UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study investigates the potential of N-octyl chitosan derivatives, namely N-octyl-O-sulfate chitosan (NOOSC), N-octyl-N-succinyl chitosan (NONSC) and N-octyl-O-glycol chitosan (NOOGC) as amphiphilic carrier agents for atrazine in water-insoluble herbicide formulations. The N-octyl chitosan derivatives were characterised using several analytical instruments such as Fourier Transform Infrared (FTIR) Spectrometer, CHNS-O Elemental Analyser (CHNS-O), Transmission Electron Microscope (TEM), Thermogravimetric Analyser (TGA), Differential Scanning Calorimeter (DSC) and Fluorescence Spectrometer. The encapsulation of atrazine by N-octyl chitosan derivatives was studied using a High Performance Liquid Chromatography (HPLC). The FTIR spectra of N-octyl chitosan derivatives confirmed the presence of hydrophobic and hydrophilic groups on chitosan backbone. TEM images revealed that N-octyl chitosan derivatives have formed self-aggregates with a spherical shape. The CMC values for N-octyl chitosan derivatives were between 0.06 and 0.09 mg/mL. The encapsulation efficiency (EE) values for amphiphilic chitosan were greater than 90%. The release profiles showed different release behaviour of pure herbicide in solution as compared to atrazine-loaded N-octyl chitosan derivatives. Results suggest that the chitosan derivatives offer promising characteristics that enable them to act as effective carrier agents for atrazine. In conclusion, the application of N-octyl chitosan derivatives could reduce the use of organic solvents in herbicide formulations by 37.5% |
References |
[1] Zhang W., Jiang F., Ou J., Global pesticide consumption and pollution: with China as a focus, Proc. Int. Acad. Ecol. Environ. Sci., 2011, 1, 125-144. [2] Kah M., Machinski P., Koerner P., Tiede K., Grillo R., Fraceto L.F., et al., Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine, Environ. Sci. Pollut. Res., 2014, 21, 11699-11707. [3] Lobo F.A., de Aguirre C.L., Silva M.S., Grillo R., de Melo N.F.S., de Oliveira L.K., et al., Poly (hydroxybutyrate-cohydroxyvalerate) microspheres loaded with atrazine herbicide: screening of conditions for preparation, physico-chemical characterization, and in vitro release studies, Polym. Bull., 2011, 67, 479-495. [4] Mitchell P.D., Market-level assessment of the economic benefits of atrazine in the United States., Pest Manag. Sci., 2014, 70, 1684-1696. [5] Marutescu L., Chifiriuc M.C., Molecular mechanisms of pesticides toxicity, In: Grumezescu A.M. (Ed.), New Pesticides and Soil Sensors, Academic Press, 2017, 393-435. [6.] Venceslau A.d.F.A., dos Santos F.E., de Fátima Silva A., Rocha D.A., de Abreu A.J., Jaime C., et al., Cyclodextrins as effective tools to reduce the toxicity of atrazine, Energ. Ecol. Environ., 2018, 3, 81-86. [7] Brand R.M., Mueller C., Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation, Toxicol. Sci., 2002, 68, 18-23. [8] Grillo R., de Melo N.F.S., de Lima R., Lourenço R.W., Rosa A.H., Fraceto L.F., Characterization of atrazine-loaded biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) microspheres, J. Polym. Environ., 2010, 18, 26-32. [9] Capello C., Wernet G., Sutter J., Hellweg S., Hungerbühler K., A comprehensive environmental assessment of petrochemical solvent production, Int. J. Life Cycle Assess., 2009, 14, 467- 479. [10] Jessop P.G., Ahmadpour F., Buczynski M.A., Burns T.J., Green Ii N.B., Korwin R., et al, Opportunities for greener alternatives in chemical formulations, Green Chem., 2015, 17, 2664-2678. [11] Hazra D.K., Recent advancement in pesticide formulations for user and environment friendly pest management, Int. J. Res. Rev., 2015, 2, 35-40. [12] Lao S.B., Zhang Z.X., Xu H.H., Jiang G.B., Novel amphiphilic chitosan derivatives: Synthesis, characterization and micellar solubilization of rotenone, Carbohydr. Polym., 2010, 82, 1136-1142. [13] Feng B., Ashraf M.A., Peng L., Characterization of particle shape, zeta potential, loading efficiency and outdoor stability for chitosan-ricinoleic acid loaded with rotenone, Open Life Sci., 2016, 11, 380-386. [14] Lucia A., Toloza A.C., Guzmán E., Ortega F., Rubio R.G., Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control, PeerJ, 2017, 5, e3171. [15] Mei X.D., Liang Y.H., Zhang T., Ning J., Wang Z.Y., An amphiphilic chitosan-polylactide graft copolymer and its nanoparticles as fungicide carriers, Adv. Mater. Res., 2014, 1051, 21-28. [16] Li Y., Zhang S., Meng X., Chen X., Ren G., The preparation and characterization of a novel amphiphilic oleoyl-carboxymethyl chitosan self-assembled nanoparticles. Carbohydr. Polym., 2011, 83, 130-136. [17] Kuskov A.N., Kulikov P.P., Goryachaya A.V., Tzatzarakis M.N., Tsatsakis A.M., Velonia K., et al., Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects, J. App. Polym. Sci., 2018, 135, 45637. [18] Liu G., Gan J., Chen A., Liu Q., Zhao X., Synthesis and characterization of an amphiphilic chitosan bearing octyl and methoxy polyethylene glycol groups, Nat. Sci., 2010, 2, 707-712. [19] Zhang C., Qineng P., Zhang H., Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system, Colloids Surf. B Biointerfaces, 2004, 39, 69-75. [20] Huang R., Du Y., Yang J., Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates, Carbohydr. Polym., 2003, 51, 431-438. [21] Kajjari P.B., Manjeshwar L.S., Aminabhavi T.M., Novel blend microspheres of poly(vinyl alcohol) and succinyl chitosan for controlled release of nifedipine, Polym. Bull., 2013, 70, 3387-3406. [22] Shen C.R., Liu C.L., Lee H.P., Chen J.K., The identification and characterization of chitotriosidase activity in pancreatin from porcine pancreas, Molecules, 2013, 18, 2978-2987. [23] Zhang J., Li M., Fan T., Xu Q., Wu Y., Chen C., et al., Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery, J. Polym. Res., 2013, 20, 107. [24] Kubota N., Tatsumoto N., Sano T., Toya K., A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents, Carbohydr. Res., 2000, 324, 268-274. [25] Wang F., Zhang D., Duan C., Jia L., Feng F., Liu Y., et al., Preparation and characterizations of a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid conjugates and self-aggregates, Carbohydr. Polym., 2011, 84, 1192-1200. [26] Korsmeyer R.W., Gurny R., Doelker E., Buri P., Peppas N.A., Mechanisms of solute release from porous hyrophilic polymers, Int. J. Pharm., 1983, 15, 25-35. [27] Pereira A.E.S., Grillo R., Mello N.F.S., Rosa A.H., Fraceto L.F., Application of poly(epsilon-caprolactone) nanoparticlescontaining atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment, J.Hazard. Mater., 2014, 268, 207-215. [28] He L., Wang H., Xia G., Sun J., Song R., Chitosan/grapheneoxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl. Surf. Sci., 2014, 314, 510-515. [29] Zuo P.P., Feng H.F., Xu Z.Z., Zhang L.F., Zhang Y.L., Xia W., et al., Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films, Chem. Cent. J., 2013, 7, 39. [30] Huo M., Zhang Y., Zhou J., Zou A., Yu D., Wu Y., et al., Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug, Int. J. Pharm., 2010, 394, 162-173. [31] Qu D., Lin H., Zhang N., Xue J., Zhang C., In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery, Carbohydr. Polym., 2013, 92, 545-554. [32] Roldo M., Power K., Smith J.R. Cox P.A., Papagelis K., Bouropoulos N., et al., N-octyl-O-sulfate chitosan stabilises single wall carbon nanotubes in aqueous media and bestows biocompatibility, Nanoscale, 2009, 1, 366-373. [33] Zhang C. Ping Q., Zhang H., Shen J., Preparation of N-alkyl-Osulfate chitosan derivatives and micellar solubilization of taxol, Carbohydr. Polym., 2003, 54, 137-141. [34] Jain N., Rajoriya V., Jain P.K., Jain A.K., Lactosaminated-Nsuccinyl chitosan nanoparticles for hepatocyte-targeted delivery of acyclovir, J. Nanopart. Res., 2014, 16, 2136. [35] Hou Z., Han J., Zhan C., Zhou C., Hu Q., Zhang Q., Synthesis and evaluation of N-succinyl-chitosan nanoparticles toward local hydroxycamptothecin delivery, Carbohydr. Polym., 2010, 81, 765-768. [36] Lin Z.T., Song K., Bin J.P., Liao Y.L., Jiang G.B., Characterization of polymer micelles with hemocompatibility based on N-succinyl-chitosan grafting with long chain hydrophobic groups and loading aspirin, J. Mater. Chem., 2011, 21, 19153-19165. [37] Sui W., Wang Y., Dong S., Chen Y., Preparation and properties of an amphiphilic derivative of succinyl-chitosan, Colloids Surf. A Physicochem. Eng. Asp., 2008, 316, 171-175. [38] Cho I.S., Park C.G., Huh B.K. Cho M.O., Khatun Z., Li Z., et al., Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy, Acta Biomater., 2016, 39, 124-132. [39] Liu Y., Sun Y., He S., Zhu Y., Ao M., Li J., et al., Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications, Int. J. Biol. Macromol., 2013, 57, 213-217. [40] Mishra S.K., Kannan S., Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal, J. Mech. Behav. Biomed. Mater., 2014, 40, 314-324. [41] Silva M.d.S., Cocenza D.S., Grillo R., de Melo N.F.S., Tonello P.S. de Oliveira L.C., et al., Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies, J. Hazard. Mater., 2011, 190, 366-374. [42] Fei X., Yu M., Zhang B., Cao L., Yu L., Jia G., et al., The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 343-351. [43] Shelma R., Sharma C.P., Development of lauroyl sulfated chitosan for enhancing hemocompatibility of chitosan, Colloids Surf. B Biointerfaces, 2011, 84, 561-570. [44] Sukamporn P., Baek S.J., Gritsanapan W., Chirachanchai S., Nualsanit T., Rojanapanthu P., Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study, Mater. Sci. Eng. C, 2017, 77, 1068-1077. [45] Quiñones J.P., Gothelf K.V., Kjems J., Caballero Á.M.H., Schmidt C., Covas C.P., Self-assembled nanoparticles of glycol chitosan - Ergocalciferol succinate conjugate, for controlled release, Carbohydr. Polym., 2012, 88, 1373-1377. [46]Mourya V.K., Inamdar N.N., Tiwari A., Carboxymethyl chitosan and its applications, Adv. Mater. Lett., 2010, 1, 11-33. [47] Bashir S., Teo Y.Y., Ramesh S., Ramesh K., Khan A.A., N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review, Rev. Chem. Eng., 2015, 31, 563-597. [48] Rahman A., Brown C.W., Effect of pH on the critical micelle concentration of sodium dodecyl sulphate, J. App. Polym. Sci., 2003, 28, 1331–1334. [49] Prasad K.N., Luong T.T., Paris A.T.F., Vaution C., Seiller M., Puisieux F., Surface activity and association of ABA polyoxyethylene—polyoxypropylene block copolymers in aqueous solution, J. Colloid Interface Sci., 1979, 69, 225-232. [50] Zhang X.R., Shi N.Q., Zhao Y., Zhu H.Y., Guan J., Jin Y., Deoxycholic acid-grafted PEGylated chitosan micelles for the delivery of mitomycin C, Drug Dev. Ind. Pharm., 2015, 41, 916- 926. [51] Hu Y., He X., Lei L., Liang S., Qiu G., Hu X., Preparation and characterization of self-assembled nanoparticles of the novel carboxymethyl pachyman-deoxycholic acid conjugates, Carbohydr. Polym., 2008, 74, 220-227. [52] Farhangi M., Kobarfard F., Mahboubi A. Vatanara A., Mortazavi S.A., Preparation of an optimized ciprofloxacin-loaded chitosannanomicelle with enhanced antibacterial activity, Drug Dev. Ind. Pharm., 2018, 44, 1273-1284. [53] Hu F.Q., Ren G.F., Yuan H., Du Y.Z., Zeng S., Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel, Colloids Surf. B Biointerfaces, 2006, 50, 97-103
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |