UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This work reports the synthesis, characterization and in vitro response of a novel chitosan-hydroxyapatite composite doped with magnesium. Hydroxyapatite (HA), magnesium doped HA, chitosan-hydroxyapatite composite and the novel magnesium doped chitosan-hydroxyapatite composite were synthesised using coprecipitation method. The effects of magnesium and chitosan incorporation on the structural properties of the samples were studied by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Bioactivity studies of the samples in simulated body fluid (SBF) was carried out. The incorporation of magnesium and chitosan into the lattice of the HA reduced the crystallinity and crystallite size of the HA. The chemical composition of the novel magnesium doped chitosan-HA composite was found to have resemblance to that of bone mineral. The novel material showed good bioactivity in SBF.
|
References |
[1] B. Badraoui, A. Aissa, A. Bigi, M. Debbabi, M. Gazzano, (2009), Synthesis and characterization of Sr(10-x)Cdx(PO4)(6)Y-2 (Y= OH and F): A comparison of apatites containing two divalent cations, Materials Research Bulletin, 44(3) 522-530. [2] R. L. Legeros, O. R. Trautz, E. Klein, J.P. Legeros, (2009), Types of Carbonate [3] T. Kanazawa, T. Umegaki, K. Yamashita, H. Monma, T. Hiramatsu, (1991), Effects of Additives on Sintering and Some Properties of Calcium Phosphates with Various Ca/P Ratios, Journal of Materials Science, 26(2) 417-422. [4] I. Manjubala, M. Sivakumar, S.N. Nikkath, (2001), Synthesis and characterisation of hydroxy/fluoroapatite solid solution, Journal of Materials Science, 36(22), 5481-5486. [5] H. Agougui, A. Aissa, M. Debbabi, (2012), Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride, Applied Surface Science, 261,182-188. [6] M. Zahouily, W. Bahlaouan, B. Bahlaouan, A. Rayadh, & S. Sebti, (2005). Catalysis by hydroxyapatite alone and modified by sodium nitrate: A simple and efficient procedure for the construction of carbon-nitrogen bonds in heterogeneous catalysis, Arkivoc, 150-161. [7] C.K. Chang, W. Li, X.J. Huang, Z.Y. Wang, X. Chen, X. Qian, D.L. Mao, (2010). Photoluminescence and afterglow behavior of Eu2+, Dy3+ and Eu3+, Dy3+ in Sr3Al2O6 matrix, Journal of Luminescence, 130(3), 347-350. [8] Z. Boukha, M. Kacimi, M. Ziyad, A. Ensuque, & F. Bozon-Verduraz, (2007). Comparative study of catalytic activity of Pd loaded hydroxyapatite and fluoroapatite in butan-2-ol conversion and methane oxidation, Journal of Molecular Catalysis a-Chemical, 270(1-2), 205-213. [9] E. Kendrick, M.S. Islam, & P.R. Slater, (2007). Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties, Journa of Materials Chemistry, 17(30), 3104-3111. [10] J. Batton, A.J. Kadaksham, A. Nzihou, P. Singh, N. Aubry, (2007), Trapping heavy metals by using calcium hydroxyapatite and dielectrophoresis, Journal of Hazard Materials, 139(3), 461-466. [11] C.C. Ribeiro, I. Gibson, & M.A. Barbosa, (2006). The uptake of titanium ions by hydroxyapatite particles - structural changes and possible mechanisms, Biomaterials, 27(9), 1749-1761. [12] W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, & K.S. TenHuisen, (2004). Preparation of magnesiumsubstituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials, 25(19), 4647-4657. [13] K. Lin, P. Liu, L. Wei, Z. Zou, W. Zhang, Y. Qian, & J. Chang, (2013). Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release, Chemical Engineering Journal, 222, 49-59. [14] T. Turki, M. Othmani, C.G. Bac, F. Rachdi, K. Bouzouita, (2013), Surface modification of zinc-containing hydroxyapatite by tartaric acid, Applied Surface Science, 284, 66-71. [15] M. Dash, F. Chiellini, R.M. Ottenbrite, E. & Chiellini, (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 36(8), 981-1014. [16] D. He, X.F. Xiao, F. Liu, & R.F. Liu, (2007). Hydroxyapatite nanospindles by biomimetic synthesis with chitosan as template, Materials Science and Technology, 23(10), 1228-1232. [17] M.R. Nikpour, S.M. Rabiee, M. Jahanshahi, (2012), Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications, Composites Part B: Engineering, 43(4), 1881-1886. [18] M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran, (2013), Nanohydroxyapatite-chitosangelatin polyelectrolyte complex with enhanced mechanical and bioactivity, Materials Science Engineering C Materials Biology Applied, 33(6), 3237-3244. [19] A.Z. Alshemary, M. Akram, Y.F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, (2015), Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite, Ceramics International, 41(9), 11886-11898. [20] G.S. Kumar, A. Thamizhavel, Y. Yokogawa, S.N. Kalkura, E.K. Girija, (2012), Synthesis, characterization and in vitro studies of zinc and carbonate cosubstituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, 134(2-3), 1127-1135. [21] O. Kaygili, S. Keser, M. Kom, Y. Eroksuz, S.V. Dorozhkin, T. Ates, I.H. Ozercan,C. Tatar, & F. Yakuphanoglu, (2015). Strontium substituted hydroxyapatite: Synthesismand determination of their structural properties, in vitro and in vivo performance, Materials Science and Engineering C, 55, 538-546. [22] P. Jongwattanapisan, D.H. Kim, N. Charoenphandhu, N. Krishnamra, J. Thongbunchoo, I. Tang, H. Rassimidara, M.J. Smith, W. Pon-On, (2012), In vitro study of the SBF and osteoblast like cells on hydroxyapatite/chitosan-silica nanocomposite, Materials Science and Engineering C, 31, 290-299. [23] M. Nabiyouni, Y. Ren, & S.B. Bhaduri, (2015). Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, andhydroxyapatites, Mater Science and Engineering C Materilas Biology Applied, 52, 11-17. [24] Roy, P., & R.R.N. Sailaja, (2015). Chitosan–nanohydroxyapatite composites: Mechanical, thermal and bio-compatibility studies, International Journal of Biological Macromolecules, 73, 170-181. [25] K.T. Arul, E. Kolanthai, E. Manikandan, G.M. Bhalerao, V.S Chandra, J.R. Ramya, & S.N. Kalkura,(2015). Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties. Materials Research Bulletin, 67, 55-62. [26] A. Rogina, M. Ivankovic, & H. Ivankovic, (2013). Preparation and characterization of nano-hydroxyapatite within chitosan matrix, Materials Science Engineering C Materials Biology Applied, 33(8), 4539-4544. [27] A. Balamurugan, G. Balossier, P. Torres, J. Michel, J.M.F. Ferreira, (2009), Sol–gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite, Materials Science and Engineering: C, 29(3), 1006-1009. [28] F. Ren, R. Xin, X. Ge, Y. Leng, (2009), Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomaterials, 5(8) 3141-3149.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |