UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The study aimed to investigate the characteristics of calixarene, reduced graphene oxide
(rGO) and their composite in order to optimise the sensitivity of the composite. The calixarenes
(calix[4]arene, calix[6]arene and calix[8]arene) and rGO were prepared in solution
to form a Langmuir film by using Langmuir-Blodgett (LB) trough. The values of 30 mN/m and
15 mN/m were selected for calixarenes and rGO respectively for the thin film deposition. The
surface potential (?V) and effective dipole moment (µ?) of calixarenes were also
investigated. The optical properties of calixarene in solution and thin film were
studied using UV-Visible (UV-Vis) spectroscopy and compared to ensure the stability of
the thin film. Meanwhile, the rGO thin film was characterised with UV-Vis spectroscopy for the
optical property, Raman spectroscopy for the crystallinity and four-point probe for the
electrical property to obtain current-voltage (I-V) characteristics, resistivity, and
conductivity. Field Emission Scanning Electron Microscopy (FESEM) was used to observe the
surface morphology of calixarene and rGO thin films. Then, both the materials were fabricated into
various types of calixarenes-rGO composites using the LB technique. Same characterisation
procedures were applied to the newly formed composites using UV-Vis spectroscopy, Raman
spectroscopy, four-point probe, and FESEM. Results showed that the addition of rGO in
the fabrication of calixarene thin-film has improved the electrical property of the
composite as calixarene is a non-conductive material. The structural and optical
properties investigation also showed good structural and stable thin film formed
from both materials. Calix[8]arene-rGO composited with 6 layers of rGO is the
best-fabricated composite, as shown from the characterization process. As a conclusion, this
study implies that rGO plays a significant role in improving the conductivity
performance of calixarene, thus give
rise to the further potential of calixarene in sensing application.
|
References |
Aradhana, R., Mohanty, S., & Nayak, S. K. (2018). Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer, 141, 109–123. doi:10.1016/j.pol ymer.2018.03.005
Ariga, K., Yamauchi, Y., Mori, T., & Hill, J. P. (2013). 25th Anniversary Article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Advanced Materials, 25(45), 6477–6512. doi:10.1002/adma.201302283
Ashby, M. F., Ferreira, P. J., & Schodek, D. L. (2009). Nanomaterials, nanotechnologies and design: An introduction for engineers and architects. Oxford: Elsevier.
Azahari, N. A., Supian, F. L., & Malik, S. A. (2012). Interaction Between Langmuir Films of Calix[4]arene With Aqueous Lead Ions. Prosiding Kolokium Kebangsaan Pasca Siswazah Sains Dan Matematik 2012, Perak.
Azam, U. (2018). Investigation of interaction of soft nanoparticles based vesicles with lung surfactant via Langmuir-Blodgett trough and quartz crystal microbalance study. Journal of Nanomedicine & Nanotechnology, 09(03), 1–11. doi:10.4172/2157-7439.1000504
Becker, A., Tobias, H., Porat, Z., & Mandler, D. (2008). Detection of uranium(VI) in aqueous solution by a calix[6]arene modified electrode. Journal of Electroanalytical Chemistry, 621(2), 214–221. doi:10.1016/j.jelechem.200 7.11.009
Billah, A. (2016). Investigation of multiferroic and photocatalytic properties of Li doped BeFeO3 nanoparticles prepared by ultrasonication (Master Thesis). Retrieved from http://lib.buet.ac.bd:8080/xmlui/handle/123456789/4495
Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J.et al. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 4, 1–8. doi:10.1038/srep04684
Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12(7), 620–636. doi:10.1016/j.crhy.2011.06.001
Brook, R. A., Dooling, C. M., Jones, L. T., & Richardson, T. H. (2002). Mixed monolayer LB films of EHO and calix[8]arene. Materials Science and Engineering: C, 22(2), 427–432. doi:10.1016/S0928-4931(02)00195-9
Cao, G., & Wang, Y. (2011). Nanostructures and Nanomaterials: Synthesis, properties, and applications (2nd ed., Vol. 2). Singapore: World Scientific Publishing Co. Pte. Ltd.
Çapan, R., Gökta?, H., Özbek, Z., ?en, S., Özel, M. E., & Davis, F. (2015). Langmuir–Blodgett thin film for chloroform detection. Applied Surface Science, 350(2015), 129–134. doi:10.1016/j.apsusc.2015.02.109
Capan, R., Özbek, Z., Göktas, H., S.Sen, Ince, F. G., Özel, M. E. et al. (2010). Characterization of Langmuir–Blodgett films of a calix[8]arene and sensing properties towards volatile organic vapors. Sensors and Actuators B: Chemical, 148, 358–365. doi:10.1016/j.snb.2010.05.066
Chen, M., Meng, Y., Zhang, W., Zhou, J., Xie, J., & Diao, G. (2013). β-Cyclodextrin polymer functionalized reduced-graphene oxide: Application for electrochemical determination imidacloprid. Electrochimica Acta, 108, 1–9. doi:10.1016/j.electac ta.2013.06.050
Chester, R., Sohail, M., Ogden, M. I., Mocerino, M., Pretsch, E., & De Marco, R. (2014). A calixarene-based ion-selective electrode for thallium(I) detection. Analytica Chimica Acta, 851, 78–86. doi: 10.1016/j.aca.2014.08.046
Corradini, D., & Phillips, T. M. (Eds.). (2011). Handbook of HPLC (2th ed.). Boca Raton: CRC Press.
Cram, D. J. (1988). The design of molecular hosts, guests, and their complexes. Science, 240(4853), 760–767.
Cram, D. J., & Cram, J. M. (1974). Host-Guest Chemistry. Science, 183(4127), 803– 809. doi:10.1073/pnas.0507432102
Davis, F., O’Toole, L., Short, R., & Stirling, C. J. M. (1996). Selective ion binding by Langmuir−Blodgett films of calix(8)arenes. Langmuir, 12(7), 1892–1894. doi:10.1021/la950844+
Dhanabalan, A., Gaffo, L., Barros, A. M., Moreira, W. C., & Oliveira, O. N. (1999). Surface pressure and surface potential isotherms of ytterbium bisphthalocyanine langmuir monolayers. Langmuir, 15(11), 3944–3949. doi:10.1021/la9815188
Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. doi:10.1016/J.JCIS.2011.07.017
Eddaif, L., Shaban, A., & Telegdi, J. (2019). Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: A review. International Journal of Environmental Analytical Chemistry, 99(9), 1–30. doi:10.1080/03067319.2019.1616708
Elçin, S., & Deligöz, H. (2014). A versatile approach toward chemosensor for Hg2+ based on para-substituted phenylazocalix[4]arene containing mono ethyl ester unit. Dyes and Pigments, 107, 166–173. doi:10.1016/j.dyepig.2014.04.005
Fakoya, M. F., & Shah, S. N. (2017). Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles. Petroleum, 3(4), 391–405. doi:10.1016/J.PETLM.2017.03.001
Feng, Q., Li, X., & Wang, J. (2017). Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sensors and Actuators B: Chemical, 243, 1115–1126. doi:10.1016/J.SNB.2016.12.075
Feynman, R. P. (1992). There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1(1), 60–66. doi:10.1109/84.128057
Field emission scanning electron microscope (2019, Mac 10). Retrieved from http://www.upv.es/entidades/SME/info/859071normali.html.
Fritea, L., Terti?, M., Cosnier, S., Cristea, C., & S?ndulescu, R. (2015). A novel reduced graphene oxide / β-cyclodextrin / tyrosinase biosensor for dopamine detection. International Journal of Electrochemical Science, 10(2015), 7292– 7302.
Fu, L., Lai, G., & Yu, A. (2015). Preparation of β-cyclodextrin functionalized reduced graphene oxide: Application for electrochemical determination of paracetamol. RSC Advances, 5(94), 76973–76978. doi:10.1039/C5RA12520K
Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(8), 403–408. doi:10.1038/nchem.281
Gilje, B. S., Dubin, S., Badakhshan, A., Farrar, J., Danczyk, S. A., & Kaner, R. B. (2010). Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 22, 419–423. doi:10.1002/adma.200901902
Goyal, R. K. (2018). Nanomaterials and nanocomposites: Synthesis, properties, characterization techniques and applications. Boca Raton: CRC Press.
Gu, L., Huffman, B. P., Arola, D. D., Kim, Y. K., Mai, S., Elsalanty, M. E., … Tay, F. R. (2010). Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach. Acta Biomaterialia, 6(4), 1453–1461. doi:10.1016/J.ACTBIO.2009.10.052
Gupta, V. K., Kumar, S., Singh, R., Singh, L. P., Shoora, S. K., & Sethi, B. (2014). Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. Journal of Molecular Liquids, 195, 65–68. doi: 10.1016/j.molliq. 2014.02.001
Gupta, V. K., Sethi, B., Sharma, R. A., Agarwal, S., & Bharti, A. (2013). Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]- arene as a cationic receptor. Journal of Molecular Liquids, 177, 114–118. doi: 10.1016/j.molliq.2012.10.008
Guts . D. (1998). Calixarenes revisited. Cambridge: The Royal Society of Chemistry. Gutsche, C. D. (2008). Calixarenes an introduction (2nd ed.). Cambridge: The Royal Society of Chemistry.
Han, Q., Wang, Y., Huang, Y., Guo, L., & Fu, Y. (2013). Electrochemical recognition for carboxylic acids based on multilayer architectures of b-cyclodextrin and methylene blue/reduce-graphene interface on glassy carbon electrodes. Analyst, 138, 2051–2056. doi:10.1039/c3an36461e
Hasiah, S., Ibrahim, K., Senin, H. B., & Halim, K. B. K. (2008). Electrical conductivity of chlorophyll with polythiophene thin film on indium tin oxide as P-N heterojunction solar cell. Journal of Physical Science, 19(2), 77–92.
Haynes, W.M., Lide, D. R. (Ed.). (2017). CRC handbook of chemistry and physics (97th ed.). CRC Press.
Hussain, S. A., & Bhattacharjee, D. (2009). Langmuir-blodgett films a unique tool for molecular electronics. Modern Physics Letters B, 23(27), 1–15.
Hussain, S. H., & Bhattacharjee, D. (2009). Langmuir blodgett films and molecular electronics. Modern Physics Letters B, 23(29), 3437–3451. doi: 10.1142/S02179 84909021508
Iqbal, P., Preece, J. A., & Mendes, P. M. (2012). Nanotechnology: The “top-down” and “bottom-up” approaches. Supramolecular Chemistry. Chichester, UK: John Wiley & Sons, Ltd.
Jaafar, M. M., Ciniciato, G. P. M. K., Ibrahim, S. A., Phang, S. M., Yunus, K., Fisher, A. C.et al. (2015). Preparation of a three-dimensional reduced graphene oxide film by using the langmuir-blodgett method. Langmuir, 31(38), 10426–10434. doi:/10.1021/acs.langmuir.5b02708
Jang, J., Pham, V. H., Hur, S. H., & Chung, J. S. (2014). Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. Journal of Colloid and Interface Science, 424, 62–66. doi:10.1016/j.jcis.2014.03.018
Jeong, Y., Kim, J., & Lee, G. W. (2010). Optimizing functionalization of multiwalled carbon nanotubes using sodium lignosulfonate. Colloid and Polymer Science, 288(1), 1–6. doi:10.1007/s00396-009-2127-8
Johal, M. S., & Johnson, L. E. (2018). Understanding nanomaterials (2nd ed.). Boca Raton: CRC Press. doi:10.1201/b11545
Jusman, Y., Ng, S. C., & Abu Osman, N. A. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. Scientific World Journal, 2014. doi: 10.1155/2014/289817
Kamboh, M. A., Wan Ibrahim, W. A., Nodeh, H. R., Sanagi, M. M., & Sherazi, S. T. H. (2016). The removal of organophosphorus pesticides from water using a new amino-substituted calixarene-based magnetic sporopollenin. New Journal of Chemistry, 40(4), 3130–3138. doi:10.1039/c5nj02284c
Keyser, U. F. (2016). Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotechnology, 11(2), 106–108. doi:10.1038/nnano.2016.2
Khan, Q. A., Shaur, A., Khan, T. A., Joya, Y. F., & Awan, M. S. (2017). Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chemistry, 3(1). doi:10.1080/23312009.2017.1298980
Khanna, V. K. (2012). Nanosensors: Physical, chemical, and biological. Boca Raton: Taylor & Francis Group.
Kim, Y., Minami, N., Zhu, W., Kazaoui, S., Azumi, R., & Matsumoto, M. (2003). Langmuir – blodgett films of single-wall carbon nanotubes?: Layer-by-layer deposition and in-plane orientation of tubes. Japanese Journal of Applied Physics, 42(12), 7629–7634. doi:10.1143/JJAP.42.7629
Kobayashi, M., Tomita, S., Sawada, K., Shiba, K., Yanagi, H., Yamashita, I., & Uraoka, Y. (2012). Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus. Optic Express, 20(22), 24856– 24863.
Kraack, H., Ocko, B. M., Pershan, P. S., Sloutskin, E., Tamam, L., & Deutsch, M. (2004). Fatty acid langmuir films on liquid mercury: X-ray and surface tension studies. Langmuir, 20(13), 5375–5385. doi:10.1021/la049977y
KSV Instruments Ltd. (2001). KSV 2000 Instruction manual for windows 95/98/NT/2000. Västra Frölunda: Biolin Scientific
KSV Instruments Ltd. (2004). Instruction manual KSV SPOT1. Västra Frölunda: Biolin Scientific
KSV NIMA. (2019). What and why: Langmuir films. Västra Frölunda: Biolin Scientific
Kumar, S., Chawla, S., & Zou, M. C. (2017). Calixarenes based materials for gas sensing applications: a review. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 88(3–4), 129–158. doi:10.1007/s10847-017-0728-2
Legnani, L., Compostella, F., Sansone, F., & Toma, L. (2015). Cone calix[4]arenes with orientable glycosylthioureido groups at the upper rim: An in-depth analysis of their symmetry properties. The Journal of Organic Chemistry, 80(15), 7412– 7418. doi:10.1021/acs.joc.5b00878
Li, J. C., Wang, Y., & Ba, D. C. (2012). Characterization of semiconductor surface conductivity by using microscopic four-point probe technique. Physics Procedia, 32, 347–355. doi:10.1016/j.phpro.2012.03.568
Li, J. W., Wang, Y. L., Yan, S., Li, X. J., & Pan, S. Y. (2016). Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chemistry, 192, 260–267. doi:10.1016/j.foodchem.2015.07.018
Li, X., Zhao, Y., Wang, X., Wang, J., Gaskov, A. M., & Akbar, S. A. (2016). Reduced graphene oxide ( rGO ) decorated TiO 2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 230, 330– 336. doi:10.1016/j.snb.2016.02.069
Lin, S. Y., & Dence, C. W. (Eds.). (1992). Methods in lignin chemistry. Heidelberg: Springer-Verlag.
Lu, D., Lin, S., Wang, L., Shi, X., Wang, C., & Zhang, Y. (2012). Synthesis of cyclodextrin-reduced graphene oxide hybrid nanosheets for sensitivity enhanced electrochemical determination of diethylstilbestrol. Electrochimica Acta, 85, 131–138. doi:10.1016/j.electacta.2012.07.071
Lu, G., Ocola, L. E., & Chen, J. (2009). Reduced graphene oxide for room- temperature gas sensors. Nanotechnology, 20(44), 1–9. doi:10.1088/0957-4484 /20/44/445502
Lu, J., Chen, Z., Ma, Z., Pan, F., Curtiss, L. A., & Amine, K. (2016). The role of nanotechnology in the development of battery materials for electric vehicles. Nature Publishing Group, 11. doi:10.1038/NNANO.2010.207
Lu, W., & Lieber, C. M. (2007). Nanoelectronics from the bottom up. Nature Materials, 6, 841–850.
Ma, J., Song, M., Boussouar, I., Tian, D., & Li, H. (2015). Recent progress of calixarene-based fluorescent chemosensors towards mercury ions. Supramolecular Chemistry, 27(5–6), 444–452. doi:10.1080/10610278.2014.988 627
Mandolini, L., & Ungaro, R. (Eds.). (2000). Calixarenes in action. London: Imperial College Press.
Measurement of light. (2019, Mac 10). Retrieved from https://light- measurement.com/ wavelength-range/
Mohandoss, M., Gupta, S. Sen, Nelleri, A., Pradeep, T., & Maliyekkal, S. M. (2017). Solar mediated reduction of graphene oxide. RSC Advances, 7(2), 957–963. doi:10.1039/c6ra24696f
Mokhtari, B., & Pourabdollah, K. (2011). Review: Medical applications of nano- baskets. Journal of Coordination Chemistry, 64(18), 3189–3204. doi:10.1080/00958972.2011.616930
Mokhtari, B., Pourabdollah, K., & Dalali, N. (2011). Analytical applications of calixarenes from 2005 up-to-date. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 69, 1–55. doi:10.1007/s10847-010-9848-7
Morganti, P. (2010). Use and potential of nanotechnology in cosmetic dermatology. Clinical, Cosmetic and Investigational Dermatology, 3, 5–13.
Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnology, Science and Applications, 7, 63–71. doi:10.2147/NSA.S39409
Murphy, P., McKinlay, R. G., Dalgarno, S. J., & Paterson, M. J. (2015). Toward understanding of the lower rim binding preferences of calix[4]arene. The Journal of Physical Chemistry. A, 119(22), 5804–5815. doi:10.1021/acs.jpca.5b02624
Nag, S., Duarte, L., Bertrand, E., Celton, V., Castro, M., Choudhary, V., … Feller, J.- F. (2014). Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2(October 2015), 6571–6579. doi:10.1039/c4tb01041h
Nostro, P. Lo, Casnati, A., Bossoletti, L., Dei, L., & Baglioni, P. (1996). Complexation properties of calixarenes in Langmuir films at the water-air interface. Colloids and Surfaces, 116, 203–209.
Nowotarska, S. W., Nowotarski, K. J., Friedman, M., & Situ, C. (2014). Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules, 19(6), 7497–7515. doi:10.3390/molecules19067497
Oliveira Jr., O. N. (1992). Langmuir-blodgett films - Properties and possible applications. Brazilian Journal of Physics, 22(2), 60–69.
Ozbek, C., Culcular, E., Okur, S., Yilmaz, M., & Kurt, M. (2013). Electrical characterization of interdigitated humidity sensors based on CNT modified calixarene molecules. Acta Physica Polonica A, 123(2), 461–463. doi: 10.12693/APhysPolA.123.461
Ozmen, M., Ozbek, Z., Bayrakci, M., Ertul, S., Ersoz, M., & Capan, R. (2014). Preparation and gas sensing properties of Langmuir–Blodgett thin films of calix[n]arenes: Investigation of cavity effect. Sensors and Actuators B: Chemical, 195, 156–164. doi:10.1016/j.snb.2014.01.041
Pacheco-Torgal, F., & Jalali, S. (2011). Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Construction and Building Materials, 25(2), 582–590. doi:10.1016/J.CONBUILDMAT.2010.07.009
Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir?: The ACS Journal of Surfaces and Colloids, 24(19), 10560–10564. doi:10.1021/la801744a
Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2001). Introduction to spectroscopy (Third). Singapore: Thomson Learning, Inc.
Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(15), 4466–4474. doi:10.1016/j.carbon.2010.08.006
Pelton, M., & Bryant, G. W. (2013). Introduction to metal-nanoparticle plasmonics. New Jersey: John Wiley & Sons, Inc.
Perret, F., Bonnard, V., Danylyuk, O., Suwinska, K., & Coleman, A. W. (2006). Conformational extremes in the supramolecular assemblies of para-sulfonato- calix[8]arene. New Journal of Chemistry, 30(7), 987–990. doi:10.1039/b604349f
Qazi, M. A., Ocak, Ü., Ocak, M., & Memon, S. (2013). An excellent copper selective chemosensor based on calix[4]arene framework. Analytica Chimica Acta, 761, 157–168. doi:10.1016/j.aca.2012.11.026
Qu, F., Zhou, X., Xu, J., Li, H., & Xie, G. (2009). Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution. Talanta, 78(4–5), 1359–1363. doi:10.1016/j.talanta.2009.02. 013
Raffa, V., Vittorio, O., Riggio, C., & Cuschieri, A. (2010). Progress in nanotechnology for healthcare. Minimally Invasive Therapy & Allied Technologies, 19(3), 127–135. doi:10.3109/13645706.2010.481095
Raja, M. A., Bhargav, K., Banji, D., & Kumar, D. S. (2014). Updated review on micellar electro kinetic chromatography. Journal of Chromatography & Separation Techniques, 5(3), 1–6. doi:10.4172/2157-7064.1000231
Ramanjaneyulu, P. S., Singh, P., Sayi, Y. S., Chawla, H. M., & Ramakumar, K. L. (2010). Ion selective electrode for cesium based on 5-(4’-nitrophenylazo)25,27- bis(2-propyloxy)26,28-dihydroxycalix[4]arene. Journal of Hazardous Materials, 175(2010), 1031–1036. doi:10.1016/j.jhazmat.2009.10.113
Rashidi, L., & Khosravi-Darani, K. (2011). The applications of nanotechnology in food industry. Critical Reviews in Food Science and Nutrition, 51(8), 723–730. doi:10.1080/10408391003785417
Razali, A. S., Supian, F. L., Bakar, S. A., Richardson, T. H., & Azahari, N. A. (2015). The properties of carbon nanotube on novel calixarene thin film. International Journal of Nanoelectronics and Materials, 8, 39–45. doi:10.1063/1.4803605
Roberts, G. (Ed.). (1990). Langmuir-blodgett films. New York: Springer Science+Business Media.
