (2014). Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon, 78(0), 469-479.
Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon, 37(6), 897-901.
May, S., & Ben-Shaul, A. (2001). Molecular theory of the sphere-to-rod transition and the second CMC in aqueous micellar solutions. The Journal of Physical Chemistry B, 105(3), 630-640.
McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Millius, D. L., Car, R., & Prud’homme, R. K. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 19(18), 4396-4404.
McCoy, T. M., Brown, P., Eastoe, J., & Tabor, R. F. (2015). Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACS Applied Materials & Interfaces, 7(3), 2124-2133.
McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry Chemical Physics, 20(24), 16801-16816.
Medronho, B., & Lindman, B. (2014). Competing forces during cellulose dissolution: from solvents to mechanisms. Current Opinion in Colloid & Interface Science, 19(1), 32-40.
Medronho, B., & Lindman, B. (2015). Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in colloid and interface science, 222, 502-508.
Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., & Lindman, B. (2012). Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose, 19(3), 581-587.
Menger, F. M., & Rizvi, S. A. A. (2011). Relationship between surface tension and surface coverage. Langmuir, 27(23), 13975-13977.
Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43), 15739-15746.
Michler, G. H. (2008). Electron microscopy of polymer. Leipzig: Springer-Verlag Berlin Heidelberg.
Milner, E. M., Skipper, N. T., Howard, C. A., Shaffer, M. S. P., Buckley, D. J., ., Cullen, E. L., Heenan, R. K., Lindner, P., & Schweins, R.(2012). Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering. Journal of the American Chemical Society, 134(20), 8302-8305.
Mohamed, A., Anas, A., Abu Bakar, S., Aziz, A., Sagisaka, M., Brown, P., Eastoe, J., Kamari, A., Hashim, N., & Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013-3023.
Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., Sagisaka, M., Brown, P., & Eastoe, J. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 455, 179-187.
Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 54-69.
Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J. (2011). Low fluorine content co?-philic surfactants. Langmuir, 27(17), 10562-10569.
Mohamed, A., Sagisaka, M., Hollamby, M., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J. (2012). Hybrid CO?-philic surfactants with low fluorine content. Langmuir, 28(15), 6299-6306.
Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., Nave, S., Dyer, R., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2010). Universal surfactant for water, oils, and CO?. Langmuir, 26(17), 13861-13866.
Mohanty, A., & Dey, J. (2007). Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n- dodecyloxy)benzoyl]-l-aminoacidates in Water. Langmuir, 23(3), 1033-1040.
Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.
Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., & Talmon, Y. (2003). Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters, 3(10), 1379-1382.
Moulik, S. P., Haque, M. E., Jana, P. K., & Das, A. R. (1996). Micellar properties of cationic surfactants in pure and mixed states. The Journal of Physical Chemistry, 100(2), 701-708.
Myers, D. (1999). Surfaces, interfaces, and colloids (2?? ed.). New York: Wiley-Vch New York.
Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18(1), 31-38.
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
Najafabadi, A. T., & Gyenge, E. (2014). High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)-acetonitrile electrolyte with low IL content. Carbon, 71(0), 58-69.
Nave, S., Eastoe, J., Heenan, R. K., Steytler, D., & Grillo, I. (2002). What is so special about Aerosol-OT? Part III - glutaconate versus sulfosuccinate headgroups and oil-water interfacial tensions. Langmuir, 18(5), 1505-1510.
Nave, S., Eastoe, J., & Penfold, J. (2000). What is so special about Aerosol-OT? 1. Aqueous systems. Langmuir, 16(23), 8733-8740.
Nave, S., Paul, A., Eastoe, J., Pitt, A. R., & Heenan, R. K. (2005). What is so special about Aerosol-OT? Part IV. Phenyl-tipped surfactants. Langmuir, 21(22), 10021-10027.
Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1-3), 157-166.
Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen- bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9074-9082.
Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically transparent nanofiber paper. Advanced materials, 21(16), 1595-1598.
Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir, 28(40), 14110-14113.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S. B., Piccinini, M., Illescas, J., & Mariani, A. (2011). High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 21(10), 3428-3431.
O'Dea, A. R., Smart, R. S. C., & Gerson, A. R. (1999). Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite. Carbon, 37(7), 1133-1142.
Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19), 9148-9156.
Pang, H., Xu, L., Yan, D.-X., & Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39(11), 1908-1933.
Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460-484.
Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25(10), 5957- 5968.
Paria, S., Manohar, C., & Khilar, K. C. (2005). Adsorption of anionic and non-ionic surfactants on a cellulosic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2), 221-229.
Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019- 3023.
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224.
Paruchuri, V. K., Nguyen, A. V., & Miller, J. D. (2004). Zeta-potentials of self- assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250(1), 519-526.
Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., & Müllen, K. (2014). Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 136(16), 6083-6091.
Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., & Green, M. J. (2012). Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano, 6(10), 8857-8867.
Pashley, R., & Karaman, M. (2005). Applied colloid and surface chemistry. Cornwall: John Wiley & Sons.
Patole, A. S., Patole, S. P., Kang, H., Yoo, J.-B., Kim, T.-H., & Ahn, J.-H. (2010). A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal of Colloid and Interface Science, 350(2), 530-537.
Patrick, H. N., & Warr, G. G. (2000). Self-assembly structures of nonionic surfactants at graphite-solution interfaces. 2. Effect of polydispersity and alkyl chain branching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162(1–3), 149-157.
Patrick, H. N., Warr, G. G., Manne, S., & Aksay, I. A. (1997). Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir, 13(16), 4349-4356.
Paul, A., Griffiths, P. C., Pettersson, E., Stilbs, P., Bales, B. L., Zana, R., & Heenan, R. K. (2005). Nuclear magnetic resonance and small-angle neutron scattering studies of anionic surfactants with macrocounterions: tetramethylammonium dodecyl sulfate. The Journal of Physical Chemistry B, 109(33), 15775-15779.
Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49(15), 3187-3204.
Peng, H., Meng, L., Niu, L., & Lu, Q. (2012). Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. The Journal of Physical Chemistry C, 116(30), 16294-16299.
Peng, R., Wang, Y., Tang, W., Yang, Y., & Xie, X. (2013). Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers, 5(2), 847.
Pérez, E. M., & Martín, N. (2015). π-π interactions in carbon nanostructures. Chemical Society Reviews, 44(18), 6425-6433.
Pham, V. H., Dang, T. T., Hur, S. H., Kim, E. J., & Chung, J. S. (2012). Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Applied Materials & Interfaces, 4(5), 2630-2636.
Pichayakorn, W., Suksaeree, J., Boonme, P., Taweepreda, W., & Ritthidej, G. C. (2012). Preparation of deproteinized natural rubber latex and properties of films formed by itself and several adhesive polymer blends. Industrial & Engineering Chemistry Research, 51(41), 13393-13404.
Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109(12), 6712-6728.
Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25.
Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology- property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules, 45(15), 6045-6055.
Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology, 74(0), 166-172.
Price, B. K., Hudson, J. L., & Tour, J. M. (2005). Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society, 127(42), 14867-14870.
Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016). Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 12(1), 157-164.
Rabe, J. P., & Buchholz, S. (1991). Commensurability and mobility in two- dimensional molecular patterns on graphite. Science, 253(5018), 424-427.
Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges- origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127(16), 5917-5927.
Rahman, R., Foster, J. T., & Haque, A. (2013). Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites. The Journal of Physical Chemistry A, 117(25), 5344-5353.
Rajter, R. F., French, R. H., Ching, W. Y., Carter, W. C., & Chiang, Y. M. (2007). Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. Journal of Applied Physics, 101(5), 054303.
Ramalingam, P., Pusuluri, S. T., Periasamy, S., Veerabahu, R., & Kulandaivel, J. (2013). Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Advances, 3(7), 2369-2378.
Ramli, N. (2017). Kenaf production. Retrieved May 31, 2018. from /www.mpic.gov.my.
Rausch, J., Zhuang, R.-C., & Mäder, E. (2010). Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 41(9), 1038-1046.
Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539- 1641.
Reczek, J. J., & Iverson, B. L. (2006). Using aromatic donor acceptor interactions to affect macromolecular assembly. Macromolecules, 39(17), 5601-5603.
Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M., & Iverson, B. L. (2006). Tunable columnar mesophases utilizing C2 symmetric aromatic donor- acceptor complexes. Journal of the American Chemical Society, 128(24), 7995-8002.
Regev, O., ElKati, P. N. B., Loos, J., & Koning, C. E. (2004). Preparation of conductive nanotube-polymer composites using latex technology. Advanced Materials, 16(3), 248-251.
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2008). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30-35.
Remsing, R. C., Swatloski, R. P., Rogers, R. D., & Moyna, G. (2006). Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chemical Communications(12), 1271-1273.
Rippel, M. M., Lee, L.-T., Leite, C. A. P., & Galembeck, F. (2003). Skim and cream natural rubber particles: colloidal properties, coalescence and film formation. Journal of Colloid and Interface Science, 268(2), 330-340.
Rochette, C. N., Crassous, J. J., Drechsler, M., Gaboriaud, F., Eloy, M., de Gaudemaris, B., & Duval, J. F. L. (2013). Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM. Langmuir, 29(47), 14655-14665.
Rojas, O. J. (2016). Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (Vol. 271). New York: Springer.
Rosen, M. J., & Kunjappu, J. T. (2004). Surfactants and interfacial phenomena (3?? ed.). New Jersey: John Wiley & Sons.
Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S . (2009). Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 38(7), 2046-2064.
Sa, V., & Kornev, K. G. (2011). Analysis of stability of nanotube dispersions using surface tension isotherms. Langmuir, 27(22), 13451-13460.
Sadasivuni, K. K., Ponnamma, D., Thomas, S., & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Progress in Polymer Science, 39(4), 749-780.
Sagisaka, M., Iwama, S., Hasegawa, S., Yoshizawa, A., Mohamed, A., Cummings, S., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2011). Super-efficient surfactant for stabilizing water-in-carbon dioxide microemulsions. Langmuir, 27(10), 5772-5780.
Sagisaka, M., Iwama, S., Yoshizawa, A., Mohamed, A., Cummings, S., & Eastoe, J. (2012). Effective and efficient surfactant for CO? having only short fluorocarbon chains. Langmuir, 28(30), 10988-10996.
Sagisaka, M., Narumi, T., Niwase, M., Narita, S., Ohata, A., James, C., Yoshizawa, A., Taffin de Givenchy, E. P., Guittard, F., & Alexander, S. (2014). Hyper- branched hydrocarbon surfactants give fluorocarbon-like low surface energies. Langmuir, 30(21), 6057-6063.
Samsuri, A. (2013). Theory and mechanisms of filler reinforcement in natural rubber. In S. Thomas, H. J. Maria, J. Joy, C. H. Chan & L. A. Pothen (Eds.), Natural Rubber-Based Composites and Nanocomposites: State of the Art, New Challenges and Opportunities (pp. 73-109). Cambridge: Royal Society of Chemistry.
Sansatsadeekul, J., Sakdapipanich, J., & Rojruthai, P. (2011). Characterization of associated proteins and phospholipids in natural rubber latex. Journal of Bioscience and Bioengineering, 111(6), 628-634.
Schaefer, D. W., & Justice, R. S. (2007). How nano are nanocomposites? Macromolecules, 40(24), 8501-8517.
Schramm, L. L. (2006). Emulsions, foams, and suspensions: fundamentals and applications. Weinheim: Wiley VCH.
Sefcik, J., Verduyn, M., Storti, G., & Morbidelli, M. (2003). Charging of latex particles stabilized by sulfate surfactant. Langmuir, 19(11), 4778-4783.
Seo, J.-W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High- concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. The Journal of Physical Chemistry Letters, 2(9), 1004- 1008.
Sethuraj, M. R., & Mathew, N. T. (1922). Natural rubber: biology, cultivation and technology (Vol. 23). Netherlands: Elsevier.
Shah, K., Chiu, P., & Sinnott, S. B. (2006). Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and water- graphite interfaces from molecular dynamics simulations. Journal of Colloid and Interface Science, 296(1), 342-349.
Shah, R. K., Hunter, D. L., & Paul, D. R. (2005). Nanocomposites from poly (ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties. Polymer, 46(8), 2646-2662.
Shahil, K. M. F., & Balandin, A. A. (2012). Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 12(2), 861-867.
Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495-504.
Shen, B., Zhai, W., Chen, C., Lu, D., Wang, J., & Zheng, W. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π-π stacking. ACS Applied Materials & Interfaces, 3(8), 3103-3109.
Shen, J., He, Y., Wu, J., Gao, C., Keyshar, K., Zhang, X., Yang, Y., Ye, M., Vajtai, R., & Lou, J. (2015). Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Letters, 15(8), 5449-5454.
Shen, J., Hu, Y., Li, C., Qin, C., & Ye, M. (2009). Synthesis of amphiphilic graphene nanoplatelets. Small, 5(1), 82-85.
Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., & Ye, M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15), 3514-3520.
Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., & Ye, M. (2016). Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small, 12(20), 2741-2749.
Sherif, A., Izzuddin, Z., Qingshi, M., Nobuyuki, K., Andrew, M., Hsu-Chiang, K., Peter, M., Jun, M., & Liquin, Z. (2013). Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 24(16), 165601.
Shi, G., Araby, S., Gibson Christopher, T., Meng, Q., Zhu, S., & Ma, J. (2018). Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Advanced Functional Materials, 28(19), 1706705.
Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2010). Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society, 132(41), 14638-14648.
Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2015). Understanding the stabilization of single-walled carbon nanotubes and graphene in ionic surfactant aqueous solutions: large-scale coarse-grained molecular dynamics simulation-assisted DLVO theory. The Journal of Physical Chemistry C, 119(2), 1047-1060.
Shih, C.-J., Paulus, G. L. C., Wang, Q. H., Jin, Z., Blankschtein, D., & Strano, M. S. (2012). Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Langmuir, 28(22), 8579-8586.
Shim, Y., & Kim, H. J. (2009). Solvation of carbon nanotubes in a room-temperature ionic liquid. ACS Nano, 3(7), 1693-1702.
Shinde, D. B., Brenker, J., Easton, C. D., Tabor, R. F., Neild, A., & Majumder, M. (2016). Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir, 32(14), 3552-3559.
Silvera-Batista, C. A., & Ziegler, K. J. (2011). Swelling the hydrophobic core of surfactant-suspended single-walled carbon nanotubes: A SANS study. Langmuir, 27(18), 11372-11380.
Singh, G., Singh, G., & Kang, T. S. (2016). Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media. The Journal of Physical Chemistry B, 120(6), 1092-1105.
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271.
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494.
Skoog, D. A., Holler, E. J., & Crouch, S. R. (2007). Principles of instrumental analysis (Vol. 6). Canada: Thomson Brooks/Cole.
Smith, G. N., Alexander, S., Brown, P., Gillespie, D. A. J., Grillo, I., Heenan, R. K., James, C., Kemp, R. Rogers, S. E., & Eastoe, J. (2014). Interaction between surfactants and colloidal latexes in nonpolar solvents studied using contrast- variation small-angle neutron scattering. Langmuir, 30(12), 3422-3431.
Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 12(12), 125008.
Sousa, F. D. B. d., & Scuracchio, C. H. (2014). The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blens based on elastomers. Polimeros, 24(6), 661-672.
Spyrou, K., Calvaresi, M., Diamanti, E. K., Tsoufis, T., Gournis, D., Rudolf, P., & Zerbetto, F. (2015). Graphite oxide and aromatic amines: Size matters. Advanced Functional Materials, 25(2), 263-269.
Srinivas, G., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2006). Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface. Journal of the American Chemical Society, 128(3), 848-853.
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., & Ruoff, R. S. (2006). Graphene- based composite materials. Nature, 442(7100), 282-286.
Stone, M. T., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2003). Molecular differences between hydrocarbon and fluorocarbon surfactants at the CO?/water interface. Journal of Physical Chemistry B, 107(37), 10185-10192.
Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2004). Low interfacial free volume of stubby surfactants stabilizes water-in- carbon dioxide microemulsions. Journal of Physical Chemistry B, 108(6), 1962-1966.
Strano, M. S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., Hauge, R. H., & Smalley, R. E. (2003). The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 3(1-2), 81-86.
Stubbs, J. M., Durant, Y. G., & Sundberg, D. C. (1999). Competitive adsorption of sodium dodecyl sulfate on two polymer surfaces within latex blends. Langmuir, 15(9), 3250-3255.
Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., & Rao, C. N. R. (2009). Covalent and noncovalent functionalization and solubilization of graphene. Nanoscience and Nanotechnology Letters, 1(1), 28-31.
Sun, H., & Yang, X. (2014). Molecular simulation of self-assembly structure and interfacial interaction for SDBS adsorption on graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462(0), 82-89.
Sun, Z., Nicolosi, V., Rickard, D., Bergin, S. D., Aherne, D., & Coleman, J. N. (2008). Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. The Journal of Physical Chemistry C, 112(29), 10692-10699.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials & Design, 99, 174-181.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters, 161, 665-668.
Suttipong, M., Tummala, N. R., Kitiyanan, B., & Striolo, A. (2011). Role of surfactant molecular structure on self-assembly: aqueous SDBS on carbon nanotubes. The Journal of Physical Chemistry C, 115(35), 17286-17296.
Syurik, Y. V., Ghislandi, M. G., Tkalya, E. E., Paterson, G., McGrouther, D., Ageev, O. A., & Loos, J. (2012). Graphene network organisation in conductive polymer composites. Macromolecular Chemistry and Physics, 213(12), 1251- 1258.
Tadros, T. (2007). General principles of colloid stability and the role of surface forces. In T. Tadros (Ed.), Colloid stability: The role of surface forces - Part 1 (Vol. 1): Weinheim: Wiley VCH.
Tadros, T. (2006). Applied surfactants - principles and applications. Weinheim: Wiley VCH.
Tanford, C. (1972). Micelle shape and size. Journal of Physical Chemistry, 76(21), 3020-3024.
Tanford, C. (1974). Thermodynamics of micelle formation: prediction of micelle size and size distribution. Proceedings of the National Academy of Sciences, 71(5), 1811-1815.
Tanford, C. (1978). The hydrophobic effect and the organization of living matter. Science, 200(4345), 1012-1018.
Tanford, C. (1979). Interfacial free energy and the hydrophobic effect. Proceedings of the National Academy of Sciences, 76(9), 4175-4176.
Tanford, C. (1980). The hydrophobic effect: formation of micelles and biological membranes (2?? ed.). New York: Wiley.
Tapasztó, O., Tapasztó, L., Markó, M., Kern, F., Gadow, R., & Balázsi, C. (2011). Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 511(4), 340-343.
Terrones, M. (2009). Materials science: Nanotubes unzipped. Nature, 458(7240), 845- 846.
Texter, J. (2014). Graphene dispersions. Current Opinion in Colloid & Interface Science, 19(2), 163-174.
Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., & Loos, J. (2010). Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry, 20(15), 3035-3039.
Tkalya, E., Ghislandi, M., Otten, R., Lotya, M., Alekseev, A., van der Schoot, P., Coleman, J., de With, G., & Koning, C. (2014). Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. ACS Applied Materials & Interfaces, 6(17), 15113-15121.
Tkalya, E., Ghislandi, M., de With, G., & Koning, C. E. (2012). The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Current Opinion in Colloid & Interface Science, 17(4), 225- 232.
Tummala, N. R., Grady, B. P., & Striolo, A. (2010). Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 12(40), 13137-13143.
Tummala, N. R., & Striolo, A. (2009). Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Physical Review E, 80(2), 021408.
Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon, 47(14), 3288-3294.
Vaia, R. A., & Giannelis, E. P. (2001). Polymer nanocomposites: status and opportunities. MRS Bulletin, 26(5), 394-401.
Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128-130(0), 37-46.
Vega-Rios, A., Rentería-Baltiérrez, F. Y., Hernández-Escobar, C. A., & Zaragoza- Contreras, E. A. (2013). A new route toward graphene nanosheet/polyaniline composites using a reactive surfactant as polyaniline precursor. Synthetic Metals, 184(0), 52-60.
Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 21(10), 3301-3310.
Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the stability of lyophobic colloids. New York: Elsevier Publishing Company.
Wang, B., Lou, W., Wang, X., & Hao, J. (2012). Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose- graphene oxide composite films. Journal of Materials Chemistry, 22(25), 12859-12866.
Wang, D., Zhang, X., Zha, J.-W., Zhao, J., Dang, Z.-M., & Hu, G.-H. (2013). Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer, 54(7), 1916-1922.
Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79, 521-529.
Wang, G., & Olofsson, G. (1995). Ethyl hydroxyethyl cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfate and some cationic surfactants. The Journal of Physical Chemistry, 99(15), 5588-5596.
Wang, H. (2009). Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid & Interface Science, 14(5), 364-371.
Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie, E. K. (2004). Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study. Nano Letters, 4(9), 1789-1793.
Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 48(9), 4817-4825.
Wang, J., Chu, H., & Li, Y. (2008). Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS nano, 2(12), 2540-2546.
Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 112(24), 7227-7233.
Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 6(61), 56705-56710.
Wang, Z., Liu, J., Wang, W., Chen, H., Liu, Z., Yu, Q., Zeng, H., & Sun, L. (2013). Aqueous phase preparation of graphene with low defect density and adjustable layers. Chemical Communications, 49(92), 10835-10837.
Wangmo, S., Song, R., Wang, L., Jin, W., Ding, D., Wang, Z., & Zhang, R.-Q. (2012). Strong interactions and charge transfers between a charged benzene molecule and multilayer graphenes. Journal of Materials Chemistry, 22(44), 23380-23386.
Wanless, E. J., & Ducker, W. A. (1996). Organization of sodium dodecyl sulfate at the graphite-solution interface. The Journal of Physical Chemistry, 100(8), 3207-3214.
Waters, M. L. (2002). Aromatic interactions in model systems. Current opinion in chemical biology, 6(6), 736-741.
