UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Fauzi Mohamed Yusof
Additional Authors :Ahmad Izani Md. Ismail
Farah Aini Abdullah
Title :Modeling and optimal control on the spread of hantavirus infection
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
In this paper, optimal control theory is applied to a system of ordinary differential equations representing a hantavirus infection in rodent and alien populations. The effect of the optimal control in eliminating the rodent population that caused the hantavirus infection is investigated. In addition, Pontryagin’s maximum principle is used to obtain the necessary condition for the controls to be optimal. The Runge–Kutta method is then used to solve the proposed optimal control system. The findings from the optimal control problem suggest that the infection may be eradicated by implementing some controls for a certain period of time. This research concludes that the optimal control mathematical model is an effective method in reducing the number of infectious in a community and environment.

References

1. Raharinosy, V.; Olive, M.-M.; Andriamandimby, S.F.; Filippone, C.; Heraud, J.-M. Geographical distribution of Hantivarus identified from small terrestrial mammals in Madagascar and evaluation of risk factors relating to the Hantivarus infection. Int. J. Infect. Dis. 2018, 73, 386. [CrossRef]

2. Guterres, A.; Sampaio de Lemos, E.R. Hantaviruses and a neglected environmental determinant. One Health 2018, 5, 27–33. [CrossRef] [PubMed]

3. Koishi, A.C.; Aoki, M.N.; Jorge, T.R.; Suzukawa, A.A.; Zanluca, C.; Levis, S.; Duarte dos Santos, C.N. Development and validation of a point-of-care test for detecting Hantavirus antibodies in human and rodent samples. Diagn. Microbiol. Infect. Dis. 2016, 85, 323–327. [CrossRef]

4. Avši?c-?upanc, T.; Saksida, A.; Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 2019, 21, e6–e16. [CrossRef] [PubMed]

5. Abramson, G.; Kenkre, V.M. Spatiotemporal patterns in the Hantavirus infection. Phys. Rev. E 2002, 66, 1912. [CrossRef]

6. Abramson, G.; Kenkre, V.M.; Yates, T.L.; Parmenter, B.R. Traveling waves of infection in the Hantavirus epidemics. Bull. Math. Biol. 2003, 65, 519–534. [CrossRef]

7. Giuggioli, L.; Kenkre, V.M.; Abramson, G.; Camelo-Neto, G. Theory of Hantavirus infection spread incorporating localized adult and itinerant juvenile mice. Eur. Phys. J. B 2006, 55, 461–470.

8. Peixoto, I.D.; Abramson, G. The effect of biodiversity on the Hantavirus epizootic. Ecology 2006, 87, 873–879. [CrossRef]

9. Abramson, G. Mathematical modeling of Hantavirus: From the mean field to the individual level. In Progress in Mathematical Biology Research; Kelly, J.T., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2008; pp. 1–27.

10. Goh, S.M.; Ismail, A.I.M.; Noorani, M.S.M.; Hashim, I. Dynamics of the Hantavirus infection through variational iteration method (VIM). Nonlinear Anal. Real World Appl. 2009, 10, 2171–2176. [CrossRef]

11. Rida, S.Z.; Abdel Rady, A.S.; M Arafa, A.A.; Khalil, M. The effect of the environmental parameter on the Hantavirus infection through a fractional-order SI model. Int. J. Basic Appl. Sci. 2012, 1, 88–99. [CrossRef]

12. Yusof, F.M.; Ismail, A.I.M.; Ali, N.M. Modeling population harvesting of rodents for the control of Hantavirus infection. Sains Malays. 2012, 39, 935–940.

13. Jasrasaria, R.; Mitra, D. The Effects of Intraspecific and Interspecific Competition on Plant Growth. 2004. Available online: http://88.198.249.35/d/Effect-of-plant-population-density-on-growth-and-yield-of.pdf (accessed on 20 January 2015).

14. Yusof, F.M.; Ismail, A.I.M.; Ali, N.M. Effect of predators on the spread of hantavirus infection. Sains Malays. 2014, 43, 1045–1051.

15. Yusof, F.M.; Ismail, A.I.M.; Hasan, Y.A. Implication of Predator Interaction of the Spread of Hantavirus Infection. Matematika 2018, 34, 205–226. [CrossRef]

16. Yusof, F.M.; Azmi, A.; Mohd, M.H.; Ismail, A.I.M. Effect of Biodiversity on the Spread of Leptospirosis Infection. In Proceedings of the International Conference on Mathematical Sciences and Technology 2018 (MathTech 2018), The Hotel Equatorial Penang, Malaysia, 10–12 December 2018.

17. Hale, B.M.; McCarthy, M.L. An Introduction to Population Ecology—Harvesting a Population with Logistic Growth. Available online: https://www.maa.org/press/periodicals/loci/joma/an-introduction-to-populationecology-harvesting-a-population-with-logistic-growth (accessed on 20 January 2015).

18. Kar, T.K.; Pahari, U.K. Modelling and analysis of a prey-predator system with stage-structure and harvesting. Nonlinear Anal. Real World Appl. 2007, 8, 601–609. [CrossRef]

19. Sion, M.L.; Hatzitolios, A.I.; Armenaka, M.C.; Toulis, E.N.; Kalampalika, D.; Mikoudi, K.D. Acute renal failure caused by Leptospirosis and Hantavirus infection in an urban hospital. Eur. J. Intern. Med. 2002, 13, 264–268. [CrossRef]

20. Bryson, A.E., Jr. Optimal control-1950 to 1985. Control Systems. IEEE Control Syst. Mag. 1996, 16, 26–33. [CrossRef]

21. Khan, M.A.; Islam, S.; Khan, S.A.; Khan, I.; Shafie, S.; Gull, T. Prevention of Leptospirosis Infected Vector and Human Population by Multiple Control Variables; Hindawi Publishing Corporation: New York, NY, USA, 2014; pp. 1–9, Abstract and Applied Analysis. ID 619035.

22. Okosun, K.O.; Mukamuri, M.; Makinde, D.O. Global stability analysis and control of Leptospirosis. Open Math. 2016, 14, 567–585. [CrossRef]

23. Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Mathematical and computational Biology Series; Chapman and Hall: London, UK, 2007.

24. Bonyah, E.; Okosun, K.O. Mathematical modeling of Zika virus. Asian Pac. J. Trop. Dis. 2016, 6, 673–679. [CrossRef]

25. Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E. The Mathematical Theory of Optimal Processes (Translated by D.E. Brown) A Pergamon Press Book; The Macmillan Company: New York, NY, USA, 1964; pp. 56–57.

26. Momoh, A.; Fügenschuh, A. Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper. Res. Health Care 2018, 18, 99–111. [CrossRef]

27. Khan, M.A.; Zaman, G.; Islam, S.; Chohan, M.I. Optimal Campaign in Leptospirosis Epidemic by Multiple Control Variables. Appl. Math. 2012, 3, 1655–1663. [CrossRef]

28. Lashari, A.A.; Zaman, G. Optimal control of a vector borne disease with horizontal transmission. Nonlinear Anal. Real World Appl. 2012, 13, 203–212. [CrossRef]

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.