Roberts, G. (Ed.). (2001). Langmuir-blodgett films. New York: Springer Science+Business Media.
Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8(10), 3137–3140. doi:10.1021/nl8013007
Schmidt-Traub, H. (Ed.). (2005). Preparative chromatography of fine chemicals and pharmaceutical agents. John Wiley & Sons. Weinheim: Wiley-VCH Verlag GmbH & Co. doi:10.1002/ceat.200590023
Scholtmeijer, H. (2005). The Langmuir-blodgett behavior and film formation of methacrylate latex particle monolayers. (Doctoral dissertation). Retrieved from http://irs.ub.rug.nl/ppn/288226283
Šesták, J., Moravcová, D., & Kahle, V. (2015). Instrument platforms for nano liquid chromatography. Journal of Chromatography A, 1421, 2–17. doi:10.1016/j.chroma.2015.07.090
Settle, F. (Ed.). (1997). Handbook of instrumental techniques for analytical chemistry. New Jersey: Prentice Hall PTR.
Sharma, K., & Cragg, P. J. (2011). Calixarene based chemical sensors. Chemical Sensors, 1(9), 1–18.
Shinkai, S. (1993). Calixarenes - The third generation of supramolecules. Tetrahedron, 49(40), 8933–8968. doi:10.1016/S0040-4020(01)91215-3
Silva, C. W. de. (2017). Sensor Systems: Fundamentals and applications. Boca Raton: Taylor & Francis Group.
Singh, R. (2002). C. V. Raman and the discovery of the raman effect. Physics in Perspective, 4(4), 399–420. doi:10.1007/s000160200002
Smith, E., & Dent, G. (2005). Modern raman spectroscopy – A practical approach. West Sussex: John Wiley & Sons, Ltd.
Sokolov, D. A., Shepperd, K. R., & Orlando, T. M. (2010). Formation of graphene features from direct laser-induced reduction of graphite oxide. The Journal of Physical Chemistry Letters, 1, 2633–2636. doi:10.1021/jz100790y
Soni, S., Saihotra, A. & Suar, M. (2015). Handbook of research on diverse applications of nanotechnology in biomedicine, Chemistry, and Engineering. Hershey PA: Engineering Science Reference.
Spagnul, A., Bouvier-Capely, C., Adam, M., Phan, G., Rebière, F., & Fattal, E. (2010). Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion. International Journal of Pharmaceutics, 398(2010), 179–184. doi:10.1016/j.ijpharm.2010.07.016
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565. doi:10.1016/j.carbon. 2007.02.034
Su, P.-G., Lin, L.-G., & Lin, P.-H. (2014). Detection of Cu(II) ion by an electrochemical sensor made of 5,17-bis(4′-nitrophenylazo)-25,26,27,28- tetrahydroxycalix[4]arene-electromodified electrode. Sensors and Actuators B: Chemical, 191(2014), 364–370. doi:10.1016/j.snb.2013.09.117
Supian, F. L. (2010). Sensing interactions within nanoscale calixarene and polysiloxane Langmuir-Blodgett films. University of Sheffield. University of Sheffield.
Tjørnelund, J., & Hansen, S. H. (1999). Non-aqueous capillary electrophoresis of drugs: Properties and application of selected solvents. Journal of Biochemical and Biophysical Methods, 38(2), 139–153. doi:10.1016/S0165-022X(98)00034-7
Tokarczyk, M., Kowalski, G., Witowski, A. M., Kozi?ski, R., Librant, K., Aksienionek, M., et al.(2014). Structural and electronic properties of graphene oxide and reduced graphene oxide papers prepared by high pressure and high temperature treatment. Acta Physica Polonica A, 126(5), 1190–1194. doi:10.12693/APhysPolA.126.1190
Tranter, G. E. (2000). UV-visible absorption and fluorescence spectrometers. In J. C. Lindon, G. E. Tranter, & J. L. Holmes (Eds.), Encyclopedia of Spectroscopy and Spectrometry Part 2 (M-Z) (Vol. 2, pp. 2383–2389). Academic Press.
Tyagi, S., Agarwal, H., & Ikram, S. (2010). Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores. Water Science and Technology, 61(3), 693–704. doi:10.2166/wst.2010.860
Valdest, L. B. (1954). Resistivity measurements on germanium for transistors. In Proceedings of The I. R. E. (Vol. 42, pp. 420–427). IEEE.
Vicens, J., Asfari, Z., & Harrowfield, J. M. (Eds.). (2011). Calixarenes 50th Anniversary: Commemorative Issue. Calixarenes 50th anniversary: Commemorative issue. Dordrecht: Springer Science+Business Media.
Vicens, Jacques, & Böhmer, V. (Eds.). (1991). Calixarenes: A versatile class of macrocyclic compounds. Dordrecht: Kluwer Academic Publishers.
Vicens, Jacques, Harrowfield, J., & Baklouti, L. (Eds.). (2007). Calixarenes in the Nanoworld. Dordrecht: Springer.
Wang, F., Liu, Q., Wu, Y., & Ye, B. (2009). Langmuir–blodgett film of p-tert- butylthiacalix[4]arene modified glassy carbon electrode as voltammetric sensor for the determination of Ag+. Journal of Electroanalytical Chemistry, 630(2009), 49–54. doi:10.1016/j.jelechem.2009.02.014
Wang, X., Zhi, L., & Mu, K. (2008). Transparent , conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327. doi:10.1021/nl072 838r
Wartewig, S. (2003). IR and raman spectroscopy. Weinheim: Wiley-VCH Verlag GmbH & Co.
Webster, J. G., & Eren, H. (Eds.). (2014). Measurement, instrumentation , and sensors handbook: Electromagnetic, optical, radiation, chemical, and biomedical measurement (Second). Boca Raton: CRC Press.
Wei, W., Xu, C., Ren, J., Xu, B., & Qu, X. (2012). Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chemical Communications (Cambridge, England), 48(9), 1284–1286. doi:10.1039/c2cc16481g
Wenner, F. (1915). A method for measuring Earth resistivity. Journal of the Washington Academy of Sciences, 5(16), 561–563.
Xu, C., Wang, J., Wan, L., Lin, J., & Wang, X. (2011). Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. Journal of Materials Chemistry, 21(28), 10463. doi:10.1039/C1JM10478K
Yacobi, B.G. (2003). Semiconductor materials: An introduction to basic principles. New York: Springer US.
ZEISS Sigma Field Emission Scanning Electron Microscope. (n.d.). Retrieved from https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes/ sigma.html
Zhang, D., Chang, H., Li, P., Liu, R., & Xue, Q. (2016). Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensors and Actuators, B: Chemical, 225, 233–240. doi:10.1016/j.snb.2015.11.024
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., & Guo, S. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46, 1112–1114. doi:10.1039/b917705a
Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J. (2011). Transparent conductive films consisting of ultralarge graphene sheets produced by langmuir-blodgett assembly. ACS Nano, (7), 6039–6051. doi:10.1021/nn2018683
Zhou, J., Chen, M., & Diao, G. (2013). Calix[4,6,8]arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host−guest electrochemical recognition. ACS Applied Materials & Interfaces, 5, 828–836. doi:10.1021/am302289v
Zhou, J., Chen, M., Xie, J., & Diao, G. (2013). Synergistically enhanced electrochemical response of host−guest recognition based on ternary nanocomposites: Reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles. ACS Applied Materials & Interfaces, 11218–11224. doi:10.1021/am403463p
Zhu, C., & Fang, L. (2014). Mingling electronic chemical sensors with supramolecular host-guest chemistry. Current Organic Chemistry, 18(15), 1957– 1964. doi:10.2174/1385272819666140514004734
Zor, E., Bingol, H., Ramanaviciene, A., Ramanavicius, A., & Ersoz, M. (2015). An electrochemical and computational study for discrimination of d - and l -cystine by reduced graphene oxide/β-cyclodextrin. The Analyst, 140(1), 313–321. doi:10.1039/c4an01751j
Zor, E., Saglam, M. E., Alpaydin, S., & Bingol, H. (2014). A reduced graphene oxide/α-cyclodextrin hybrid for the detection of methionine: electrochemical, fluorometric and computational studies. Analytical Methods, 6(16), 6522–6530. doi:10.1039/C4AY00984C
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |