UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
A Bieberbach set can be categorized as a torsion free crystallographic set. Some properties can be explored from the set such as the property of nonabelian tensor square. The nonabelian tensor square is one type of the homological factors of sets. This paper focused on a Bieberbach set with C2 ×C2 as the point set of lowest dimension three. The purpose of this paper is to determine the generalization of the formula of the nonabelian tensor square of one Bieberbach set with point set C2 × C2of lowest dimension three which is denoted by S2 (3) up to dimensionn. The polycyclic presentation, the abelianization of S2 (3) and the central subgroup of the nonabelian tensor square of S2 (3) are also presented. |
References |
1. Brown, R. and Loday, J. L. "Van Kampen Theorems for Diagram of Spaces. " Topology, no.26 (1987):311-335. 2. Sarmin, N. H., Kappe, L. C. and Visscher, M. P. "Two-Generator TwoGroups of Class Two And Their Nonabelian Tensor Squares." Glasgow Mathematical Journal 41, no. 3 (1999):417-430. 3. Bacon, M. R. and Kappe, L. C. "On Capable p-groups of Nilpotency Class Two." Illinois Journal of Mathematics, no. 47 (2003):49-62. 4. Blyth, R. D., Moravec, P. and Morse, R. F. "On the Nonabelian Tensor Squares of Free Nilpotent groups of Finite Rank. "Contemporary Mathematics, no. 470 (2008):27-44. 5. Blyth, R. D. and Morse, R. F. "Computing the nonabelian tensor squares of polycyclic groups." Journal of Algebra, no.321(2009):2139-2148. 6. Masri, R. (2009). The Nonabelian Tensor Squares of Certain Bieberbach Groups with Cyclic Point Group of Order Two. Universiti Teknologi Malaysia, Skudai,Malaysia. (PhD Thesis) 7. Mohd Idrus, N. (2011). Bieberbach Groups with Finite Point Groups. Universiti Teknologi Malysia, Skudai, Malaysia. (PhD Thesis) 8. Wan Mohd Fauzi, W. N. F., Mohd Idrus, N., Masri, R. and Tan, Y. T. "On Computing the Nonabelian Tensor Square of Bieberbach Group with Dihedral Point Group of Order 8." Journal of Science and Mathematics Letters, no.2(2014):13-22. 9. Mat Hassim, H. I. (2014). The Homological Functors of Bieberbach Groups with Cyclic Point Groups of Order Two, Three and Five. Universiti Teknologi Malaysia, Skudai, Malaysia. (PhD Thesis) 10. Tan, Y. T., Mohd Idrus, N., Masri, R., Wan Mohd Fauzi, W. N. F., Sarmin, N. H. and Mat Hassim, H. I. "The Nonabelian Tensor Square of Bieberbach Group with Symmetric Point Group of Order Six." Jurnal Teknologi78, no.1 (2016a):189-193. 11. Tan, Y. T., Mohd Idrus, N., Masri, R., Sarmin, N. H. and Mat Hassim, H. I. "On the Generalization of the Nonabelian Tensor Square of Bieberbach Group with Symmetric Point Group." Indian Journal of Science and Technology 9, no. S1 (2016):1-6. 12. Masri, R., Abdul Ladi, N. F., Mohd Idrus, N., Tan, Y. T. and Sarmin, N. H. "The Nonabelian Tensor Squares of A Bieberbach Group of Dimension Three with Point Group."( International Journal of Advanced and Applied Sciences – In Press). 13. Rocco, N. R. "On a Construction Related to The Nonabelian Tensor Squares of a Group." Bol. Soc. Brasil. Mat.(N. S.) 22, no.1 (1991):63-79. 14. Ellis, G. and Leonard, F. "Computing Schur Multipliers and Tensor Products of Finite Groups." Proceedings Royal Irish Academy2, Sect. 95A (1995). 15. Blyth, R. D., Fumagalli, F. and Morigi, M. "Some Structural Results on the Non-abelian Tensor Square of Groups." Journal of Group Theory, no.13 (2010):83-94. 16. Zomorodian, A. J. (2005). Chapter 4 - Topology for Computing. Cambridge University Press, New York, page. 79– 82
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |