UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :LB Theory and practice of education
Main Author :Noor Hidayah Amir Ruddin
Title :Pembangunan model regresi logistik bagi pencapaian pelajar dalam kursus kaedah dan penggunaan statistik berdasarkan faktor-faktor bukan kognitif
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Notes :pedagogi
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Kajian  ini  dijalankan  untuk  membangunkan  satu  model  pencapaian  regresi  logistik  berdasarkan   faktor-faktor   bukan   kognitif   yang  mempengaruhi   pencapaian   pelajar dalam    kursus   Kaedah   dan   Penggunaan   Statistik   (SMS3033).   Kajian   ini   adalah berbentuk   pembangunan  model.  Populasi  kajian  adalah  terdiri  daripada  140  pelajar tahun  pertama  sesi   2  2016/2017  program  Ijazah  Pendidikan  Matematik Fakulti  Sains dan Matematik. Persampelan  yang digunakan dalam kajian ini berbentuk persampelan rawak  mudah  yang  melibatkan  103   responden  berdasarkan  kepada  jadual  Krejie  dan Morgan. Kajian ini melibatkan dua  fasa. Fasa  pertama  adalah  mengenal  pasti faktor- faktor  bukan  kognitif  yang  mempengaruhi  pencapaian   dan  fasa  kedua  merupakan pembangunan model regresi logistik. Analisis regresi berganda  menunjukkan bahawa terdapat   pengaruh   kebimbangan   matematik,   gaya   pembelajaran   mendalam,    gaya pembelajaran permukaan, gaya pembelajaran gigih usaha, motivasi dalaman dan  juga motivasi   luaran  terhadap  pencapaian  pelajar  bagi  kursus  SMS3033.  Model  regresi logistik  yang  telah   dibangunkan  pula  menunjukkan  faktor  utama  yang  menyumbang kepada   pencapaian   pelajar    dalam   kursus   ini   adalah   kebimbangan   matematik   ( ? = 0.039 , ? = 6.329 ), gaya pembelajaran mendalam ( ? = 0.047 , ? = 0.145 ) dan juga motivasi   luaran  ( ? = 0.049, ? = -4.159 ).  Kesimpulannya  pencapaian  pelajar  adalah bergantung   kepada    faktor   kendiri   pelajar   itu   sendiri   dan   juga   motivasi   luaran. Implikasinya,   pembinaan  model  pencapaian  regresi  logistik  dapat  memberi  panduan kepada  pendidik  untuk   meramal  pencapaian  bagi  pelajar.  Oleh  demikian,  ia  dapat membantu pihak fakulti atau  universiti merancang program yang boleh meningkatkan motivasi dan faktor kendiri pelajar untuk berjaya.  

References

Adawiyah  Abdul  Aziz  &  Leong  K.U.(2016).  Penakulan  Statistik  Menggunakan

Tinkerplots. 105-117.

 

Adebayo,  B.  (2008).  Cognitive  and  Non-Cognitive  Factors  Affecting  the  Academic Performance 

and  Retention of Conditionally Admitted Freshmen.  Journal of College Admission, 1-7.

 

Ahmad   Johari   Sihes   &   Hanisah   Abdullah   (2010).   Gaya   Pembelajaran   Dan Hubungannya   

  Dengan     Pencapaian     Akademik     Pelajar     Tahun     Tiga. UTM,Skudai , 1-7.

 

Ali,  U.,  &  Haydar,  G.  A.  (2011).  Factors  Associated  with  Student  Performance  in 

Financial  Accounting  Course.  European  Journal  of  Economic  &  Political Studies, 141-156.

 

Ali,   H.   O.   (2013).   Factors   Affecting   Students’   Academic   Performance   in 

Mathematical Sciences Department in Tertiary Institutions in Negeria. David Publishing, 905-913.

 

Alireza Pourmoslemi, Nasrolah Erfani & Iraj Firoozfar (2013). Mathematics Anxiety, Mathematics   

Performance   and   Gender   differences   among   Undergraduate Students. International Journal of 

Scientific and Research Publications, 1-6.

 

Amirah Mohamed Shahiri, Wahidah Husain & Nur’aini Abdul Rashid. A Review on Predicting  Student's  

Performance  Using  Data  Mining  Techniques.  Procedia Computer Science, 414-422.

 

Arif  Hassan (2007). Human resource development and organizational values. Journal of European 

Industrial Training, 435-448.

 

Aromolaran,  A.D.,  Oyeyinka  I.K.,  Olukotun  O.O  &  Benjamin,  E(2013).  Binary Logistic 

Regression of Students Academic Performance in Tertiary Institution in   Nigeria   by   

Socio-Demographic   and   Economic   Factors.   International Journal  of  Engineering  Science  

and  Innovative  Technology  (IJESIT).  2(4), 4.590-596.

 

Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondary  

level.  In  F.  Lester  (Ed.),  Second  Handbook  of  Research  on Mathematics   Teaching   and   

Learning   (pp.   1011-1049).   Greenwich,   CT:

Information Age Publishing, Inc., and NCTM.

 

Ashby,  J.,  Sadera,  W.  A.,  &  McNary,  S.  W.  (2011).  Comparing  student  success between  

developmental  math  courses  offered  online,  blended,  and  face-to- face. Journal of 

Interactive Online Learning, 128-140.

 

Ben-Zvi, D.,  & Garfield, J. (2004).  Introducing the emerging discipline of statistics education. 

School Science and Mathematics, 355-361.

 

Ben, C. F. Y., Shanmugan, M. &  Zulkifflee Mohamed (2012). Evaluating Company Failure  In  Malaysia 

 Using  Financial  Ratios  and  Logistic  Regression.  Asian Journal of Finance & Accounting , 

330-344.

 

Bernabeu,  C.  B.  (2011).  Teaching  Statistics  in  School  Mathematics.  Challenges  for 

Teaching and Teacher Education. Conferencia Interamericana De Educacion Matematica, (pp. 1-7). 

Resife,Brazil.

 

Chiesi,  F.,  &  Primi,  C.  (2010).  Cognitive  and  Non-Cognitive  Factors  Related  to Students 

Statistic Achievement. Statistics Education Research Journal, 6-26.

 

Choi,  S.  L.,  Zaiton  Ibrahim  &  Tan,  O.  K.  (2014).  An  Analysis  on  the  Relationship 

between   Lecturers’   Competencies   and   Students’   Satisfaction.   Canadian Center of Science 

and Education , 37-46.

 

Danili, E., & Reid, N. (2006). Cognitive factors that can potentially affect pupils’ test 

performance. Chemistry Education Research and Practice, 64-83.

 

Dunn,   R.,   &   Dunn,   K.   (1992).   Teaching   Elementary   Students   Through   their 

Individual Learning Styles:Practical Approach for Grades 3-6.

 

Euzent,   P.,   Martin,   T.,   Moskal,   P.,   &   Moskal,   P.(2011).   Assessing   Student 

Performance  and  Perceptions  in  Lecture  Capture  vs.  Face-to-Face  Course Delivery. Journal of 

Information Technolgy Education, 295-307.

 

Fagoyinbo, I. S., Akinbo, R. Y. & Ajibode, I. A. (2013). Modelling Academic Risks of Students in a 

Polytechnic System With the  Use of  Discriminant Analysis Modelling Academic. Progress in Applied 

Mathematics vol.6, 59-68..

 

Fagoyinbo,  I.  S.,  Ajibode,  I.  A.,  &  Olaniran,  Y.  O.  A.  (2014).  The  Application  of 

Logistic  Regression  Analysis  to  the  Cummulative  Grade  Point  Average  of Graduating 

Students:A  Case Study of Students’  of Applied  Science,  Federal Polytechnic,Ilaro. 26-30.

 

Fang, J. (2013). Why Logistic Regression Analyses Are More Reliable Than Multiple Regression 

Analyses . Journal of Business and Economics, 620-633.

 

Farhad  Kazemi,  Anvar  Shahmohammadi  &  Majeed  Sharei  (2013).  The  Survey  on

Relationship  Between  the  Attitude  and  Academi  achievement  of  In-Service

Mathematics   Teachers   in   Introductory   Probability   and   Statistics.   World

Applied Sciences Journal, 886-891.

 

Farg, M. H. (2015). Application Of Logistic Model For Studying The Factors Affect Academic 

Achievement Of The Student - Case Study Of Faculty Of Sciences And Humanities (Thadiq) -Shaqraa 

University-Ksa. International Journal Of Engineering Sciences & Research, 54-65

 

Fauzi  Mohd  Ayub  (2009).  Analisis  Kesukaran  Pembelajaran  Dalam  Matematik Kalkulus. Math 

Digest: Research Bulletin Institute for Mathematical Research, 2(2). pp. 26-3.

 

Ghazvini,  S.  D.,  &  Khajehpour,  M.  (2011).  Gender  differences  in  factors  affecting 

academic   performance   of   high   school   students.   Procedia   -   Social   and Behavioral 

Sciences, 1040-1045.

 

Gbollie,  C.  &  Keamu,  H.  P.  (2017).  Student  Academic  Performance:  The  Role  of 

Motivation,  Strategies,  and  Perceived  Factors  Hindering  Liberian  Junior and Senior High 

School Students Learning. Education Research International.

 

Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., H.Oliver, P., & Guerin, D. W. (2007).  

Multivariate  latent  change  modeling  of  developmental  decline  in academic  intrinsic  math  

motivation  and  achievement:  Childhood  through adolescence. International Journal of Behavioral 

Development, 317-327.

 

Graf, S., Kinshuk, & Liu, T.-C. (2009). Supporting Teachers in Identifying Students’ Learning  

Styles  in  Learning  Management  Systems:  An  Automatic  Student Modelling Approach . Educational 

Technology & Society, 3-14.

 

Hairulliza  Mohamad  Judi,  Noraidah  Sahari  Ashaari,  Hazura  Mohamed  &  Tengku Merian  Tengku  

Wook  (2011).  Students  profile  based  on  attitude  towards statistics. Procedia - Social and 

Behavioral Sciences, 266-272.

 

Hazura Mohamed, Noraidah Sahari, Hairulliza Mohamad Judi & Tengku Siti Meriam Tengku  Wook  (2012). 

 Factors  affecting  FTSM  students’  achievement  in statistics course. Procedia - Social and 

Behavioral Sciences, 125-129.

 

Hidi, S., & Harackiewicz, J. M. (2000). Motivating the Academically Unmotivated: A Critical Issue 

for the 21st Century. SAGE Journal, 151-179.

 

Huang,  S.,  &  Fang,  N.  (2010).  Prediction  of  student  academic  performance  in  an 

engineering  dynamics  course:  development  and  validation  of  multivariate regression  models.  

International  Journal  of  Engineering  Education,  26(4),

1008–1017.

 

Isabel, R. & Antonia, A. (2008). Two Profiles of Teacher Education Graduates:a

discriminant analysis of teaching commitment . European Educational

Research Journal , 524-534.

 

Julianti Kasih & Sani Susanto (2012). Predicting Students’ Final Results Through

Discriminant Analysis. World Transactions on Engineering and Technology

Education, 144-147

 

Kamaruddin Llias, Roshidah Abdul Rahman, Mubin Md Noor & Nurul Azwa Saidon

(2010). Pengaruh gaya pembelajaran terhadap motivasi dan pencapaian

akademik pelajar Pra Ijazah Sarjana Muda Perguruan Institut Pendidikan Guru

Kampus Ipoh. Jurnal Penyelidikan Dedikasi, 141-153

 

Khine, M. S., & Areepattamannil, S. (2016). Non-cognitive Skills and Factor in

Educational Attainment. Rotterdam: Sense Publishers.

 

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and

development. New Jersey : Prentice-Hall.

 

Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for Research

Activities. Educational and Psychological Measurement, 30, 607-610.

 

Krishnan, S & Noraini Idris. (2014). Aspects of Reform in Improving Malaysian

Students’ Learning of Statistics. International Conference on Education,

Research and Innovation, 109-113.

 

Krosnick, J. A., & Presser, S. (2010). Questionnaire design. In J. D. Wright & P. V.

Marsden (Eds.), Handbook of Survey Research (Second Edition). West

Yorkshire, England: Emerald G.

 

Lizzio, A., Wilson, K., & Simons, R. (2002). University Student's Perceptions of the

Learning Environment and Academic Outcomes:Implications for Theory and

Practice. Study in Higher Education, 27-52.

 

Livieris, I. E., Drakopoulou, K., & Panagiotis, P. (2012). Predicting students’

performance using artificial neural networks. Journal of Machine Learning

Research, 27-66.

 

Luttenberger, S., Wimmer, S. & Paechter, M. (2018). Spotlight on math anxiety.

Psychology Research and Behavior Management, 311-322.

 

Mabula, S. (2015). Modeling Student Performance in Mathematics Using Binary

Logistic Regression at Selected Secondary Schools A Case Study of Mtwara

Municipality and Ilemela District. Journal of Education and Practice, 96-103.

 

Maja, P., Mateja, B. & Sandra, T. (2004). Comparison of Logistic Regression and

Linear Discriminat Analysis:A simulation study. Metodološki zvezki,, 143-

161.

 

Marcela, V. (2015). Learning Strategy, Personality Traits and Academic Achievement

of University Students. Procedia - Social and Behavioral Sciences, 3473-

3478.

 

Maria Chong Abdullah, Samsilah Roslan & Tajularipin Sulaiman (2011). Strategi

pengajaran pembelajaran di Institusi Pengajian Tinggi: Satu Anjakan

Paradigma. Malaysian Education Dean Council Journal, 8, 101-115

 

Meylani, R., Bitter, G. G., & Castaneda, R. (2014). Predicting Student Performance in

Statewide High-Stakes Tests for Middle School Mathematics Using the

Results from Third Party. Journal of Education and Learning, 135-143.