Weingärtner, H. (2008). Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angewandte Chemie International Edition, 47(4), 654-670.
Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., & Cheng, H.-M. (2011). Graphene- cellulose paper flexible supercapacitors. Advanced Energy Materials, 1(5), 917-922.
Wertz, J.-L., Mercier, J. P., & Bédué, O. (2010). Cellulose science and technology: EPFL press.
White, B., Banerjee, S., O'Brien, S., Turro, N. J., & Herman, I. P. (2007). Zeta- potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. The Journal of Physical Chemistry C, 111(37), 13684-13690.
Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and Related Materials, 46(0), 25-34.
Winey, K. I., & Vaia, R. A. (2007). Polymer nanocomposites. MRS Bulletin, 32(4), 314-322.
Woods, L. M., B?descu, ?. C., & Reinecke, T. L. (2007). Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 75(15), 155415.
Wu, B., & Yang, X. (2013). Molecular simulation of electrolyte-induced interfacial interaction between SDS/graphene assemblies. The Journal of Physical Chemistry C, 117(44), 23216-23223.
Wu, D., & Yang, X. (2012). Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures. The Journal of Physical Chemistry B, 116(39), 12048-12056.
Wu, T.-M., & Chen, E.-C. (2008). Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology. Composites Science and Technology, 68(10-11), 2254-2259.
Xu, B., Lynn, G. W., Guo, J., Melnichenko, Y. B., Wignall, G. D., McClain, J. B., DeSimone, J. M., & Johnson, C. S. (2005). NMR and SANS studies of aggregation and microemulsion formation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide. Journal of Physical Chemistry B, 109(20), 10261-10269.
Yang, K., Wu, W., Jing, Q., & Zhu, L. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 42(21), 7931-7936.
Yang, Y.-K., He, C.-E., Peng, R.-G., Baji, A., Du, X.-S., Huang, Y.-L., Xie, X.-L., & Mai, Y.-W. (2012). Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. Journal of Materials Chemistry, 22(12), 5666-5675.
Ye, W., Li, X., Zhu, H., Wang, X., Wang, S., Wang, H., & Sun, R. (2016). Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties. Chemical Engineering Journal, 299, 45-55.
Yeon, C., Yun, S. J., Lee, K.-S., & Lim, J. W. (2015). High-yield graphene exfoliation using sodium dodecyl sulfate accompanied by alcohols as surface- tension-reducing agents in aqueous solution. Carbon, 83, 136-143.
Yin, S., Wang, C., Qiu, X., Xu, B., & Bai, C. (2001). Theoretical study of the effects of intermolecular interactions in self-assembled long-chain alkanes adsorbed on graphite surface. Surface and interface analysis, 32(1), 248-252.
Yoon, S. H., Jin, H.-J., Kook, M.-C., & Pyun, Y. R. (2006). Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 7(4), 1280-1284.
Yoonessi, M., & Gaier, J. R. (2010). Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano, 4(12), 7211-7220.
Young, R. J., Liu, M., Kinloch, I. A., Li, S., Zhao, X., Vallés, C., & Papageorgiou, D. G. (2018). The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 154, 110-116.
Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E., & Loos, J. (2007). Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon, 45(15), 2897-2903.
Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5), 329-338.
Yue, L., Pircheraghi, G., Monemian, S. A., & Manas-Zloczower, I. (2014). Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects. Carbon, 78(0), 268-278.
Yurekli, K., Mitchell, C. A., & Krishnamoorti, R. (2004). Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. Journal of the American Chemical Society, 126(32), 9902-9903.
Zan, R., Bangert, U., Ramasse, Q., & Novoselov, K. S. (2011). Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Letters, 11(3), 1087-1092.
Zhan, Y., Lavorgna, M., Buonocore, G., & Xia, H. (2012). Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Journal of Materials Chemistry, 22(21), 10464-10468.
Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromolecular Materials and Engineering, 296(7), 590-602.
Zhang, J., Zhang, J., Lin, L., Chen, T., Zhang, J., Liu, S., Li, Z., & Ouyang, P. (2009). Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes and kinetics. Molecules, 14(12), 5027-5041.
Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663-6670.
Zhang, X., Liu, X., Zheng, W., & Zhu, J. (2012). Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydrate polymers, 88(1), 26-30.
Zhang, X., Wang, J., Jia, H., You, S., Xiong, X., Ding, L., & Xu, Z. (2016). Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene. Composites Part B: Engineering, 84, 121-129.
Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438(7065), 201.
Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46(10), 2329-2339.
Zhao, C. L., Dobler, F., Pith, T., Holl, Y., & Lambla, M. (1989). Surface composition of coalesced acrylic latex films studied by XPS and SIMS. Journal of Colloid and Interface Science, 128(2), 437-449.
Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 1(5), 782-791.
Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal, 32(10), 866-870.
Zhou, W., Islam, M. F., Wang, H., Ho, D. L., Yodh, A. G., Winey, K. I., & Fischer, J. E. (2004). Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chemical Physics Letters, 384(1), 185-189.
Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., & Wu, G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry, 8(4), 325-327.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924.
Zuberi, M., Sherman, D. M., & Cho, Y. (2011). Carbon nanotube microspheres produced by surfactant-mediated aggregation. The Journal of Physical Chemistry C, 115(10), 3881-3887.
Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 7(16), 6944- 6956.
Abdul Khalil, H. P. S., Alwani, M. S., & Omar, A. K. M. (2007). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220-232.
Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.
Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate polymers, 99, 649-665.
Abdul Khalil, H. P. S., Ireana Yusra, A. F., Bhat, A. H., & Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.
Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H., & Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1), 113- 121.
Adamczyk, Z., Para, G., & Warszy?ski , P. (1999). Influence of ionic strength on surface tension of cetyltrimethylammonium bromide. Langmuir, 15(24), 8383- 8387.
Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites-a review. Carbohydrate polymers, 198, 249-260.
Aguilar-Bolados, H., Brasero, J., Lopez-Manchado, M. A., & Yazdani-Pedram, M. (2014). High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Composites Part B: Engineering, 67(0), 449-454.
Alanyal?o?lu, M., Segura, J. J., Oró-Solè, J., & Casañ-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon, 50(1), 142-152.
Alexander, S., Smith, G. N., James, C., Rogers, S. E., Guittard, F., Sagisaka, M., & Eastoe, J. (2014). Low surface energy surfactants with branched hydrocarbon architectures. Langmuir, 30(12), 3413–3421.
Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1-2), 1-63.
Alila, S., Boufi, S., Belgacem, M. N., & Beneventi, D. (2005). Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir, 21(18), 8106-8113.
Alqus, R., Eichhorn, S. J., & Bryce, R. A. (2015). Molecular dynamics of cellulose amphiphilicity at the graphene-water interface. Biomacromolecules, 16(6), 1771-1783.
An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K. M., Washington, M., Nayak, S. K., Talapatra, S., & Kar, S. (2010). Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Letters, 10(11), 4295-4301.
Andrews, L. J. (1954). Aromatic molecular complexes of the electron donor-acceptor type. Chemical Reviews, 54(5), 713-776.
Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., & Ma, J. (2014). Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55(1), 201-210.
Aswal, V. K., & Goyal, P. S. (1998). Mixed micelles of alkyltrimethylammonium halides a small-angle neutron-scattering study. Physica B: Condensed Matter, 245(1), 73-80.
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.
Bandyopadhyay, S., Shelley, J. C., Tarek, M., Moore, P. B., & Klein, M. L. (1998). Surfactant aggregation at a hydrophobic surface. The Journal of Physical Chemistry B, 102(33), 6318-6322.
Baniasadi, H., Ramazani S.A, A., Mashayekhan, S., & Ghaderinezhad, F. (2014). Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synthetic Metals, 196(0), 199-205.
Bari, R., Tamas, G., Irin, F., Aquino, A. J. A., Green, M. J., & Quitevis, E. L. (2014). Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 463(0), 63-69.
Barras, R., Cunha, I., Gaspar, D., Fortunato, E., Martins, R., & Pereira, L. (2017). Printable cellulose-based electroconductive composites for sensing elements in paper electronics. Flexible and Printed Electronics, 2(1), 014006.
Baur, J., & Silverman, E. (2007). Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bulletin, 32(04), 328-334.
Bergström, M., & Pedersen, J. S. (1998). Small-angle neutron scattering (SANS) study of aggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). Langmuir, 14(14), 3754-3761.
Bergström, M., & Pedersen, J. S. (1999). Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics, 1(18), 4437-4446.
Berr, S. S. (1987). Solvent isotope effects on alkytrimethylammonium bromide micelles as a function of alkyl chain length. Journal of Physical Chemistry, 91(18), 4760-4765.
Berr, S. S., & Jones, R. R. M. (1989). Small-angle neutron scattering from aqueous solutions of sodium perfluorooctanoate above the critical micelle concentration. The Journal of Physical Chemistry, 93(6), 2555-2558.
Bhatnagar, A., & Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites. Journal of Reinforced Plastics and Composites, 24(12), 1259- 1268.
Bijma, K., Blandamer, M. J., & Engberts, J. B. F. N. (1998). Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridinium surfactants. 2. Microcalorimetry. Langmuir, 14(1), 79-83.
Biswal, N. R., & Paria, S. (2010). Effect of electrolyte solutions on the adsorption of surfactants at PTFE-water interface. Industrial & Engineering Chemistry Research, 49(15), 7060-7067.
Björk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of aromatic and anti-aromatic systems on graphene through π−π stacking. The Journal of Physical Chemistry Letters, 1(23), 3407-3412.
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351-355.
Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., & Stubos, A. K. (2009). Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 5(16), 1841-1845.
Bowers, J., Butts, C. P., Martin, P. J., Vergara-Gutierrez, M. C., & Heenan, R. K. (2004). Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 20(6), 2191-2198.
Brown, P., Bushmelev, A., Butts, C. P., Cheng, J., Eastoe, J., Grillo, I., Heenan, R. K., & Schmidt, A. M. (2012). Magnetic control over liquid surface properties with responsive surfactants. Angewandte Chemie, 124(10), 2464-2466.
Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., & Heenan, R. (2011). Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir, 27(8), 4563-4571.
Brown, P., Butts, C. P., Eastoe, J., Fermin, D., Grillo, I., Lee, H.-C., Parker, D., Plana, D., & Richardson, R. M (2012). Anionic surfactant ionic liquids with 1-butyl- 3-methyl-imidazolium cations: characterization and application. Langmuir, 28(5), 2502-2509.
Brown, P., Butts, C. P., Eastoe, J., Grillo, I., James, C., & Khan, A. (2012). New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 395(0), 185-189.
Brown, W., & Zhao, J. (1993). Adsorption of sodium dodecyl sulfate on polystyrene latex particles using dynamic light scattering and zeta potential measurements. Macromolecules, 26(11), 2711-2715.
Brumfiel, G. (2012). Britain's big bet on graphene: Manchester institute will focus on commercial applications of atom-thick carbon sheets. Nature, 488(7410), 140- 141.
Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E. A., Tulyani, S., & Vincitore, A. (2013). Surface tension model for surfactant solutions at the critical micelle concentration. Journal of Colloid and Interface Science.
