UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA Mathematics
Main Author :Mohd Hafizul Muhammad
Title :An efficient implementation technique for implicit Runge-Kutta Gauss methods in solving mathematical stiff problems
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2018
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This research is aimed to produce an efficient implementation technique for the 2-stage (G2) and 3-stage (G3) implicit Runge-Kutta Gauss methods in solving mathematical stiff problems.   Both methods are constructed by using Maple software and have been implemented by using Matlab  software numerically.  This research applied four imple- mentation strategies which are full Newton  without compensated summation (FNWSN), full Newton with compensated summation (FNCS), simplified  Newton without com- pensated summation (SNWCS) and simplified Newton with compensated summation  (SNCS). Comparison have been done with the implementations of Hairer and Wanner scheme, Cooper and  Butcher scheme, and González scheme. Results for stiff test prob- lems showed that SNCS is the most  efficient technique in solving some real life mathe- matical problems such as the Kepler,  Oregonator, Van der Pol, HIRES and Brusselator problems.  According to the numerical results, the  implementation of G2 using SNCS by the Hairer and Wanner scheme is the most efficient technique for  solving Kepler and Brusselator problems, while SNCS by the González scheme is the most efficient  technique for solving other problems. On the contrary for G3, SNCS by the Hairer and Wanner scheme  gives the most efficient technique for solving Kepler and Van der Pol problems, while SNCS by the  González scheme gives the most efficient technique for solving other problems.  In conclusion, for  both G2 and G3 methods, SNCS plays an important role to improve the efficiency of implicit  Runge-Kutta Gauss methods in solv- ing mathematical stiff problems. As for the implications, the  implementation technique used in this research can be extended during tertiary education on the  subject numer- ical ordinary differential equations that focusses on implementation schemes by  other researchers as well as to some other implicit Runge-Kutta methods.  

References

Agam, S. A. and Yahaya, Y. A. (2014). A highly efficient implicit Runge-Kutta method

for first order ordinary differential equations.  African Journal of Mathematics and Computer 

Science Research, 7(5):  55–60.

 

Bashforth, F. (1883). An attempt to test the theories of capillary action by comparing the 

theoretical and measured forms of drops of fluid: with an explanation of the method of integration 

employed in constructing the tables which give the theoretical forms of such drops, by JC Adams. 

University Press.

 

Berghe, G. V. and Van, D. M. (2011). Symplectic exponentially-fitted four-stage Runge- Kutta 

methods of the Gauss type. Numerical Algorithms, 56(4):  591–608.

 

Boom,  P. D. and Zingg,  D. W. (2015).   Investigation of efficient high-order implicit Runge-Kutta 

 methods  based  on  generalized  summation  by  parts  operators.   22nd AIAA Computational Fluid 

Dynamics Conference, page   2757.

 

Brugnano, L., Caccia, G. F., and Iavernaro, F. (2014). Efficient implementation of Gauss 

collocation and Hamiltonian boundary value methods. Numerical Algorithms, 65(3): 633–650.

 

Brugnano,  L.,  Iavernaro,  F.,  and  Trigiante,  D.  (2010).   Hamiltonian  boundary  value 

methods (energy preserving discrete line integral methods). Journal Numerical Anal- ysis, 

Industrial and Applied Mathematics, 5(1-2):  17–37.

 

Butcher, J. C. (1963).  Coefficients for the study of Runge-Kutta integration processes.

Journal of the Australian Mathematical Society, 3(2):  185–201.

 

Butcher, J. C. (1964a).  Implicit Runge-Kutta processes.  Mathematics of Computation, 18(85):  

50–64.

 

Butcher, J. C. (1964b).  On Runge-Kutta processes of high order.  Journal of the Aus- tralian 

Mathematical Society, 4(2):  179–194.

 

Butcher, J. C. (1976).  On the implementation of implicit Runge-Kutta methods.  BIT Numerical 

Mathematics, 16(3):  237–240.

 

Butcher, J. C. (1987). The numerical analysis of ordinary differential equations: Runge-

Kutta and general linear methods. Australia: John Wiley and Sons Inc.

 

Butcher, J. C. (1996).  A history of Runge-Kutta methods.  Applied Numerical Mathe- matics, 20(3):  

247–260.

 

Butcher, J. C. (2016). Numerical methods for ordinary differential equations. Australia: John Wiley 

& Sons.

 

Butcher,  J. C. and Hojjati,  G. (2005).   Second derivative methods with Runge-Kutta stability. 

Numerical Algorithms, 40(4):  415–429.

 

Calvo, M., Franco, J. M., Montijano, J. I., and Rández, L. (2009). Sixth-order symmetric and 

symplectic exponentially fitted Runge-Kutta methods of the Gauss type. Journal of Computational and 

Applied Mathematics, 223(1):  387–398.

 

Cash, J. R. (1975).  A class of implicit Runge-Kutta methods for the numerical integra- tion of 

stiff ordinary differential equations. Journal of the ACM, 22(4):  504–511.

 

Chan, R. P. K. (1990).  On symmetric Runge-Kutta methods of high order.  Computing, 45(4):  

301–309.

 

Chan, R. P. K. and Gorgey, A. (2013).  Active and passive symmetrization of Runge- Kutta Gauss 

methods. Applied Numerical Mathematics, 67:64–77.

 

Cong, N. h. (1994).  Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial-value 

problems.  Journal of Computational and Applied Mathematics, 51(1): 117–125.

 

Cooper, G. J. and Butcher, J. C. (1983).  An iteration scheme for implicit Runge-Kutta methods. IMA 

Journal of Numerical Analysis, 3(2):  127–140.

 

Cooper, G. J. and Verner, J. H. (1972).   Some explicit Runge-Kutta methods of high order. SIAM 

Journal on Numerical Analysis, 9(3):  389–405.

 

Curtis, A. R. (1970).  An eighth order Runge-Kutta process with eleven function evalu- ations per 

step. Numerische Mathematik, 16(3):  268–277.

 

Curtis, A. R. (1975).  High-order explicit Runge-Kutta formulae, their uses, and limita- tions. IMA 

Journal of Applied Mathematics, 16(1):  35–52.

 

Enright, W. H., Hull, T. E., and Lindberg, B. (1975). Comparing numerical methods for

stiff systems of ODE. BIT Numerical Mathematics, 15(1):  10–48.

 

Faou, E., Hairer, E., and Pham, T. L. (2004).  Energy conservation with non-symplectic methods: 

examples and counter-examples. BIT Numerical Mathematics, 44(4):  699– 709.

 

Gill, S. (1951). A process for the step-by-step integration of differential equations in an 

automatic digital computing machine.  Mathematical Proceedings of the Cambridge Philosophical 

Society,   96-108.

 

González-Pinto,  S.,  González-Concepción,  C.,  and Montijano,  J. I. (1994).   Iterative schemes 

for Gauss methods.  Computers and Mathematics with Applications, 27(7): 67–81.

 

González-Pinto, S., Montijano, J. I., and Rández, L. (1995). Iterative schemes for three- stage 

implicit Runge-Kutta methods.  Applied Numerical Mathematics, 17(4):  363– 382.

 

Gorgey, A. (2012).  Extrapolation of symmetrized Runge-Kutta methods.  PhD thesis, ResearchSpace@ 

Auckland.

 

Gorgey,  A.  and  Hafizul,  M.  (2017).   Efficiency  of  Runge-Kutta  methods  in  solving Kepler 

problem. AIP Conference Proceedings,   020016.

 

Hafizul, M. and Gorgey, A. (2018).  Investigation on the most efficient ways to solve the implicit 

equations for Gauss methods in the constant stepsize setting.   Applied Mathematical Sciences, 

12(2):  93–103.

 

Hairer, E. (1978).  A Runge-Kutta method of order 10.  IMA Journal of Applied Mathe- matics, 21(1): 

 47–59.

 

Hairer, E., McLachlan, R. I., and Razakarivony, A. (2008).  Achieving Brouwer’s law with implicit 

Runge-Kutta methods. BIT Numerical Mathematics, 48(2):  231–243.

 

Hairer, E. and Wanner, G. (1999). Stiff differential equations solved by Radau methods.

Journal of Computational and Applied Mathematics, 111(1):  93–111.

 

Hitchens, F. (2015).  Propeller Aerodynamics: The history, Aerodynamics & Operation of Aircraft 

Propellers. United Kingdom: Andrews UK Limited.

 

Huen,  K.  (1900).   Neue  methode  zur  approximativen  integration  der  differentialge-

ichungen einer unabhngigen variablen.  Zeitschrift für angewandte Mathematik und

Physik, 45:  23–38.

 

Huta,  A.  (1965).   Une  amtlioration  de  ia  mtthode  de  Runge-Kutta-Nystrtim  pour  la

rtsolution nurntrique des, quations diffentielles du premier ordre.  Acta Math. Univ. Comenian, 1:  

21–24.

 

Iserles,  A. (2009).   A first course in the numerical analysis of differential equations.

Number 44. United State of America: Cambridge University press.

 

Kadoura, A., Sun, S., and Salama, A. (2014). Accelerating Monte Carlo molecular sim- ulations by 

reweighting and reconstructing Markov chains:  Extrapolation of canon- ical ensemble averages and 

second derivatives to different temperature and density conditions. Journal of Computational 

Physics, 270:  70–85.

 

Kajanthan, S. and Vigneswaran, R. (2014). Some efficient implementation schemes for implicit 

Runge-Kutta methods.   International Journal of Pure and Applied Mathe- matics, 93(4):  525–540.

 

Kulikov, G. Y. (2015).  Embedded symmetric nested implicit Runge-Kutta methods of Gauss and Lobatto 

types for solving stiff ordinary differential equations and Hamilto- nian systems.  Computational 

Mathematics and Mathematical Physics, 55(6):  983– 1003.

 

Kuntzmann,  J.  (1961).    Neuere  entwicklungen  der  methode  von  Runge  und  Kutta. 

ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und 

Mechanik, 41(S1).

 

Kutta, W. (1901). Beitrag zur näheruengweisen integration totaler differentialgleichun-

gen.

 

Liniger, W. and Willoughby, R. A. (1970). Efficient integration methods for stiff systems of 

ordinary differential equations.  SIAM Journal on Numerical Analysis, 7(1):  47– 66.

 

Nazari, F., Mohammadian, A., Charron, M., and Zadra, A. (2014).  Optimal high-order 

diagonally-implicit Runge-Kutta schemes for nonlinear diffusive systems on atmo- spheric boundary 

layer. Journal of Computational Physics, 271:  118–130.

 

Prothero, A. and Robinson, A. (1974).  On the stability and accuracy of one-step meth- ods for 

solving stiff systems of ordinary differential equations. Mathematics of Com-

putation, 28(125):  145–162.

 

Rechenberg,  H.  (2001).    The  historical  development  of  quantum  theory,  volume  1.

United State of America: Springer Science & Business Media.

 

Runge, C. (1895). Über die numerische auflösung von differentialgleichungen. Mathe- matische 

Annalen, 46(2):  167–178.

 

Sanderse, B. and Koren, B. (2012). Accuracy analysis of explicit Runge-Kutta methods applied to the 

incompressible Navier-Stokes equations.   Journal of Computational Physics, 231(8):  3041–3063.

 

Shampine, L. F. (1980). Implementation of implicit formulas for the solution of ODEs.

SIAM Journal on Scientific and Statistical Computing, 1(1):  103–118.

 

Shampine,  L. F. (1984).   Stability of explicit Runge-Kutta methods.   Computers and Mathematics 

with Applications, 10(6):  419–432.

 

Shampine, L. F. and Gear, C. W. (1979).  A user’s view of solving stiff ordinary differ- ential 

equations. SIAM review, 21(1):  1–17.

 

Skvortsov,  L.  M.  and  Kozlov,  O.  S.  (2014).   Efficient  implementation  of  diagonally 

implicit Runge-Kutta methods.   Mathematical Models and Computer Simulations, 6(4):  415–424.

 

Swart, D., Jacques, J. B., and Lioen, W. M. (1998). Collecting real-life problems to test solvers 

for implicit differential equations. CWI Quarterly, 11(1):  83–100.

 

Wanner, G. and Hairer, E. (1991).  Solving ordinary differential equations II, volume 1.

New York: Springer-Verlag, Berlin.

 

Williams, G. (2017). Linear algebra with applications. United State of America: Jones & Bartlett 

Learning.

 

Xie, D. (2011).   An improved approximate Newton method for implicit Runge-Kutta formulas. Journal 

of Computational and Applied Mathematics, 235(17):  5249–5258.

 

Zhang,  H.,  Sandu,  A.,  and Tranquilli,  P. (2015).   Application of approximate matrix 

factorization to high order linearly implicit Runge-Kutta methods.  Journal of Com- putational and 

Applied Mathematics, 286:  196–210.

 

Zhu, B., Hu, Z., Tang, Y., and Zhang, R. (2016).  Symmetric and symplectic methods for gyrocenter 

dynamics in time-independent magnetic fields.  International Journal of Mode, Simulation, and 

Scientific Computing,   1658.

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.