 

Mlambo, V. (2011). An analysis of some factors affecting student academic

performance in an introductory biochemistry course at the University of the

West Indies. ERA Educational Research Association, 79-92.

 

Mushtaq, I., & Khan, S. N. (2012). Factors Affecting Students' Academic

Performance. Global Journal of Management and Business Research, 17-22.

 

Nizoloman. (2013). Relationship between Mathematical Ability and Achievement in

Mathematics among Female Secondary School Students in Bayelsa State

Nigeria. Procedia Social and Behavioral Sciences, 2230-2240.

 

Nooraini Othman & Khairul Anuar Abdul Rahman (2010). Hubungan Antara

Kompetensi Pensyarah Dengan Pencapaian Akademik Pelajar. Universiti

Teknologi Malaysia.

 

Noraini Idris. (2005). Pedagogi Dalam Pendidikan Matematik. Kuala Lumpur:

Utusan Publications & Distributors.

 

Noraini Idris. (2010). Penyelidikan dalam pendidikan. Kuala Lumpur: Mc Graw-Hill

(M) Sdn. Bhd.

 

Noraini Omar. (2008). Faktor-faktor yang Mempengaruhi Pencapaian Pelajar Dalam

Mata Pelajaran Pendidikan Islam Tingkatan Lima. Jurnal Pendidikan: Institut

Perguruan Tun Abdul Razak, Sarawak..

 

Norhidayah Ali, Kamaruzaman Jusoff, Syukriah Ali, Najah Mokhtar & Azni Syafena

Andin Salamat (2009). The Factors Influencing Students ’ Performance at

Universiti Teknologi MARA Kedah, Malaysia. Management Science and

Engineering, 81-90.

 

Norlia Abd Aziz, T. Subahan M. Meerah, Lilia Halim & Kamisah Osman (2006).

Hubungan Antara Motivasi, Gaya Pembelajaran Dengan Pencapaian

Matematik Tambahan Pelajar Tingkatan 4. Jurnal Pendidikan, 123-14.

 

Nur Maizatul Azra Mukhtar, Faizal Hashim, Marina Mokhtar, Nor Aimi Abdul

Wahab, Noorezal Atfyinna Mohd Napiah & Suhaiza Hasan (2017). Faktor

Yang Mempengaruhi Pencapaian Pelajar Dalam Mata Pelajaran Fizik:Satu

Sudut Pandangan. International Academic Research Journal of Social Science,

195-201.

 

Ogunjuyigbe, A. S., & Alawode, K. (2007). Application of Neural Network to Load

Forecasting . The Pacific Journal of Sience and Technology.

 

Oladokun, V. O., Adebanjo, A. T., & Charles Owaba, O.E (2008). Predicting

Students’ Academic Performance using Artificial Neural Network:A Case

Study of Engineering Course. The Pacific Journal of Science and Technology ,

72-79.

 

O'Leary, K., Fitzpatrick, C. L. & Hallett, D. (2017). Math Anxiety Is Related to

Some, but Not All, Experiences with Math. Frontier in Psychology.

 

Onwuegbuzie, A. J. (2013). Modeling statistics achievement among graduate

students. Educational and Psychological Measurement, 1020-1038.

Prima Vitasari, Tutut Herawan, Muhammad Nubli Abdul Wahab, Ahmad Othman &

 

S. Suriya Kumar (2010). Exploring Mathematics Anxiety among Engineering

students. Procedia Socials and Behavioral Sciences, 482-489.

 

Rahmani, & Jahanbakhsh. (2012). Learning Styles and Academic Achievement: a

Case Study of Iranian High School Girl's Students. Procedia Social and

Behavioral Sciences, 1030-1034.

 

Rékaa, J., Kármena, D., Susana, F., Kinga, K. J., Edita, M., & Kinga, S. (2015).

Implications of Motivational Factors Regarding the Academic Success of Fulltime

and Distance Learning Undergraduate Students: A Self-determination

Theory Perspective. Procedia - Social and Behavioral Sciences, 50-55.

 

Rossnan, S. (2006). Overcoming Math Anxiety . 1-4. Diperoleh 10 Mei 2017, dimuat

turun daripada:

http://coe.fau.edu/centersandprograms/mathitudes/documents/Math%20Anxiet

y%20Research%20Paper%202.pdf.

 

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of

intrinsic motivation, social development, and well-being. The American

psychologist, 68-78.

 

Sampath., V., Flagel, A. & Figueroa, C. (2009). A Logistic Regression Model to

Predict Freshmen Enrollments. 1-12.

 

Savelsbergh, E. R., Prins, G. T., Rietbergen, C., SabineFechne, Vaessen, B. E.,

Draijer, J. M., & Brakker, A. (2016). Effects of innovative science and

mathematics teaching on student attitudes and achievement: A meta-analytic

study. Procedia Social Sciences, 158-172.

 

Sargent, D. J. (2001). Comparison of artificial neural networks with other statistical

approaches. American Cancer Society.

 

Schunk, D. H., Pintrich, P. R., & Meece, J. R. (2008). Motivation in Education:

Theory, Research, and Applications, 3rd Edition. Pearson.

Sekaran, U. (2003). Research mehtods for business: A skill building approach New

York John Wiley & Sons, Inc.

 

Selmes, I. (1987). Improving study skills: Changing perspective in education. Great

Britain: Hodder and Stoughton Ltd.

 

Sena, J. D., Lowe, P. A., & Lee, S. W. (2007). Significant Predictors of Test Anxiety

Among Students With and Without Learning Disabilities. Journal of Learning

Disabilities, 360-376.

 

Shakil, M. (2008). A Multiple Linear Regression Model to Predict the Student's Final

Grade in a Mathematics Class. Multi-Disciplinary Publication of Miami Dade

College, Hialeah Campus,U.S.A.

 

Sharifah Norhuda Syed Wahid, Yusharina Yusof & Mohd Rizal Razak (2014). Math

anxiety among students in higher education level. Procedia Social and

Behavioral Sciences, 232-237.

 

Shukla, N. J., Hassani, H., & Casleton, R. (2014). A Comparison of Delivery Methods

for Distance Learning Mathematics Courses. Journal of Developmental

Education.

 

Siti Hamad Mohamed & Rohani Ahmad Tarmizi (2010). Anxiety in Mathematics

Learning Among Secondary School Learners: A Comparative Study between

Tanzania and Malaysia. International Conference on Mathematics Education

Research, 498-504.

 

Siti Noor Asyikin Mohd Razali, Suliadi Firdaus Sufahani & Norazman Arbin.

(2015). Pencapaian Kursus Matematik Dan Statistik Di Kalangan Pelajar

Uthm : Faktor Mempengaruhi Dan Teknik Pengajaran Dan Pembelajaran

Yang Lebih Diminati. Journal of techno social issue on society, technology &

Governance, 39-50.

 

Stankov, L., Morony, S. & Yim, P. L. (2014). Confidence: the best non-cognitive

predictor of academic achievement. International Journal of Experimental

Educational Psychology, 9-28.

 

Suhar, V., Rohani Ahmad Tarmizi, Habshah Midi & Mohd Bakri Adam (2010).

Students’ Beliefs on Mathematics and Achievement of University

Students:Logistics Regression Analysis . Procedia Social and Behavioral

Sciences, 525-531.

 

Sule, & Saporu. (2015). A Logistic Regression Model of Students’ Academic

Performance in University of Maiduguri, Maiduguri, Nigeria. Mathematical

Theory and Modeling , 124-136.

 

Tariq, S., Mubeen, S., & Mahmood, S. (2011). Relationship Between Intrinsic

Motivation and Goal Orientation among College Students In Pakistani

Context. Journal of Education and Practice , 12-18.

 

Vijaya Sengodan & Zanaton Ikhsan. (2012). Students’ Learning Styles and Intrinsic

Motivation in Learning Mathematics. Asian Social Science, 17-23.

 

Wan Muhamad Amir Wan Ahmad, Mohamad Arif Awang Nawi, Nor Azlida Aleng,

Nurfadhlina Abdul Halim, Mustafa Mamat, Mohd Pouzi Hamzah & Zalila Ali

(2014). Association of Hypertension with Risk Factors Using Logistic

Regression . Applied Mathematical Sciences, 2563 - 2572.

 

Xie, S., Mahdi Imani, Dougherty, E. R. & Ulisses M. B. (2017). Nonstationary Linear

Discriminant Analysis. 161-165.

 

Xueying, Z. (2016). Analysis of the Application of Statistics to Economic

Management. Management Science and Engineering, 13-17.

 

Yilmaz, M., & Orhan, F. (2010). The use of Internet by high school students for

educational purposes in respect to their learning approaches. Procedia Social

and Behavioral Sciences, 2143-2150.

 

Zaharah Hassan. (2009). Keberkesanan Penyampaian Kuliah. Prosiding Seminar

Pendidikan Sains Sosial, UKM, 611-618.

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.