Buwalda, R. T., Stuart, M. C. A., & Engberts, J. B. F. N. (2000). Wormlike micellar and vesicular phases in aqueous solutions of single-tailed surfactants with aromatic counterions. Langmuir, 16(17), 6780-6786.
Bystrzejewski, M., Huczko, A., Lange, H., Gemming, T., Büchner, B., & Rümmeli, M. H. (2010). Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid and Interface Science, 345(2), 138-142.
Carrasco, P. M., Montes, S., García, I., Borghei, M., Jiang, H., Odriozola, I., Cabañero, G., & Ruiz, V. (2014). High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon, 70(0), 157-163.
Cataldi, P., Bayer, I. S., Bonaccorso, F., Pellegrini, V., Athanassiou, A., & Cingolani, R. (2015). Foldable conductive cellulose fiber networks modified by graphene nanoplatelet-bio-based composites. Advanced Electronic Materials, 1(12), 1500224(1500221-1500228).
Chan, A. J., Steenkeste, K., Canette, A., Eloy, M., Brosson, D., Gaboriaud, F., & Fontaine-Aupart, M.-P. (2015). Natural rubber-filler interactions: what are the parameters? Langmuir, 31(45), 12437-12446.
Chan, C. H., Joy, J, Maria, H. J., & Thomas, S. (2013). Natural rubber-based composites and nanocomposites: state of the art, new challenges and opportunities. In Thomas, S., Maria, H. J., Joy, J., Chan, C. H., & Pothen, L. A. (Eds.) Natural Rubber Materials: Volume 2: Composites and Nanocomposites (pp. 1 – 32). Cambridge: Royal Society of Chemistry.
Chen, K., & Xue, D. (2014). Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 436(Supplement C), 41-46.
Chen, Y., Zhang, B., Liu, G., Zhuang, X., & Kang, E.-T. (2012). Graphene and its derivatives: switching ON and OFF. Chemical Society Reviews, 41(13), 4688- 4707.
Chen, Y., Zhang, X., Zhang, D., Yu, P., & Ma, Y. (2011). High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 49(2), 573-580.
Cheng, D. C. H., & Gulari, E. (1982). Micellization and intermicellar interactions in aqueous sodium dodecyl benzene sulfonate solutions. Journal of Colloid and Interface Science, 90(2), 410-423.
Cheng, H., Hu, C., Zhao, Y., & Qu, L. (2014). Graphene fiber: a new material platform for unique applications. NPG Asia Mater, 6, e113.
Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 18(4), 275-297.
Cho, H. M., Gross, A. S., & Chu, J.-W. (2011). Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. Journal of the American Chemical Society, 133(35), 14033-14041.
Chua, C. K., & Pumera, M. (2013). Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 1(5), 1892-1898.
Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291-312.
Ciesielski, A., & Samori, P. (2013). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398.
Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19(23), 3680-3695.
Coleman, J. N. (2012). Liquid exfoliation of defect-free graphene. Accounts of Chemical Research, 46(1), 14-22.
Collins, A. M. (2012). Nanotechnology cookbook practical, reliable and jargon-free experimental procedures (1?? ed.). Oxford: Elsevier.
Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6(6), 711-723.
Cooper, A. J., Wilson, N. R., Kinloch, I. A., & Dryfe, R. A. W. (2014). Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon, 66(Supplement C), 340-350.
Cornish, K., Wood, D. F., & Windle, J. J. (1999). Rubber particles from four different species, examined by transmission electron microscopy and electron- paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. Planta, 210(1), 85-96.
Coro?, M., Pog?cean, F., Ro?u, M.-C., Socaci, C., Borodi, G., Mageru?an, L., Biri?, A. R., & Pruneanu, S. (2015). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6(4), 2651- 2661.
Cristadoro, A., Ai, M., Räder, H. J., Rabe, J. P., & Müllen, K. (2008). Electrical field- induced alignment of nonpolar hexabenzocoronene molecules into columnar structures on highly oriented pyrolitic graphite investigated by STM and SFM. The Journal of Physical Chemistry C, 112(14), 5563-5566.
Cui, S., Canet, R., Derre, A., Couzi, M., & Delhaes, P. (2003). Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon, 41(4), 797-809.
Das, A., Kasaliwal, G. R., Jurk, R., Boldt, R., Fischer, D., Stöckelhuber, K. W., & Heinrich, G. (2012). Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 72(16), 1961-1967.
Das, S., Irin, F., Tanvir Ahmed, H. S., Cortinas, A. B., Wajid, A. S., Parviz, D., Jankowski, A. F., Kato, M., & Green, M. J. (2012). Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer, 53(12), 2485-2494.
de Heer, W. A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., & Conrad, E. (2011). Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proceedings of the National Academy of Sciences, 108(41), 16900-16905.
de Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadoswki, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143(1-2), 92-100.
De, S., Aswal, V. K., & Ramakrishnan, S. (2010). Phenyl-ring-bearing cationic surfactants: effect of ring location on the micellar structure. Langmuir, 26(23), 17882-17889.
Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim, 14(633-52), 58.
Di Crescenzo, A., Demurtas, D., Renzetti, A., Siani, G., De Maria, P., Meneghetti, M., Prato, M., & Fontana, A. (2009). Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1- hexadecyl-3-vinyl-imidazolium bromide in aqueous solution. Soft Matter, 5(1), 62-66.
Di Crescenzo, A., Di Profio, P., Siani, G., Zappacosta, R., & Fontana, A. (2016). Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates. Langmuir, 32(26), 6559-6570.
Díez-Pascual, A. M., Vallés, C., Mateos, R., Vera-López, S., Kinloch, I. A., & Andrés, M. P. S. (2018). Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene. Soft Matter, 14(29), 6013-6023.
Doane, T. L., Chuang, C.-H., Hill, R. J., & Burda, C. (2012). Nanoparticle ζ- potentials. Accounts of Chemical Research, 45(3), 317-326.
Docherty, K. M., & Kulpa Jr, C. F. (2005). Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7(4), 185-189.
Domi´nguez, H. (2007). Self-aggregation of the SDS surfactant at a solid-liquid interface. The Journal of Physical Chemistry B, 111(16), 4054-4059.
Dong, B., Li, N., Zheng, L., Yu, L., & Inoue, T. (2007). Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir, 23(8), 4178-4182.
Doucet, M., Cho, J. H., Alina, G., Bakker, J., Bouwman, W., Butler, P., Campbell, Kieran., Gonzales, M., Heenan, R., Jackson, A., Juhas, P., King, S., Kienzle, P., Krzywon, J., Markvardsen, A., Nielsen, T., O'Driscoll, L., Potrzebowski, W., Ferraz Leal, R., Richter, T., Rozycko, P., Snow, T., & Washington, A. SasView Version 4.1.2. Retrieved June 23, 2017. https://zenodo.org/record/825675
Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3), 751-758.
Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S., & Bielawski, C. W. (2011). Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 21(10), 3443-3447.
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
Drummond, C. J., Albers, S., & Furlong, D. N. (1992). Polymer-surfactant interactions:(Hydroxypropyl) cellulose with ionic and ion-ionic surfactants. Colloids and surfaces, 62(1-2), 75-85.
Ducker, W. A., & Grant, L. M. (1996). Effect of substrate hydrophobicity on surfactant surface-aggregate geometry. The Journal of Physical Chemistry, 100(28), 11507-11511.
Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398.
Eastoe, J. (2003). Surfactant chemistry. Bristol: Bristol University.
Eastoe, J., & Gold, S. (2005). Self-assembly in green solvents. Physical Chemistry Chemical Physics, 7(7), 1352-1362.
Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K., & Penfold, J. (2000). Adsorption of ionic surfactants at the air-solution interface. Langmuir, 16(10), 4511-4518.
Eastoe, J., Paul, A., Downer, A., Steytler, D. C., & Rumsey, E. (2002). Effects of fluorocarbon surfactant chain structure on stability of water-in-carbon dioxide microemulsions. Links between aqueous surface tension and microemulsion stability. Langmuir, 18(8), 3014-3017.
Egerton, R. F. (2005). Phsyical principles of electron microscopy. New York: Springer.
El Seoud, O. A., Pires, P. A. R., Abdel-Moghny, T., & Bastos, E. L. (2007). Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3- methylimidazolium chlorides. Journal of Colloid and Interface Science, 313(1), 296-304.
Elworthy, P. H., & Mysels, K. J. (1966). The surface tension of sodium dodecylsulfate solutions and the phase separation model of micelle formation. Journal of Colloid and Interface Science, 21(3), 331-347.
Eriksson, J. C., & Ljunggren, S. (1990). Model calculations on the transitions between surfactant aggregates of different shapes. Langmuir, 6(5), 895-904.
Evans, D. F., & Ninham, B. W. (1986). Molecular forces in the self-organization of amphiphiles. The Journal of Physical Chemistry, 90(2), 226-234.
Fan, W., Zhang, C., Tjiu, W. W., & Liu, T. (2013). Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. Journal of Materials Research, 28(04), 611-619.
Feigin, L. A., & Svergun, D. I. (1987). Structure analysis by small-angle X-ray and neutron scattering. New York: Springer.
Feng, Y., Zhang, X., Shen, Y., Yoshino, K., & Feng, W. (2012). A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydrate polymers, 87(1), 644-649.
Fennel Evans, D., & Wennerstrom, H. (1994). The colloidal domain: Where physics, chemistry, biology and technology meet. New York: Wiley-VCH Weinheim.
Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57.
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman Spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.
Florio, G. M., Werblowsky, T. L., Müller, T., Berne, B. J., & Flynn, G. W. (2005). Self-assembly of small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. The Journal of Physical Chemistry B, 109(10), 4520-4532.
Food and Agricultural Organization of the United Nation: Statistic (FAOSTAT). Production quantities of rubber by country average 1994 - 2016 (Publication). Retrieved May 31, 2018, from Food and Agricultural Organization of the United Nations: http://www.fao.org/faostat/en/#data/QC.
Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskkula, H., & Paul, D. R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer, 43(22), 5915-5933.
Fukushima, T., & Aida, T. (2007). Ionic liquids for soft functional materials with carbon nanotubes. Chemistry - A European Journal, 13(18), 5048-5058.
Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., & Aida, T. (2003). Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300(5628), 2072-2074.
Galbraith, J. W., Giles, C. H., Halliday, A. G., Hassan, A. S. A., McAllister, D. C., Macaulay, N., Macmillan, N. W. (1958). Adsorption at inorganic surfaces. III. The mechanism of adsorption of organic solutes, including dyes, by graphite. Journal of Applied Chemistry, 8(7), 416-424.
Galgano, P. D., & El Seoud, O. A. (2010). Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. Journal of Colloid and Interface Science, 345(1), 1-11.
Galgano, P. D., & El Seoud, O. A. (2011). Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants. Journal of Colloid and Interface Science, 361(1), 186-194.
Garg, G., Hassan, P. A., Aswal, V. K., & Kulshreshtha, S. K. (2005). Tuning the structure of SDS micelles by substituted anilinium ions. The Journal of Physical Chemistry B, 109(4), 1340-1346.
Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191.
Geng, Y., Romsted, L. S., Froehner, S., Zanette, D., Magid, L. J., Cuccovia, I. M., & Chaimovich, H. (2005). Origin of the sphere-to-rod transition in cationic micelles with aromatic counterions: specific ion hydration in the interfacial region matters. Langmuir, 21(2), 562-568.
George, G., Sisupal, S. J., Tomy, T., Kumaran, A., Vadivelu, P., Suvekbala, V., Sivaram, S., & Ragupathy, L. (2018). Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparing biocompatible polymer nanocomposites. Scientific Reports, 8(1), 11228.
Ghislandi, M., Tkalya, E., Alekseev, A., Koning, C., & de With, G. (2015). Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions. Applied Materials Today, 1(2), 88-94.
Ghislandi, M., Tkalya, E., Marinho, B., Koning, C. E., & de With, G. (2013). Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites. Composites Part A: Applied Science and Manufacturing, 53(0), 145-151.
Ghislandi, M., Tkalya, E., Schillinger, S., Koning, C. E., & de With, G. (2013). High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion. Composites Science and Technology, 80(0), 16-22.
Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene for device applications. Nano Letters, 7(11), 3394-3398.
Glanzer, S., & Sax, A. F. (2013). Carbon nanotubes dressed by aromatic molecules. Molecular Physics, 111(16-17), 2427-2438.
Glover, A. J., Adamson, D. H., & Schniepp, H. C. (2012). Charge-driven selective adsorption of sodium dodecyl sulfate on graphene oxide visualized by atomic force microscopy. Journal of Physical Chemistry C, 116, 20080-20085.
Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers. West Sussex: John Wiley & Sons.
Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, 7(3), 583-587.
Granite, M., Radulescu, A., & Cohen, Y. (2012). Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with Pluronic F127 and poly (vinylpyrrolidone). Langmuir, 28(30), 11025-11031.
Grant, L. M., Tiberg, F., & Ducker, W. A. (1998). Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. The Journal of Physical Chemistry B, 102(22), 4288-4294.
Greaves, T. L., & Drummond, C. J. (2008). Ionic liquids as amphiphile self-assembly media. Chemical Society Reviews, 37(8), 1709-1726.
Green, A. A., & Hersam, M. C. (2009a). Emerging methods for producing monodisperse graphene dispersions. The Journal of Physical Chemistry Letters, 1(2), 544-549.
Green, A. A., & Hersam, M. C. (2009b). Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 9(12), 4031- 4036.
Griffith, A., & Notley, S. M. (2012). pH dependent stability of aqueous suspensions of graphene with adsorbed weakly ionisable cationic polyelectrolyte. Journal of Colloid and Interface Science, 369(1), 210-215.
Grimme, S. (2008). Do special noncovalent π–π stacking interactions really exist? Angewandte Chemie International Edition, 47(18), 3430-3434.
Grossiord, N. (2007). A latex-based concept for making carbon nanotube/polymer nanocomposites (Doctoral dissertation, Technische Universiteit Eindhoven, Netherlands). Retrieved from https://pure.tue.nl/ws/files/3247483/200712265.pdf
Grossiord, N., Hermant, M.-C., & Tkalya, E. (2012). Electrically conductive polymer- graphene composites prepared using latex technology. In V. Mittal (Ed.), Polymer-graphene nanocomposites (pp. 66-85). Cambridge: RSC Publishing.
Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., & Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12), 2866-2872.
Grossiord, N., van der Schoot, P., Meuldijk, J., & Koning, C. E. (2007). Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution. Langmuir, 23(7), 3646-3653.
Grunlan, J. C., Mehrabi, A. R., Bannon, M. V., & Bahr, J. L. (2004). Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Advanced Materials, 16(2), 150-153.
Guardia, L., Paredes, J. I., Rozada, R., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2014). Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 4(27), 14115-14127.
Halle, B., Landgren, M., & Jönsson, B. (1988). The shape of ionic micelles. Journal de Physique, 49(7), 1235-1259.
Hassan, P. A., Fritz, G., & Kaler, E. W. (2003). Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt. Journal of Colloid and Interface Science, 257(1), 154-162.
Hassan, P. A., Raghavan, S. R., & Kaler, E. W. (2002). Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir, 18(7), 2543-2548.
Hassan, P. A., Rana, S., & Verma, G. (2014). Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir, 31(1), 3-12.
Hassan, P. A., Sawant, S. N., Bagkar, N. C., & Yakhmi, J. V. (2004). Polyaniline nanoparticles prepared in rodlike micelles. Langmuir, 20(12), 4874-4880.
Hayter, J. B., & Penfold, J. (1983). Determination of micelle structure and charge by neutron small-angle scattering. Colloid & Polymer Science, 261(12), 1022- 1030.
Hazell, G., Hinojosa-Navarro, M., McCoy, T. M., Tabor, R. F., & Eastoe, J. (2016). Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up. Journal of Colloid and Interface Science, 464, 285-290.
He, Y., Li, Z., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in an ionic liquid. Journal of the American Chemical Society, 128(8), 2745-2750.
Heinze, T. (2015). Cellulose: structure and properties. In O. J. Rojas (Ed.), Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (pp. 1-52). Raleigh: Springer.
Hernández, M., Bernal, M. d. M., Verdejo, R., Ezquerra, T. A., & López-Manchado, M. A. (2012). Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology, 73(0), 40-46.
Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2009). Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 26(5), 3208-3213.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., & Gun’Ko, Y. K. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 3(9), 563.
Hollamby, M. J. (2013). Practical applications of small-angle neutron scattering. Physical Chemistry Chemical Physics, 15, 10566-10579.
Holland, N. B., Ruegsegger, M., & Marchant, R. E. (1998). Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants. Langmuir, 14(10), 2790-2795.
Holmberg, K., Jönsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymers in aqueous solution (Vol. 2). Surrey: John Wiley & Sons, Ltd.
Hou, M., Xu, M., & Li, B. (2018). Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustainable Chemistry & Engineering, 6(3), 2983-2990.
Hsieh, A. G., Korkut, S., Punckt, C., & Aksay, I. A. (2013). Dispersion stability of functionalized graphene in aqueous sodium dodecyl sulfate solutions. Langmuir, 29(48), 14831-14838.
Hsieh, A. G., Punckt, C., Korkut, S., & Aksay, I. A. (2013). Adsorption of sodium dodecyl sulfate on functionalized graphene measured by conductometric titration. The Journal of Physical Chemistry B, 117(26), 7950-7958.
Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Bloking, J. T., McGehee, M. D., Wagberg, L., & Cui, Y. (2012). Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science, 6(2), 513-518.
Huang, L., Wu, B., Yu, G., & Liu, Y. (2011). Graphene: learning from carbon nanotubes. Journal of Materials Chemistry, 21(4), 919-929.
Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Hunter, C. A., & Sanders, J. K. M. (1990). The nature of. pi.-. pi. interactions. Journal of the American Chemical Society, 112(14), 5525-5534.
Hunter, R. J. (1981). Zeta potential in colloid science: principles and applications (Vol. 2). London: Academic press.
Imae, T. (1996). SANS investigation of supramolecular assemblies constructed in aqueous alkyldimethylamine oxide solutions with organic additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 291-304.
Imae, T., Kakitani, M., Kato, M., & Furusaka, M. (1996). Effect of organic additives or counterions on the supramolecular assembly structures constructed by amphiphiles. A small-angle neutron scattering investigation. The Journal of Physical Chemistry, 100(51), 20051-20055.
Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2), 269-273.
Israelachvili, J., & Pashley, R. (1982). The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300(5890), 341-342.
Israelachvili, J. (2011). Intermolecular and surface forces: revised third edition. Boston: Academic Press.
Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.
Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., & Shahir, A. A. (2014). Modifying effect of imidazolium-based ionic liquids on surface activity and self- assembled nanostructures of sodium dodecyl sulfate. The Journal of Physical Chemistry B, 118(15), 4140-4150.
Jiang, D.-E., Sumpter, B. G., & Dai, S. (2006). How do aryl groups attach to a graphene sheet? The Journal of Physical Chemistry B, 110(47), 23628-23632.
Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions of carbon nanotubes. Journal of Colloid and Interface Science, 260(1), 89-94.
Jiang, S., Gui, Z., Bao, C., Dai, K., Wang, X., Zhou, K., Shi, Y., Lo, S., & Hu, Y. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chemical Engineering Journal, 226(0), 326-335.
Jiao, J., Dong, B., Zhang, H., Zhao, Y., Wang, X., Wang, R., & Yu, L. (2012). Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. The Journal of Physical Chemistry B, 116(3), 958-965.
John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate polymers, 71(3), 343-364.
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22(2), 935-969.
Juhué, D., & Lang, J. (1993). Effect of surfactant postadded to latex dispersion on film formation: a study by atomic force microscopy. Langmuir, 9(3), 792-796.
Juhué, D., & Lang, J. (1994). Latex film surface morphology studied by atomic force microscopy: effect of a non-ionic surfactant postadded to latex dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 87(3), 177-185.
Kabe, R., Feng, X., Adachi, C., & Müllen, K. (2014). Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri- hexabenzocoronene. Chemistry - An Asian Journal, 9(11), 3125-3129.
Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.
Kang, H., Zuo, K., Wang, Z., Zhang, L., Liu, L., & Guo, B. (2014). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Composites Science and Technology, 92(0), 1-8.
Kang, Y.-R., Li, Y.-L., Hou, F., Wen, Y.-Y., & Su, D. (2012). Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale, 4(10), 3248- 3253.
Kastrisianaki-Guyton, E. S., Chen, L., Rogers, S. E., Cosgrove, T., & Van Duijneveldt, J. S. (2015). Adsorption of F127 onto single-walled carbon nanotubes characterized using small-angle neutron scattering. Langmuir, 31(10), 3262-3268.
Katsnelson, M. I. (2007). Graphene: carbon in two dimensions. Materials Today, 10(1-2), 20-27.
Kim, B. S., Hayes, R. A., & Ralston, J. (1995). The adsorption of anionic naphthalene derivatives at the graphite-aqueous solution interface. Carbon, 33(1), 25-34.
Kim, H. (2009). Processing, morphology and properties of graphene reinforced polymer nanocomposites (Doctoral dissertation, University of Minnesotta). Retrieved from https://conservancy.umn.edu/handle/11299/56729.
Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16), 6515-6530.
Kim, H., Kobayashi, S., AbdurRahim, M. A., Zhang, M. J., Khusainova, A., Hillmyer, M. A., Abdala, A. A., & Macosko, C. W. (2011). Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 52(8), 1837-1846.
Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197-213.
Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research, 45(8), 1356-1364.
Kim, J. S., Hong, S., Park, D., & Shim, S. (2010). Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromolecular Research, 18(6), 558-565.
Kim, J. S., Yun, J. H., Kim, I., & Shim, S. E. (2011). Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature. Journal of Industrial and Engineering Chemistry, 17(2), 325-330.
Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574.
Kiziltas, E. E., Kiziltas, A., Rhodes, K., Emanetoglu, N. W., Blumentritt, M., & Gardner, D. J. (2016). Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydrate polymers, 136, 1144-1151.
Klemm, D., Schumann, D., Kramer, F., Heßler, N., Koth, D., & Sultanova, B. (2009). Nanocellulose materials-different cellulose, different functionality. Paper presented at the Macromolecular symposia.
Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents. Journal of the American Oil Chemists Society, 30(2), 74-80.
Koga, H., Nogi, M., Komoda, N., Nge, T. T., Sugahara, T., & Suganuma, K. (2014). Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Materials, 6(3), e93.
Kotlarchyk, M., & Chen, S. H. (1983). Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. The Journal of chemical physics, 79(5), 2461-2469.
Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36-41.
Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375.
Kumar, S., Sharma, D., & Sharma, D. (2006). Small-angle neutron scattering studies on sodium dodecylbenzenesulfonate-tetra-n-butylammonium bromide systems. Journal of surfactants and detergents, 9(1), 77-82.
Kyowa. What is surface tension? Retrieved April 23, 2018, from http://www.face- kyowa.co.jp/english/
Lagaly, G. (1999). Editorial. Applied clay science, 15(1-2), 1-9.
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose- Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90(2), 735-764.
LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1), 11-29.
Lechner, C., & Sax, A. F. (2014). Adhesive forces between aromatic molecules and graphene. The Journal of Physical Chemistry C, 118(36), 20970-20981.
Lewis, K. E., & Robinson, C. P. (1970). The interaction of sodium dodecyl sulfate with methyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 32(3), 539-546.
Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101-105.
Li, Z. X., Lu, J. R., Thomas, R. K., & Penfold, J. (1997). Neutron reflectivity studies of the adsorption of aerosol-ot at the air-water interface: the structure of the sodium salt. The Journal of Physical Chemistry B, 101(9), 1615-1620.
Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 42(19), 7254-7259.
Lin, S., Shih, C.-J., Sresht, V., Rajan, A. G., Strano, M. S., & Blankschtein, D. (2016). Understanding the colloidal dispersion stability of 1D and 2D materials: perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 244, 36-53.
Lin, S., Shih, C.-J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32), 12810-12823.
Lindman, B., Karlström, G., & Stigsson, L. (2010). On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76-81.
Lisunova, M. O., Lebovka, N. I., Melezhyk, O. V., & Boiko, Y. P. (2006). Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. Journal of Colloid and Interface Science, 299(2), 740-746.
Liu, J., Notarianni, M., Will, G., Tiong, V. T., Wang, H., & Motta, N. (2013). Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 29(43), 13307-13314.
Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., Liu, X., Gopal Sahoo, N., :I, C., Shen, Z., & Lin, J. (2013). Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2(3), 377-386.
Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One–step ionic– liquid–assisted electrochemical synthesis of ionic– functionalized graphene sheets directly from graphite. Advanced Functional Materials, 18(10), 1518- 1525.
Liu, S., Wu, B., & Yang, X. (2014). Electrolyte-induced reorganization of SDS self- assembly on graphene: a molecular simulation study. ACS Applied Materials & Interfaces, 6(8), 5789-5797.
Liu, X., Wang, L.-Y., Zhao, L.-F., He, H.-F., Shao, X.-Y., Fang, G.-B., Wan, Z.-G., & Zeng, R.-C. (2016). Research progress of graphene-based rubber nanocomposites. Polymer Composites, 39(4), 1006-1022.
Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S., & Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131(10), 3611-3620.
Lotya, M., King, P. J., Khan, U., De, S., & Coleman, J. N. (2010). High- concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4(6), 3155-3162.
Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 34(5), 431-448.
Lu, J., Yang, J.-x., Wang, J., Lim, A., Wang, S., & Loh, K. P. (2009). One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 3(8), 2367-2375.
?uczak, J., Hupka, J., Thöming, J., & Jungnickel, C. (2008). Self-organization of imidazolium ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329(3), 125-133.
Magid, L. J., Li, Z., & Butler, P. D. (2000). Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride: a small-angle neutron scattering study. Langmuir, 16, 10028-10036.
Mahajan, R. K., Vohra, K. K., Kaur, N., & Aswal, V. K. (2008). Organic additives and electrolytes as cloud point modifiers in octylphenol ethoxylate solutions. Journal of surfactants and detergents, 11(3), 243-250.
Malaysia Rubber Board. (2018). Natural Rubber Market Review. Retrieved. from http://www3.lgm.gov.my/Digest/digest/digest-5-2018.pdf.
Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D., & Hansma, P. K. (1994). Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir, 10(12), 4409-4413.
Mariano, M., El Kissi, N., & Dufresne, A. (2014). Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. Journal of Polymer Science Part B: Polymer Physics, 52(12), 791-806.
Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term "pi-stacking". Chemical Science, 3(7), 2191-2201.
Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003). Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B, 107(48), 13357-13367.
Matos, C. F., Galembeck, F., & Zarbin, A. J. G. (2014). Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon, 78(0), 469-479.
Matsuo, Y., Niwa, T., & Sugie, Y. (1999). Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon, 37(6), 897-901.
May, S., & Ben-Shaul, A. (2001). Molecular theory of the sphere-to-rod transition and the second CMC in aqueous micellar solutions. The Journal of Physical Chemistry B, 105(3), 630-640.
McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Millius, D. L., Car, R., & Prud’homme, R. K. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 19(18), 4396-4404.
McCoy, T. M., Brown, P., Eastoe, J., & Tabor, R. F. (2015). Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACS Applied Materials & Interfaces, 7(3), 2124-2133.
McCoy, T. M., de Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry Chemical Physics, 20(24), 16801-16816.
Medronho, B., & Lindman, B. (2014). Competing forces during cellulose dissolution: from solvents to mechanisms. Current Opinion in Colloid & Interface Science, 19(1), 32-40.
Medronho, B., & Lindman, B. (2015). Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in colloid and interface science, 222, 502-508.
Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., & Lindman, B. (2012). Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose, 19(3), 581-587.
Menger, F. M., & Rizvi, S. A. A. (2011). Relationship between surface tension and surface coverage. Langmuir, 27(23), 13975-13977.
Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43), 15739-15746.
Michler, G. H. (2008). Electron microscopy of polymer. Leipzig: Springer-Verlag Berlin Heidelberg.
Milner, E. M., Skipper, N. T., Howard, C. A., Shaffer, M. S. P., Buckley, D. J., ., Cullen, E. L., Heenan, R. K., Lindner, P., & Schweins, R.(2012). Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering. Journal of the American Chemical Society, 134(20), 8302-8305.
Mohamed, A., Anas, A., Abu Bakar, S., Aziz, A., Sagisaka, M., Brown, P., Eastoe, J., Kamari, A., Hashim, N., & Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013-3023.
Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., Sagisaka, M., Brown, P., & Eastoe, J. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 455, 179-187.
Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 54-69.
Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J. (2011). Low fluorine content co?-philic surfactants. Langmuir, 27(17), 10562-10569.
Mohamed, A., Sagisaka, M., Hollamby, M., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J. (2012). Hybrid CO?-philic surfactants with low fluorine content. Langmuir, 28(15), 6299-6306.
Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., Nave, S., Dyer, R., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2010). Universal surfactant for water, oils, and CO?. Langmuir, 26(17), 13861-13866.
Mohanty, A., & Dey, J. (2007). Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n- dodecyloxy)benzoyl]-l-aminoacidates in Water. Langmuir, 23(3), 1033-1040.
Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.
Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., & Talmon, Y. (2003). Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters, 3(10), 1379-1382.
Moulik, S. P., Haque, M. E., Jana, P. K., & Das, A. R. (1996). Micellar properties of cationic surfactants in pure and mixed states. The Journal of Physical Chemistry, 100(2), 701-708.
Myers, D. (1999). Surfaces, interfaces, and colloids (2?? ed.). New York: Wiley-Vch New York.
Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18(1), 31-38.
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
Najafabadi, A. T., & Gyenge, E. (2014). High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)-acetonitrile electrolyte with low IL content. Carbon, 71(0), 58-69.
Nave, S., Eastoe, J., Heenan, R. K., Steytler, D., & Grillo, I. (2002). What is so special about Aerosol-OT? Part III - glutaconate versus sulfosuccinate headgroups and oil-water interfacial tensions. Langmuir, 18(5), 1505-1510.
Nave, S., Eastoe, J., & Penfold, J. (2000). What is so special about Aerosol-OT? 1. Aqueous systems. Langmuir, 16(23), 8733-8740.
Nave, S., Paul, A., Eastoe, J., Pitt, A. R., & Heenan, R. K. (2005). What is so special about Aerosol-OT? Part IV. Phenyl-tipped surfactants. Langmuir, 21(22), 10021-10027.
Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1-3), 157-166.
Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen- bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9074-9082.
Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically transparent nanofiber paper. Advanced materials, 21(16), 1595-1598.
Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir, 28(40), 14110-14113.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S. B., Piccinini, M., Illescas, J., & Mariani, A. (2011). High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 21(10), 3428-3431.
O'Dea, A. R., Smart, R. S. C., & Gerson, A. R. (1999). Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite. Carbon, 37(7), 1133-1142.
Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19), 9148-9156.
Pang, H., Xu, L., Yan, D.-X., & Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39(11), 1908-1933.
Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460-484.
Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25(10), 5957- 5968.
Paria, S., Manohar, C., & Khilar, K. C. (2005). Adsorption of anionic and non-ionic surfactants on a cellulosic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2), 221-229.
Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019- 3023.
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224.
Paruchuri, V. K., Nguyen, A. V., & Miller, J. D. (2004). Zeta-potentials of self- assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250(1), 519-526.
Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., & Müllen, K. (2014). Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 136(16), 6083-6091.
Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., & Green, M. J. (2012). Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano, 6(10), 8857-8867.
Pashley, R., & Karaman, M. (2005). Applied colloid and surface chemistry. Cornwall: John Wiley & Sons.
Patole, A. S., Patole, S. P., Kang, H., Yoo, J.-B., Kim, T.-H., & Ahn, J.-H. (2010). A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal of Colloid and Interface Science, 350(2), 530-537.
Patrick, H. N., & Warr, G. G. (2000). Self-assembly structures of nonionic surfactants at graphite-solution interfaces. 2. Effect of polydispersity and alkyl chain branching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162(1–3), 149-157.
Patrick, H. N., Warr, G. G., Manne, S., & Aksay, I. A. (1997). Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir, 13(16), 4349-4356.
Paul, A., Griffiths, P. C., Pettersson, E., Stilbs, P., Bales, B. L., Zana, R., & Heenan, R. K. (2005). Nuclear magnetic resonance and small-angle neutron scattering studies of anionic surfactants with macrocounterions: tetramethylammonium dodecyl sulfate. The Journal of Physical Chemistry B, 109(33), 15775-15779.
Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49(15), 3187-3204.
Peng, H., Meng, L., Niu, L., & Lu, Q. (2012). Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. The Journal of Physical Chemistry C, 116(30), 16294-16299.
Peng, R., Wang, Y., Tang, W., Yang, Y., & Xie, X. (2013). Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers, 5(2), 847.
Pérez, E. M., & Martín, N. (2015). π-π interactions in carbon nanostructures. Chemical Society Reviews, 44(18), 6425-6433.
Pham, V. H., Dang, T. T., Hur, S. H., Kim, E. J., & Chung, J. S. (2012). Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Applied Materials & Interfaces, 4(5), 2630-2636.
Pichayakorn, W., Suksaeree, J., Boonme, P., Taweepreda, W., & Ritthidej, G. C. (2012). Preparation of deproteinized natural rubber latex and properties of films formed by itself and several adhesive polymer blends. Industrial & Engineering Chemistry Research, 51(41), 13393-13404.
Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109(12), 6712-6728.
Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25.
Potts, J. R., Shankar, O., Du, L., & Ruoff, R. S. (2012). Processing-morphology- property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules, 45(15), 6045-6055.
Potts, J. R., Shankar, O., Murali, S., Du, L., & Ruoff, R. S. (2013). Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology, 74(0), 166-172.
Price, B. K., Hudson, J. L., & Tour, J. M. (2005). Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society, 127(42), 14867-14870.
Quennouz, N., Hashmi, S. M., Choi, H. S., Kim, J. W., & Osuji, C. O. (2016). Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 12(1), 157-164.
Rabe, J. P., & Buchholz, S. (1991). Commensurability and mobility in two- dimensional molecular patterns on graphite. Science, 253(5018), 424-427.
Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges- origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127(16), 5917-5927.
Rahman, R., Foster, J. T., & Haque, A. (2013). Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites. The Journal of Physical Chemistry A, 117(25), 5344-5353.
Rajter, R. F., French, R. H., Ching, W. Y., Carter, W. C., & Chiang, Y. M. (2007). Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. Journal of Applied Physics, 101(5), 054303.
Ramalingam, P., Pusuluri, S. T., Periasamy, S., Veerabahu, R., & Kulandaivel, J. (2013). Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Advances, 3(7), 2369-2378.
Ramli, N. (2017). Kenaf production. Retrieved May 31, 2018. from /www.mpic.gov.my.
Rausch, J., Zhuang, R.-C., & Mäder, E. (2010). Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 41(9), 1038-1046.
Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539- 1641.
Reczek, J. J., & Iverson, B. L. (2006). Using aromatic donor acceptor interactions to affect macromolecular assembly. Macromolecules, 39(17), 5601-5603.
Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M., & Iverson, B. L. (2006). Tunable columnar mesophases utilizing C2 symmetric aromatic donor- acceptor complexes. Journal of the American Chemical Society, 128(24), 7995-8002.
Regev, O., ElKati, P. N. B., Loos, J., & Koning, C. E. (2004). Preparation of conductive nanotube-polymer composites using latex technology. Advanced Materials, 16(3), 248-251.
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2008). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30-35.
Remsing, R. C., Swatloski, R. P., Rogers, R. D., & Moyna, G. (2006). Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chemical Communications(12), 1271-1273.
Rippel, M. M., Lee, L.-T., Leite, C. A. P., & Galembeck, F. (2003). Skim and cream natural rubber particles: colloidal properties, coalescence and film formation. Journal of Colloid and Interface Science, 268(2), 330-340.
Rochette, C. N., Crassous, J. J., Drechsler, M., Gaboriaud, F., Eloy, M., de Gaudemaris, B., & Duval, J. F. L. (2013). Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM. Langmuir, 29(47), 14655-14665.
Rojas, O. J. (2016). Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (Vol. 271). New York: Springer.
Rosen, M. J., & Kunjappu, J. T. (2004). Surfactants and interfacial phenomena (3?? ed.). New Jersey: John Wiley & Sons.
Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S . (2009). Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 38(7), 2046-2064.
Sa, V., & Kornev, K. G. (2011). Analysis of stability of nanotube dispersions using surface tension isotherms. Langmuir, 27(22), 13451-13460.
Sadasivuni, K. K., Ponnamma, D., Thomas, S., & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Progress in Polymer Science, 39(4), 749-780.
Sagisaka, M., Iwama, S., Hasegawa, S., Yoshizawa, A., Mohamed, A., Cummings, S., Rogers, S. E., Heenan, R. K., & Eastoe, J. (2011). Super-efficient surfactant for stabilizing water-in-carbon dioxide microemulsions. Langmuir, 27(10), 5772-5780.
Sagisaka, M., Iwama, S., Yoshizawa, A., Mohamed, A., Cummings, S., & Eastoe, J. (2012). Effective and efficient surfactant for CO? having only short fluorocarbon chains. Langmuir, 28(30), 10988-10996.
Sagisaka, M., Narumi, T., Niwase, M., Narita, S., Ohata, A., James, C., Yoshizawa, A., Taffin de Givenchy, E. P., Guittard, F., & Alexander, S. (2014). Hyper- branched hydrocarbon surfactants give fluorocarbon-like low surface energies. Langmuir, 30(21), 6057-6063.
Samsuri, A. (2013). Theory and mechanisms of filler reinforcement in natural rubber. In S. Thomas, H. J. Maria, J. Joy, C. H. Chan & L. A. Pothen (Eds.), Natural Rubber-Based Composites and Nanocomposites: State of the Art, New Challenges and Opportunities (pp. 73-109). Cambridge: Royal Society of Chemistry.
Sansatsadeekul, J., Sakdapipanich, J., & Rojruthai, P. (2011). Characterization of associated proteins and phospholipids in natural rubber latex. Journal of Bioscience and Bioengineering, 111(6), 628-634.
Schaefer, D. W., & Justice, R. S. (2007). How nano are nanocomposites? Macromolecules, 40(24), 8501-8517.
Schramm, L. L. (2006). Emulsions, foams, and suspensions: fundamentals and applications. Weinheim: Wiley VCH.
Sefcik, J., Verduyn, M., Storti, G., & Morbidelli, M. (2003). Charging of latex particles stabilized by sulfate surfactant. Langmuir, 19(11), 4778-4783.
Seo, J.-W. T., Green, A. A., Antaris, A. L., & Hersam, M. C. (2011). High- concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. The Journal of Physical Chemistry Letters, 2(9), 1004- 1008.
Sethuraj, M. R., & Mathew, N. T. (1922). Natural rubber: biology, cultivation and technology (Vol. 23). Netherlands: Elsevier.
Shah, K., Chiu, P., & Sinnott, S. B. (2006). Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and water- graphite interfaces from molecular dynamics simulations. Journal of Colloid and Interface Science, 296(1), 342-349.
Shah, R. K., Hunter, D. L., & Paul, D. R. (2005). Nanocomposites from poly (ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties. Polymer, 46(8), 2646-2662.
Shahil, K. M. F., & Balandin, A. A. (2012). Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 12(2), 861-867.
Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495-504.
Shen, B., Zhai, W., Chen, C., Lu, D., Wang, J., & Zheng, W. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π-π stacking. ACS Applied Materials & Interfaces, 3(8), 3103-3109.
Shen, J., He, Y., Wu, J., Gao, C., Keyshar, K., Zhang, X., Yang, Y., Ye, M., Vajtai, R., & Lou, J. (2015). Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Letters, 15(8), 5449-5454.
Shen, J., Hu, Y., Li, C., Qin, C., & Ye, M. (2009). Synthesis of amphiphilic graphene nanoplatelets. Small, 5(1), 82-85.
Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., & Ye, M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15), 3514-3520.
Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., & Ye, M. (2016). Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small, 12(20), 2741-2749.
Sherif, A., Izzuddin, Z., Qingshi, M., Nobuyuki, K., Andrew, M., Hsu-Chiang, K., Peter, M., Jun, M., & Liquin, Z. (2013). Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 24(16), 165601.
Shi, G., Araby, S., Gibson Christopher, T., Meng, Q., Zhu, S., & Ma, J. (2018). Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Advanced Functional Materials, 28(19), 1706705.
Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2010). Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society, 132(41), 14638-14648.
Shih, C.-J., Lin, S., Strano, M. S., & Blankschtein, D. (2015). Understanding the stabilization of single-walled carbon nanotubes and graphene in ionic surfactant aqueous solutions: large-scale coarse-grained molecular dynamics simulation-assisted DLVO theory. The Journal of Physical Chemistry C, 119(2), 1047-1060.
Shih, C.-J., Paulus, G. L. C., Wang, Q. H., Jin, Z., Blankschtein, D., & Strano, M. S. (2012). Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Langmuir, 28(22), 8579-8586.
Shim, Y., & Kim, H. J. (2009). Solvation of carbon nanotubes in a room-temperature ionic liquid. ACS Nano, 3(7), 1693-1702.
Shinde, D. B., Brenker, J., Easton, C. D., Tabor, R. F., Neild, A., & Majumder, M. (2016). Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir, 32(14), 3552-3559.
Silvera-Batista, C. A., & Ziegler, K. J. (2011). Swelling the hydrophobic core of surfactant-suspended single-walled carbon nanotubes: A SANS study. Langmuir, 27(18), 11372-11380.
Singh, G., Singh, G., & Kang, T. S. (2016). Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media. The Journal of Physical Chemistry B, 120(6), 1092-1105.
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271.
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494.
Skoog, D. A., Holler, E. J., & Crouch, S. R. (2007). Principles of instrumental analysis (Vol. 6). Canada: Thomson Brooks/Cole.
Smith, G. N., Alexander, S., Brown, P., Gillespie, D. A. J., Grillo, I., Heenan, R. K., James, C., Kemp, R. Rogers, S. E., & Eastoe, J. (2014). Interaction between surfactants and colloidal latexes in nonpolar solvents studied using contrast- variation small-angle neutron scattering. Langmuir, 30(12), 3422-3431.
Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 12(12), 125008.
Sousa, F. D. B. d., & Scuracchio, C. H. (2014). The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blens based on elastomers. Polimeros, 24(6), 661-672.
Spyrou, K., Calvaresi, M., Diamanti, E. K., Tsoufis, T., Gournis, D., Rudolf, P., & Zerbetto, F. (2015). Graphite oxide and aromatic amines: Size matters. Advanced Functional Materials, 25(2), 263-269.
Srinivas, G., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2006). Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface. Journal of the American Chemical Society, 128(3), 848-853.
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., & Ruoff, R. S. (2006). Graphene- based composite materials. Nature, 442(7100), 282-286.
Stone, M. T., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2003). Molecular differences between hydrocarbon and fluorocarbon surfactants at the CO?/water interface. Journal of Physical Chemistry B, 107(37), 10185-10192.
Stone, M. T., Smith, P. G., da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2004). Low interfacial free volume of stubby surfactants stabilizes water-in- carbon dioxide microemulsions. Journal of Physical Chemistry B, 108(6), 1962-1966.
Strano, M. S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., Hauge, R. H., & Smalley, R. E. (2003). The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 3(1-2), 81-86.
Stubbs, J. M., Durant, Y. G., & Sundberg, D. C. (1999). Competitive adsorption of sodium dodecyl sulfate on two polymer surfaces within latex blends. Langmuir, 15(9), 3250-3255.
Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., & Rao, C. N. R. (2009). Covalent and noncovalent functionalization and solubilization of graphene. Nanoscience and Nanotechnology Letters, 1(1), 28-31.
Sun, H., & Yang, X. (2014). Molecular simulation of self-assembly structure and interfacial interaction for SDBS adsorption on graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462(0), 82-89.
Sun, Z., Nicolosi, V., Rickard, D., Bergin, S. D., Aherne, D., & Coleman, J. N. (2008). Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. The Journal of Physical Chemistry C, 112(29), 10692-10699.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials & Design, 99, 174-181.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters, 161, 665-668.
Suttipong, M., Tummala, N. R., Kitiyanan, B., & Striolo, A. (2011). Role of surfactant molecular structure on self-assembly: aqueous SDBS on carbon nanotubes. The Journal of Physical Chemistry C, 115(35), 17286-17296.
Syurik, Y. V., Ghislandi, M. G., Tkalya, E. E., Paterson, G., McGrouther, D., Ageev, O. A., & Loos, J. (2012). Graphene network organisation in conductive polymer composites. Macromolecular Chemistry and Physics, 213(12), 1251- 1258.
Tadros, T. (2007). General principles of colloid stability and the role of surface forces. In T. Tadros (Ed.), Colloid stability: The role of surface forces - Part 1 (Vol. 1): Weinheim: Wiley VCH.
Tadros, T. (2006). Applied surfactants - principles and applications. Weinheim: Wiley VCH.
Tanford, C. (1972). Micelle shape and size. Journal of Physical Chemistry, 76(21), 3020-3024.
Tanford, C. (1974). Thermodynamics of micelle formation: prediction of micelle size and size distribution. Proceedings of the National Academy of Sciences, 71(5), 1811-1815.
Tanford, C. (1978). The hydrophobic effect and the organization of living matter. Science, 200(4345), 1012-1018.
Tanford, C. (1979). Interfacial free energy and the hydrophobic effect. Proceedings of the National Academy of Sciences, 76(9), 4175-4176.
Tanford, C. (1980). The hydrophobic effect: formation of micelles and biological membranes (2?? ed.). New York: Wiley.
Tapasztó, O., Tapasztó, L., Markó, M., Kern, F., Gadow, R., & Balázsi, C. (2011). Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 511(4), 340-343.
Terrones, M. (2009). Materials science: Nanotubes unzipped. Nature, 458(7240), 845- 846.
Texter, J. (2014). Graphene dispersions. Current Opinion in Colloid & Interface Science, 19(2), 163-174.
Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., & Loos, J. (2010). Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry, 20(15), 3035-3039.
Tkalya, E., Ghislandi, M., Otten, R., Lotya, M., Alekseev, A., van der Schoot, P., Coleman, J., de With, G., & Koning, C. (2014). Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. ACS Applied Materials & Interfaces, 6(17), 15113-15121.
Tkalya, E., Ghislandi, M., de With, G., & Koning, C. E. (2012). The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Current Opinion in Colloid & Interface Science, 17(4), 225- 232.
Tummala, N. R., Grady, B. P., & Striolo, A. (2010). Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 12(40), 13137-13143.
Tummala, N. R., & Striolo, A. (2009). Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Physical Review E, 80(2), 021408.
Vadukumpully, S., Paul, J., & Valiyaveettil, S. (2009). Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon, 47(14), 3288-3294.
Vaia, R. A., & Giannelis, E. P. (2001). Polymer nanocomposites: status and opportunities. MRS Bulletin, 26(5), 394-401.
Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128-130(0), 37-46.
Vega-Rios, A., Rentería-Baltiérrez, F. Y., Hernández-Escobar, C. A., & Zaragoza- Contreras, E. A. (2013). A new route toward graphene nanosheet/polyaniline composites using a reactive surfactant as polyaniline precursor. Synthetic Metals, 184(0), 52-60.
Verdejo, R., Bernal, M. M., Romasanta, L. J., & Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 21(10), 3301-3310.
Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the stability of lyophobic colloids. New York: Elsevier Publishing Company.
Wang, B., Lou, W., Wang, X., & Hao, J. (2012). Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose- graphene oxide composite films. Journal of Materials Chemistry, 22(25), 12859-12866.
Wang, D., Zhang, X., Zha, J.-W., Zhao, J., Dang, Z.-M., & Hu, G.-H. (2013). Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer, 54(7), 1916-1922.
Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering, 79, 521-529.
Wang, G., & Olofsson, G. (1995). Ethyl hydroxyethyl cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfate and some cationic surfactants. The Journal of Physical Chemistry, 99(15), 5588-5596.
Wang, H. (2009). Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid & Interface Science, 14(5), 364-371.
Wang, H., Zhou, W., Ho, D. L., Winey, K. I., Fischer, J. E., Glinka, C. J., & Hobbie, E. K. (2004). Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study. Nano Letters, 4(9), 1789-1793.
Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 48(9), 4817-4825.
Wang, J., Chu, H., & Li, Y. (2008). Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS nano, 2(12), 2540-2546.
Wang, Q., Han, Y., Wang, Y., Qin, Y., & Guo, Z.-X. (2008). Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 112(24), 7227-7233.
Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 6(61), 56705-56710.
Wang, Z., Liu, J., Wang, W., Chen, H., Liu, Z., Yu, Q., Zeng, H., & Sun, L. (2013). Aqueous phase preparation of graphene with low defect density and adjustable layers. Chemical Communications, 49(92), 10835-10837.
Wangmo, S., Song, R., Wang, L., Jin, W., Ding, D., Wang, Z., & Zhang, R.-Q. (2012). Strong interactions and charge transfers between a charged benzene molecule and multilayer graphenes. Journal of Materials Chemistry, 22(44), 23380-23386.
Wanless, E. J., & Ducker, W. A. (1996). Organization of sodium dodecyl sulfate at the graphite-solution interface. The Journal of Physical Chemistry, 100(8), 3207-3214.
Waters, M. L. (2002). Aromatic interactions in model systems. Current opinion in chemical biology, 6(6), 736-741.
Weingärtner, H. (2008). Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angewandte Chemie International Edition, 47(4), 654-670.
Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., & Cheng, H.-M. (2011). Graphene- cellulose paper flexible supercapacitors. Advanced Energy Materials, 1(5), 917-922.
Wertz, J.-L., Mercier, J. P., & Bédué, O. (2010). Cellulose science and technology: EPFL press.
White, B., Banerjee, S., O'Brien, S., Turro, N. J., & Herman, I. P. (2007). Zeta- potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. The Journal of Physical Chemistry C, 111(37), 13684-13690.
Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and Related Materials, 46(0), 25-34.
Winey, K. I., & Vaia, R. A. (2007). Polymer nanocomposites. MRS Bulletin, 32(4), 314-322.
Woods, L. M., B?descu, ?. C., & Reinecke, T. L. (2007). Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 75(15), 155415.
Wu, B., & Yang, X. (2013). Molecular simulation of electrolyte-induced interfacial interaction between SDS/graphene assemblies. The Journal of Physical Chemistry C, 117(44), 23216-23223.
Wu, D., & Yang, X. (2012). Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures. The Journal of Physical Chemistry B, 116(39), 12048-12056.
Wu, T.-M., & Chen, E.-C. (2008). Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology. Composites Science and Technology, 68(10-11), 2254-2259.
Xu, B., Lynn, G. W., Guo, J., Melnichenko, Y. B., Wignall, G. D., McClain, J. B., DeSimone, J. M., & Johnson, C. S. (2005). NMR and SANS studies of aggregation and microemulsion formation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide. Journal of Physical Chemistry B, 109(20), 10261-10269.
Yang, K., Wu, W., Jing, Q., & Zhu, L. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 42(21), 7931-7936.
Yang, Y.-K., He, C.-E., Peng, R.-G., Baji, A., Du, X.-S., Huang, Y.-L., Xie, X.-L., & Mai, Y.-W. (2012). Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. Journal of Materials Chemistry, 22(12), 5666-5675.
Ye, W., Li, X., Zhu, H., Wang, X., Wang, S., Wang, H., & Sun, R. (2016). Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties. Chemical Engineering Journal, 299, 45-55.
Yeon, C., Yun, S. J., Lee, K.-S., & Lim, J. W. (2015). High-yield graphene exfoliation using sodium dodecyl sulfate accompanied by alcohols as surface- tension-reducing agents in aqueous solution. Carbon, 83, 136-143.
Yin, S., Wang, C., Qiu, X., Xu, B., & Bai, C. (2001). Theoretical study of the effects of intermolecular interactions in self-assembled long-chain alkanes adsorbed on graphite surface. Surface and interface analysis, 32(1), 248-252.
Yoon, S. H., Jin, H.-J., Kook, M.-C., & Pyun, Y. R. (2006). Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 7(4), 1280-1284.
Yoonessi, M., & Gaier, J. R. (2010). Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano, 4(12), 7211-7220.
Young, R. J., Liu, M., Kinloch, I. A., Li, S., Zhao, X., Vallés, C., & Papageorgiou, D. G. (2018). The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 154, 110-116.
Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E., & Loos, J. (2007). Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon, 45(15), 2897-2903.
Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5), 329-338.
Yue, L., Pircheraghi, G., Monemian, S. A., & Manas-Zloczower, I. (2014). Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects. Carbon, 78(0), 268-278.
Yurekli, K., Mitchell, C. A., & Krishnamoorti, R. (2004). Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. Journal of the American Chemical Society, 126(32), 9902-9903.
Zan, R., Bangert, U., Ramasse, Q., & Novoselov, K. S. (2011). Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Letters, 11(3), 1087-1092.
Zhan, Y., Lavorgna, M., Buonocore, G., & Xia, H. (2012). Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. Journal of Materials Chemistry, 22(21), 10464-10468.
Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., & Yuan, G. (2011). Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromolecular Materials and Engineering, 296(7), 590-602.
Zhang, J., Zhang, J., Lin, L., Chen, T., Zhang, J., Liu, S., Li, Z., & Ouyang, P. (2009). Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes and kinetics. Molecules, 14(12), 5027-5041.
Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663-6670.
Zhang, X., Liu, X., Zheng, W., & Zhu, J. (2012). Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydrate polymers, 88(1), 26-30.
Zhang, X., Wang, J., Jia, H., You, S., Xiong, X., Ding, L., & Xu, Z. (2016). Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene. Composites Part B: Engineering, 84, 121-129.
Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438(7065), 201.
Zhang, Y. I., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46(10), 2329-2339.
Zhao, C. L., Dobler, F., Pith, T., Holl, Y., & Lambla, M. (1989). Surface composition of coalesced acrylic latex films studied by XPS and SIMS. Journal of Colloid and Interface Science, 128(2), 437-449.
Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 1(5), 782-791.
Zhou, J., & Zhang, L. (2000). Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal, 32(10), 866-870.
Zhou, W., Islam, M. F., Wang, H., Ho, D. L., Yodh, A. G., Winey, K. I., & Fischer, J. E. (2004). Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chemical Physics Letters, 384(1), 185-189.
Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., & Wu, G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry, 8(4), 325-327.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924.
Zuberi, M., Sherman, D. M., & Cho, Y. (2011). Carbon nanotube microspheres produced by surfactant-mediated aggregation. The Journal of Physical Chemistry C, 115(10), 3881-3887.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |