UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :RA0421 Public health. Hygiene. Preventive Medicine
Main Author :Osamah Shihab Ahmed Albahrey
Additional Authors :Aos A. Z. Ansaef Al-Juboori
Bilal Bahaa Zaidan
Mashitoh binti Hashim
Title :Based multiple heterogeneous wearable sensors: a smart real-time health monitoring structured for hospitals distributor
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This paper proposes a smart real-time health monitoring structured for hospitals’ distributor based on wearable health data sensors. Health data were received from multiple heterogeneous wearable sensors, such as electrocardiogram (ECG), oxygen saturation sensor (SpO2), blood pressure monitor, and non-sensory measurement (text frame), from 500 patients with different symptoms. Triage level and healthcare services were identified based on the new four-level remote triage and package localization (4LRTPL). The numbers of healthcare services that represent hospital status were collected from 12 hospitals located in Baghdad city. This study constructed a decision matrix based on the crossover of ‘‘multi-healthcare services’’ and ‘‘hospital list’’ within Tier 4. The hospitals were then ranked using multicriteria decision-making (MCDM) techniques, namely, integrated analytic hierarchy process (AHP) and vlsekriterijumskaoptimizacija i kompromisnoresenje (VIKOR). Mean ± standard deviation was computed to ensure that the hospital ranking undergoes systematic ranking for objective validation. This research provided scenarios and checklist benchmarking to evaluate the proposed and existing health recommender frameworks. Results corroborated that: 1) the integration of AHP and VIKOR effectively solved hospital selection problems; 2) in the objective validation, significant differences were recognized between the scores of groups, indicating that the ranking results were identical; 3) in evaluation, the proposed framework exhibited an advantage over the benchmark framework with a percentage of 56.25%; and 4) hospitals with multiple healthcare services received the highest ranks, whereas hospitals with fewer healthcare services received low ranks.


[1] F. Miao, Y. Cheng, Y. He, Q. He, and Y. Li, ‘‘A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone,’’ Sensors, vol. 15, no. 5, pp. 11465–11484, May 2015.

[2] J. N. Cohn, ‘‘Current therapy of the failing heart,’’ Circulation, vol. 78, no. 5, pp. 1099–1107, 1988.

[3] T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, ‘‘Classification of healthcare data using genetic fuzzy logic system and wavelets,’’ Expert Syst. Appl., vol. 42, no. 4, pp. 2184–2197, 2015.

[4] M. M. Baig and H. Gholamhosseini, ‘‘Smart health monitoring systems: An overview of design and modeling,’’ J. Med. Syst., vol. 37, no. 2, p. 9898, 2013.

[5] N. D. Brunetti et al., ‘‘Telemedicine for cardiovascular disease continuum: A position paper from the Italian society of cardiology working group on telecardiology and informatics,’’ Int. J. Cardiol., vol. 184,pp. 452–458, Apr. 2015.

[6] S. Winkler et al., ‘‘A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—Feasibility stud,’’ Int. J. Cardiol., vol. 153, no. 1, pp. 55–58, 2011.

[7] R. Gilpin and J. M. Gilpin, The Challenge of Global Capitalism: The World Economy in the 21st Century, vol. 5. Princeton, NJ, USA: princeton Univ. Press, 2000.

[8] O. H. Salman, M. F. A. Rasid, M. I. Saripan, and S. K. Subramaniam, ‘‘Multi-sources data fusion framework for remote triage prioritization in telehealth,’’ J. Med. Syst., vol. 38, no. 9, p. 103, Sep. 2014.

[9] T. H. Sanders, A. Devergnas, T. Wichmann, and M. A. Clements,

‘‘Remote smartphone monitoring for management of Parkinson’s disease,’’ in Proc. 6th Int. Conf. Pervasive Technol. Rel. Assistive Environ., 2013, p. 42.

[10] J. Mirkovic, H. Bryhni, and C. M. Ruland, ‘‘A framework for the development of ubiquitous patient support systems,’’ in Proc. 6th Int. Conf. Pervasive Comput. Technol. Healthcare (PervasiveHealth), May 2012, pp. 81–88.

[11] A. Moghadas, M. Jamshidi, and M. Shaderam, ‘‘Telemedicine in healthcare system,’’ in Proc. World Autom. Congr. (WAC), Sep. 2008, pp. 1–6.

[12] M. Chowdhury, W. Mciver, and J. Light, ‘‘Data association in remote health monitoring systems,’’ IEEE Commun. Mag., vol. 50, no. 6, pp. 144–149, Jun. 2012.

[13] N. Kalid et al., ‘‘Based on real time remote health monitoring systems: A new approach for prioritization ‘large scales data’ patients with chronic heart diseases using body sensors and communication technology,’’ J. Med. Syst., vol. 42, no. 4, p. 69, 2018.

[14] L. van Dyk, ‘‘A review of telehealth service implementation frameworks,’’ Int. J. Environ. Res. Public Health, vol. 11, no. 2, pp. 1279–1298, 2014.

[15] S. Jeong, C.-H. Youn, E. B. Shim, M. Kim, Y. M. Cho, and L. Peng, ‘‘An integrated healthcare system for personalized chronic disease care in home–hospital environments,’’ IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 4, pp. 572–585, Jul. 2012.

[16] A. Rocha et al., ‘‘Innovations in health care services: The CAALYX system,’’ Int. J. Med. Inform., vol. 82, no. 11, pp. e307–e320, 2013.

[17] R. Busse, J. Schreyögg, and P. C. Smith, ‘‘Variability in healthcare treatment costs amongst nine EU countries—Results from the HealthBASKET project,’’ Health Econ., vol. 17, pp. S1–S8, Jan. 2008.

[18] L. H. Wizig, ‘‘Method and system for providing a user-selected healthcare services package and healthcare services panel customized based on a user’s selections,’’ U.S. Patent 6 735 569, May 11, 2004.

[19] C.-T. Liu, A.-G. Long, Y.-C. Li, K.-C. Tsai, and H.-S. Kuo, ‘‘Sharing patient care records over the world wide Web,’’ Int. J. Med. Inform., vol. 61, nos. 2–3, pp. 189–205, 2001.

[20] J. Wang, M. Qiu, and B. Guo, ‘‘Enabling real-time information service on telehealth system over cloud-based big data platform,’’ J. Syst. Archit., vol. 72, pp. 69–79, Jan. 2017.

[21] M.-Y. Chang, C. Pang, J. M. Tarn, T.-S. Liu, and D. C. Yen, ‘‘Exploring user acceptance of an e-hospital service: An empirical study in Taiwan,’’ Comput. Standards Interfaces, vol. 38, pp. 35–43, Feb. 2015

[22] A. M. R. Khan, P. N. Prasad, and S. Rajamanoharane, ‘‘A decisionmaking framework for service quality measurements in hospitals,’’ Int. J. Enterprise Netw. Manage., vol. 4, no. 1, pp. 80–91, 2010.

[23] J. Leister and J. Stausberg, ‘‘Why do patients select a hospital? A conjoint analysis in two German hospitals,’’ J. Hospital Marketing Public Relations, vol. 17, no. 2, pp. 13–31, 2007.

[24] H. F. Lingsma et al., ‘‘Comparing and ranking hospitals based on outcome: Results from The Netherlands stroke survey,’’ QJM, Int. J. Med., vol. 103, no. 2, pp. 99–108, 2009.

[25] S. V. Kovalchuk, E. Krotov, P. A. Smirnov, D. A. Nasonov, and A. N. Yakovlev, ‘‘Distributed data-driven platform for urgent decision making in cardiological ambulance control,’’ Future Gener. Comput. Syst., vol. 79, pp. 144–154, Feb. 2018.

[26] S. Ben Othman, H. Zgaya, S. Hammadi, A. Quilliot, A. Martinot, and J.-M. Renard, ‘‘Agents endowed with uncertainty management behaviors to solve a multiskill healthcare task scheduling,’’ J. Biomed. Inform., vol. 64, pp. 25–43, Dec. 2016.

[27] T. H. Chang, ‘‘Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan,’’ Inf. Sci., vol. 271, pp. 196–212, Jul. 2014.

[28] V. Vaidehi, M. Vardhini, H. Yogeshwaran, G. Inbasagar, R. Bhargavi, and C. S. Hemalatha, ‘‘Agent based health monitoring of elderly people in indoor environments using wireless sensor networks,’’ Procedia Comput. Sci., vol. 19, pp. 64–71, Jan. 2013.

[29] S. Bharatula and M. Meenakshi, ‘‘Design of cognitive radio network for hospital management system,’’ Wireless Pers. Commun., vol. 90, no. 2, pp. 1021–1038, Sep. 2016.

[30] K. Ganapathy, V. Vaidehi, B. Kannan, and H. Murugan, ‘‘Hierarchical particle swarm optimization with ortho-cyclic circles,’’ Expert Syst. Appl., vol. 41, no. 7, pp. 3460–3476, Jun. 2014.

[31] K. Ganapathy, B. Priya, B. Priya, V. Prashanth, and V. Vaidehi, ‘‘SOA framework for geriatric remote health care using wireless sensor network,’’ Procedia Comput. Sci., vol. 19, pp. 1012–1019, Jan. 2013.

[32] J. Mendes, H. Simões, P. Rosa, N. Costa, C. Rabadão, and A. Pereira, ‘‘Secure low-cost solution for elder’s eCardio surveillance,’’ Procedia Comput. Sci., vol. 27, pp. 46–56, Jan. 2014.

[33] S. V. Zanjal and G. R. Talmale, ‘‘Medicine reminder and monitoring system for secure health using IOT,’’ Procedia Comput. Sci., vol. 78, no. 3, pp. 471–476, 2016.

[34] S. J. Miah, J. Hasan, and J. G. Gammack, ‘‘On-cloud healthcare clinic: An e-health consultancy approach for remote communities in a developing country,’’ Telematics Inform., vol. 34, no. 1, pp. 311–322, Feb. 2017.

[35] A. Hussain, R. Wenbi, A. L. da Silva, M. Nadher, and M. Mudhish, ‘‘Health and emergency-care platform for the elderly and disabled people in the smart city,’’ J. Syst. Softw., vol. 110, pp. 253–263, Dec. 2015.

[36] J. Faulin, A. A. Juan, S. E. Grasman, and M. J. Fry, Decision Making in Service Industries: A Practical Approach. Boca Raton, FL, USA: CRC Press, 2012.

[37] H. Akdag, T. Kalayc?, S. Karagöz, H. Zülfikar, and D. Giz, ‘‘The evaluation of hospital service quality by fuzzy MCDM,’’ Appl. Soft Comput., vol. 23, pp. 239–248, Oct. 2014.

[38] A. S. Albahri, A. A. Zaidan, O. S. Albahri, B. B. Zaidan, and M. A. Alsalem, ‘‘Real-time fault-tolerant mhealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects,’’ J. Med. Syst., vol. 42, no. 8, p. 137, Aug. 2018.

[39] J. Malczewski, GIS and Multicriteria Decision Analysis. Hoboken, NJ, USA: Wiley, 1999.

[40] S. Petrovic-Lazarevic and A. Abraham. (2004). ‘‘Hybrid fuzzy-linear programming approach for multi criteria decision making problem.’’ [Online]. Available:

[41] S. Zionts, ‘‘MCDM—If not a Roman numeral, then what?’’ Interfaces, vol. 9, no. 4, pp. 94–101, 1979.

[42] M. Oliveira, D. B. M. M. Fontes, and T. Pereira, ‘‘Multicriteria decision making: A case study in the automobile industry,’’ in Proc. Int. Symp. Oper. Res. Appl. (ISORAP), 2013, pp. 1–20.

[43] A. Jadhav and R. Sonar, ‘‘Analytic hierarchy process (AHP), weighted scoring method (WSM), and hybrid knowledge based system (HKBS) for software selection: A comparative study,’’ in Proc. 2nd Int. Conf. Emerg. Trends Eng. Technol. (ICETET), Dec. 2009, pp. 991–997.

[44] V. Diaby, K. Campbell, and R. Goeree, ‘‘Multi-criteria decision analysis (MCDA) in health care: A bibliometric analysis,’’ Oper. Res. Health Care, vol. 2, no. 1, pp. 20–24, 2013.

[45] P. Thokala et al., ‘‘Multiple criteria decision analysis for health care decision making—An introduction: Report 1 of the ISPOR MCDA emerging good practices task force,’’ Value Health, vol. 19, no. 1, pp. 1–13, 2016.

[46] G. Adunlin, V. Diaby, and H. Xiao, ‘‘Application of multicriteria decision analysis in health care: A systematic review and bibliometric analysis,’’ Health Expectations, vol. 18, no. 6, pp. 1894–1905, 2015.

[47] A. C. Mühlbacher and A. Kaczynski, ‘‘Making good decisions in healthcare with multi-criteria decision analysis: The use, current research and future development of MCDA,’’ Appl. Health Econ. Health Policy, vol. 14, no. 1, pp. 29–40, 2016.

[48] S. Opricovic and G.-H. Tzeng, ‘‘Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS,’’ Eur. J. Oper. Res., vol. 156, no. 2, pp. 445–455, Jul. 2004.

[49] M. Mansooreh and J. Pet-Edwards, ‘‘Technical briefing: Making multiple-objective decisions,’’ Inst. Elect. Electron. Eng., Piscataway, NJ, USA, Tech. Rep., 1997.

[50] E. Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study, vol. 44. Boston, MA, USA: Springer, 2000.

[51] M. Aruldoss, T. M. Lakshmi, and V. P. Venkatesan, ‘‘A survey on multi criteria decision making methods and its applications,’’ Amer. J. Inf. Syst., vol. 1, no. 1, pp. 31–43, 2013.

[52] K. P. Yoon and C.-L. Hwang, Multiple Attribute Decision Making: An Introduction, vol. 104. New York, NY, USA: SAGE, 1995.

[53] E. Triantaphyllou, B. Shu, S. N. Sanchez, and T. Ray, ‘‘Multi-criteria decision making: An operations research approach,’’ Encyclopedia Elect. Electron. Eng., vol. 15, no. 1998, pp. 175–186, 1998.

[54] H. Nilsson, E.-M. Nordström, and K. Öhman, ‘‘Decision support for participatory forest planning using AHP and TOPSIS,’’ Forests, vol. 7, no. 5, p. 100, 2016.

[55] T. L. Saaty and M. S. Ozdemir, ‘‘Why the magic number seven plus or minus two,’’ Math. Comput. Model., vol. 38, nos. 3–4, pp. 233–244, 2003.

[56] M. A. Ortiz, J. P. Cómbita, A. D. L. La Hoz, F. De Felice, and A. Petrillo, ‘‘An integrated approach of AHP-DEMATEL methods applied for the selection of allied hospitals in outpatient service,’’ Int. J. Med. Eng. Inform., vol. 8, no. 2, pp. 87–107, 2016.

[57] M. A. O. Barrios, F. De Felice, K. P. Negrete, B. A. Romero, A. Y. Arenas, and A. Petrillo, ‘‘An AHP-topsis integrated model for selecting the most appropriate tomography equipment,’’ Int. J. Inf. Technol. Decis. Making, vol. 15, no. 4, pp. 861–885, 2016.

[58] H. Çal??kan, ‘‘Selection of boron based tribological hard coatings using multi-criteria decision making methods,’’ Mater. Des., vol. 50, pp. 742–749, Sep. 2013.

[59] H.-P. Fu, K.-K. Chu, P. Chao, H.-H. Lee, and Y.-C. Liao, ‘‘Using fuzzy AHP and VIKOR for benchmarking analysis in the hotel industry,’’ Service Ind. J., vol. 31, no. 14, pp. 2373–2389, Nov. 2011.

[60] A. Mohaghar, M. R. Fathi, M. K. Zarchi, and A. Omidian, ‘‘A combined VIKOR-fuzzy AHP approach to marketing strategy selection,’’ Bus. Manage. Strategy, vol. 3, no. 1, p. 13, Dec. 1969.

[61] G.-N. Zhu, J. Hu, J. Qi, C.-C. Gu, and Y.-H. Peng, ‘‘An integrated AHP and VIKOR for design concept evaluation based on rough number,’’ Adv. Eng. Inform., vol. 29, no. 3, pp. 408–418, Aug. 2015.

[62] M. Ilangkumaran, V. Sasirekha, L. Anojkumar, and M. B. Raja, ‘‘Machine tool selection using AHP and VIKOR methodologies under fuzzy environment,’’ Int. J. Model. Oper. Manage., vol. 2, no. 4, pp. 409–436, 2012.

[63] H. E. Aktan and P. K. Samut, ‘‘Agricultural performance evaluation by integrating fuzzy AHP and VIKOR methods,’’ Int. J. Appl. Decis. Sci., vol. 6, no. 4, pp. 324–344, 2013.

[64] O. S. Albahri, A. A. Zaidan, B. B. Zaidan, M. Hashim, A. S. Albahri, and M. A. Alsalem, ‘‘Real-time remote health-monitoring systems in a medical centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspect,’’ J. Med. Syst., vol. 42, no. 9, p. 164, Sep. 2018.

[65] M. Lahby, L. Cherkaoui, and A. Adib, ‘‘A novel ranking algorithm based network selection for heterogeneous wireless access,’’ J. Netw., vol. 8, no. 2, pp. 263–272, 2013.

[66] K. Saksrisathaporn, A. Bouras, N. Reeveerakul, and A. Charles, ‘‘Application of a decision model by using an integration of AHP and TOPSIS approaches within humanitarian operation life cycle,’’ Int. J. Inf. Technol. Decis. Making, vol. 15, no. 4, pp. 887–918, 2016.

[67] T. L. Saaty, The Analytic Hierarchy Process. New York, NY, USA: McGraw-Hill, 1980.

[68] V. Sherekar and M. Tatikonda, ‘‘Impact of factor affecting on labour productivity in construction projects by AHP method,’’ Int. J. Eng. Sci. Comput., vol. 6, no. 6, pp. 1–5, 2016.

[69] M. Enea and T. Piazza, ‘‘Project selection by constrained fuzzy AHP,’’ Fuzzy Optim. Decis. Making, vol. 3, no. 1, pp. 39–62, 2004

[70] T. Okura et al., ‘‘The importance of walking for control of blood pressure: Proof using a telemedicine system,’’ Telemed. e-Health, vol. 22, no. 12, pp. 1019–1023, 2016.

[71] C. Kateretse, G.-W. Lee, and E.-N. Huh, ‘‘A practical traffic scheduling scheme for differentiated services of healthcare systems on wireless sensor networks,’’ Wireless Pers. Commun., vol. 71, no. 2, pp. 909–927, 2013.

[72] A. Minutolo, M. Esposito, and G. De Pietro, ‘‘Design and validation of a light-weight reasoning system to support remote health monitoring applications,’’ Eng. Appl. Artif. Intell., vol. 41, pp. 232–248, May 2015.

[73] J. P. Meizoso et al., ‘‘Evaluation of miniature wireless vital signs monitor in a trauma intensive care unit,’’ Mil. Med., vol. 181, no. 5S, pp. 199–204, May 2016.

[74] R. Seising and M. Tabacchi, Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care, vol. 302. Berlin, Germany: Springer, 2013.

[75] L. Abdullah, ‘‘Fuzzy multi criteria decision making and its applications: A brief review of category,’’ Procedia-Soc. Behav. Sci., vol. 97, pp. 131–136, Nov. 2013.

[76] G. C. Lamprinakos et al., ‘‘An integrated remote monitoring platform towards telehealth and telecare services interoperability,’’ Inf. Sci., vol. 308, pp. 23–37, Mar. 2015.

[77] K. Sakanushi et al., ‘‘Electronic triage system for continuously monitoring casualties at disaster scenes,’’ J. Ambient Intell. Hum. Comput., vol. 4, no. 5, pp. 547–558, 2013.

[78] E. Park, J. H. Kim, H. S. Nam, and H. J. Chang, ‘‘Requirement analysis and implementation of smart emergency medical service,’’ IEEE Access, vol. 6, pp. 42022–42029, 2018.

[79] A. Anzanpour et al., ‘‘Self-awareness in remote health monitoring systems using wearable electronics,’’ in Proc. Conf. Design, Automat. Test Eur., 2017, pp. 1056–1061.

[80] G. Gabrani and S. Gupta, ‘‘Real time sensor grid based secured health care monitoring,’’ in Proc. Comput. Conf., Jul. 2017, pp. 500–506.

[81] O. H. Salman, A. A. Zaidan, B. B. Zaidan, Naserkalid, and M. Hashim, ‘‘Novel methodology for triage and prioritizing using ‘big data’ patients with chronic heart diseases through telemedicine environmental,’’ Int. J. Inf. Technol. Decis. Making, vol. 16, no. 5, pp. 1211–1245, 2017.

[82] M. A. Arasteh, S. Shamshirband, and P. L. Yee, ‘‘Using multi-attribute decision-making approaches in the selection of a hospital management system,’’ Technol. Health Care, vol. 26, no. 2, pp. 279–295, 2018.

[83] O. S. Albahri et al., ‘‘Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendation,’’ J. Med. Syst., vol. 42, no. 5, p. 80, 2018.

[84] A. A. Zaidan, ‘‘A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution,’’ Health Technol., vol. 8, no. 4, pp. 223–238, Sep. 2018.

[85] M. A. Alsalem et al., ‘‘Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects,’’ J. Med. Syst., vol. 42, no. 11, p. 204, 2018.

[86] S. Iqbal et al., ‘‘Real-time-based E-health systems: Design and implementation of a lightweight key management protocol for securing sensitive information of patients,’’ Health Technol., vol. 9, no. 2, pp. 93–111, 2018.

[87] A. H. Mohsin et al., ‘‘Real-time medical systems based on human biometric steganography: A systematic review,’’ J. Med. Syst., vol. 42, no. 12, p. 245, 2018.

[88] A. H. Mohsin, ‘‘Real-time remote health monitoring systems using bodysensor information and finger vein biometric verification: A multi-layer  systematic review,’’ J. Med. Syst., vol. 42, no. 12, p. 238, 2018.

[89] M. L. Shuwandy, B. B. Zaidan, A. A. Zaidan, and A. S. Albahri, ‘‘Sensor-based mhealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review,’’ J. Med. Syst., vol. 43, no. 2, p. 33, 2019.

[90] O. Enaizan, ‘‘Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis,’’ Health Technol., vol. 9, pp. 1–28, Nov. 2018.

[91] A. A. Zaidan et al., ‘‘Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS,’’ J. Biomed. Inform., vol. 53, pp. 390–404, Feb. 2015.

[92] A. A. Zaidan, B. B. Zaidan, M. Hussain, A. Haiqi, M. L. M. Kiah, and M. Abdulnabi, ‘‘Multi-criteria analysis for OS-EMR software selection problem: A comparative study,’’ Decis. Support Syst., vol. 78, pp. 15–27, Oct. 2015.

[93] B. N. Abdullateef, N. F. Elias, H. Mohamed, A. A. Zaidan, and B. B. Zaidan, ‘‘An evaluation and selection problems of OSS-LMS packages,’’ SpringerPlus, vol. 5, no. 1, p. 248, Dec. 2016.

[94] Q. M. Yas, A. A. Zadain, B. B. Zaidan, M. B. Lakulu, and B. Rahmatullah, ‘‘Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multicriteria decision-making techniques,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 31, no. 3, Mar. 2017, Art. no. 1759002.

[95] B. B. Zaidan, A. A. Zaidan, H. Abdul Karim, and N. N. Ahmad, ‘‘A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data,’’’ Softw., Pract. Exper., vol. 47, no. 10, pp. 1365–1392, Oct. 2017.

[96] B. B. Zaidan, A. A. Zaidan, H. Abdul Karim, and N. N. Ahmad, ‘‘A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques,’’ Int. J. Inf. Technol. Decis. Making, vol. 16, pp. 1–42, Mar. 2017.

[97] M. A. Qader, B. B. Zaidan, A. A. Zaidan, S. K. Ali, M. A. Kamaluddin, and W. B. Radzi, ‘‘A methodology for football players selection problem based on multi-measurements criteria analysis,’’ Measurement, vol. 111, pp. 38–50, Dec. 2017.

[98] F. M. Jumaah, A. A. Zaidan, B. B. Zaidan, R. Bahbibi, M. Y. Qahtan, and A. Sali, ‘‘Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receiver,’’ Telecommun. Syst., vol. 68, no. 3, pp. 425–443, Jul. 2018.

[99] B. Rahmatullah, A. A. Zaidan, F. Mohamed, and A. Sali, ‘‘Multi-complex attributes analysis for optimum GPS baseband receiver tracking channels selection,’’ in Proc. 4th Int. Conf. Control, Decis. Inf. Technol. (CoDIT), pr. 2017, pp. 1084–1088.

[100] Q. M. Yas, A. A. Zaidan, B. B. Zaidan, B. Rahmatullah, and H. A. Karim, ‘‘Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions,’’ Measurement, vol. 114, pp. 243–260, Jan. 2008.

[101] B. B. Zaidan and A. A. Zaidan, ‘‘Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context technique,’’ Measurement, vol. 117, pp. 277–294, Mar. 2018.

[102] M. M. Salih, B. B. Zaidan, A. A. Zaidan, and Mohamed A. Ahmed, ‘‘Survey on fuzzy TOPSIS state-of-the-art between 2007-2017,’’ Comput. Oper. Res., vol. 104, pp. 207–277, Apr. 2018.

[103] N. Kalid et al., ‘‘Based real time remote health monitoring systems: A review on patients prioritization and related ‘big data’ using body sensors information and communication technology,’’ J. Med. Syst., vol. 42, no. 2, p. 30, Feb. 2018.

[104] F. M. Jumaah, A. A. Zadain, B. B. Zaidan, A. K. Hamzah, and R. Bahbibi, ‘‘Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environmen,’’ Measurement, vol. 118, pp. 83–95, Mar. 2018.

[105] H. A. AlSattar et al., ‘‘MOGSABAT: A metaheuristic hybrid algorithm for solving multi-objective optimisation problems,’’ Neural Comput. Appl., vol. 30, pp. 1–15, Oct. 2018.

[106] B. B. Zaidan and A. A. Zaidan, ‘‘Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques,’’ J. Circuits, Syst. Comput., vol. 26, no. 7, Jul. 2017, Art. no. 1750116.

[107] M. Hussain et al., ‘‘Conceptual framework for the security of mobile health applications on Android platform,’’ Telematics Inform., vol. 35, no. 5, pp. 1335–1354, Mar. 2018.

[108] M. Hussain et al., ‘‘A security framework for mHealth apps on Android platform,’’ Comput. Secur., vol. 75, pp. 191–217, Jun. 2018.

[109] H. O. Alanazi, G. M. Alam, B. B. Zaidan, and A. A. Zaidan, ‘‘Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance,’’ J. Med. Plants Res., vol. 4, no. 19, pp. 2059–2074, 2010.

[110] M. S. A. Nabi, M. L. M. Kiah, B. B. Zaidan, A. A. Zaidan, and G. M. Alam, ‘‘Suitability of using SOAP protocol to secure electronic medical record databases transmission,’’ Int. J. Pharmacol., vol. 6, no. 6, pp. 959–964, 2010.

[111] M. L. M. Kiah, M. S. Nabi, B. B. Zaidan, and A. A. Zaidan, ‘‘An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1,’’ J. Med. Syst., vol. 37, no. 5, p. 9971, Oct. 2013.

[112] M. S. Nabi, M. L. M. Kiah, A. A. Zaidan, and B. B. Zaidan, ‘‘Suitability of adopting S/MIME and OpenPGP email messages protocol to secure electronic medical records,’’ in Proc. 2nd Int. Conf. Future Gener. Commun. Technol. (FGCT), Nov. 2013, pp. 93–97.

[113] M. L. M. Kiah, A. Haiqi, B. B. Zaidan, and A. A. Zaidan, ‘‘Open source EMR software: Profiling, insights and hands-on analysis,’’ Comput. Methods Programs Biomed., vol. 117, no. 2, pp. 360–382, 2014.

[114] H. O. Alanazi, A. A. Zaidan, B. B. Zaidan, M. L. M. Kiah, and S. H. Al-Bakri, ‘‘Meeting the security requirements of electronic medical records in the ERA of high-speed computing,’’ J. Med. Syst., vol. 39, no. 1, p. 165, 2015.

[115] M. Hussain et al., ‘‘The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations,’’ Comput. Methods Programs Biomed., vol. 122, no. 3, pp. 393–408, 2015.

[116] M. Abdulnabi, A. Al-Haiqi, M. L. M. Kiah, A. A. Zaidan, B. B. Zaidan, and M. Hussain, ‘‘A distributed framework for health information exchange using smartphone technologies,’’ J. Biomed. Inform., vol. 69,  pp. 230–250, May 2017.

[117] B. B. Zaidan, A. A. Zaidan, and M. L. M. Kiah, ‘‘Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns,’’ Int. J. Pharmacol., vol. 7, no. 3, pp. 382–387, 2011.

[118] M. L. M. Kiah, B. B. Zaidan, A. A. Zaidan, M. Nabi, and R. Ibraheem, ‘‘MIRASS: Medical informatics research activity support system using information mashup network,’’ J. Med. Syst., vol. 38, no. 4, p. 37, 2014.

[119] M. L. M. Kiah, S. H. Al-Bakri, A. A. Zaidan, B. B. Zaidan, and M. Hussain, ‘‘Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture,’’ J. Med. Syst., vol. 38, no. 10, p. 133, Oct. 2014.

[120] A. A. Zaidan, B. B. Zaidan, Z. Kadhem, M. Larbani, M. B. Lakulu, and M. Hashim, ‘‘Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools,’’ J. Med. Syst., vol. 39, no. 2, p. 7, Feb. 2015.

[121] B. B. Zaidan, A. Haiqi, A. A. Zaidan, M. Abdulnabi, M. L. M. Kiah, and H. Muzamel, ‘‘A security framework for nationwide health information exchange based on telehealth strategy,’’ J. Med. Syst., vol. 39, no. 5, p. 51, 2015.




This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at or Whatsapp +60163630263 (Office hours only)