UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA Mathematics
Main Author :Sara Syahrunnisaa Mustapha
Title :An efficient implementation of Runge-Kutta Gauss methods using variable stepsize setting
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The research is aimed to find the most efficient implementation strategies  by Gauss numerical   methods  for  solving  stiff  problems  and  the  best  error  estimation  in  the variable  stepsize setting. The numerical methods considered as a research methodology are  the  2-stage   (G2)  and  3-stage  (G3)  implicit  Runge-Kutta  Gauss  methods.  Two strategies  by Hairer  and   Wanner  (HW)  and  Gonzalez-Pinto,  Montijano  and  Randez (GMR)  schemes  were  implemented.  The   variable  stepsize  setting  employed  the simplified Newton is modified to fit according to HW and  GMR schemes in solving the nonlinear  algebraic  systems  of  the  equations.  The  error   estimation  for  the  variable stepsize setting is computed using extrapolation technique with stepsizes  h  and  h  2 . HW and GMR schemes used the transformation matrix T to improve the efficiency of the methods and  also compared with the modified Hairer and Wanner (MHW) scheme without using any transformation matrix  T .  Findings showed that G2 method using MHW  scheme  gave  an  efficient  implementation  in  solving  Kaps,  Oreganator  and HIRES  problems while for G3 method, it was efficient in solving Kaps, Brusselator, Oreganator, Van der  Pol and HIRES problems. In terms of error estimation, the G2 method gave the best error estimation  for Brusselator, Oreganator, Van  der Pol and HIRES problems, while for the G3 method it was  efficient in solving Kaps, Brusselator, Oreganator,  Van  der  Pol  and  HIRES  problems,  both  by   using  HW  scheme.  In conclusion, the MHW scheme without any transformation matrix T can be as  efficient as the HW and GMR schemes  by using the variable stepsize setting and the  MHW scheme is  recommended in solving stiff problems. As for the implications, this research could  be  extended   to  other  different  types  of  problems  such  as  delay  and  fuzzy rential equations.  

References

Ababneh, O. Y. &  Ahmad, R. (2009). Construction  of third-order diagonal implicit

Runge-Kutta  methods  for  stiff  problems.  Chinese  Physics  Letters,  26(8), 080503.

 

Abia, L. & Sanz-Serna, J. M. (1993). Partitioned Runge-Kutta methods for separable Hamiltonian 

problems. Mathematics of Computation, 60(202), 617-634.

 

Agam, S. A. & Yahaya, Y. A. (2014). A highly efficient implicit Runge-Kutta method for first order 

ordinary differential equations. African Journal of Mathematics and Computer Science Research, 

7(5), 55-60.

 

Aiken, R. C. (1985). Stiff Computation. Oxford: Oxford University Press.

 

Antoñana,  M.,  Makazaga,  J.  &  Murua,  A.  (2018).  Efficient  implementation  of symplectic 

implicit Runge-Kutta schemes with simplified Newton iterations. Numerical Algorithms, 78(1), 63-86.

 

Araz, S. ?. (2020). Numerical analysis of a new Volterra integro-differential equation involving 

fractal-fractional operators. Chaos, Solitons & Fractals, 130, 109396.

 

Atangana, A.  & Araz, S.  ?. (2020). New numerical method for ordinary differential equations:   

Newton   polynomial.   Journal   of   Computational   and   Applied Mathematics, 372, 112622.

 

Atkinson,  K.,  Han,  W.  &  Stewart,  D.  E.  (2009).  Numerical  Solution  of  Ordinary 

Differential Equations. New Jersey: John Wiley & Sons, Inc.

 

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., et al. (2009). 

Accelerating        scientific        computations        with        mixed        precision 

algorithms. Computer Physics Communications, 180(12), 2526-2533.

 

Bader, G. & Deuflhard, P. (1983). A semi-implicit mid-point rule for stiff systems of ordinary 

differential equations. Numerische Mathematik, 41(3), 373-398.

 

Berghe,  G.  V.  &  Daele,  M.  V.  (2011).  Symplectic  exponentially-fitted  four-stage 

Runge-Kutta  methods  of  the  Gauss  type.  Numerical Algorithms,  56(4),  591- 608.

 

Bjurel, G., Dahlquist, G., Lindberg, B., Linde, S. & Oden, L. (1970). Survey of stiff ordinary 

differential equations. Department of Information Processing, Royal

Institute of Technology, Stockholm.

 

Blanes, S., Casas, F. & Thalhammer, M. (2019). Splitting and composition methods with embedded 

error estimators. Applied Numerical Mathematics. 146 (2019), 400-415.

 

Boom,  P.  D.  &  Zingg,  D.  W.  (2015).  Investigation  of  efficient  high-order  implicit 

Runge-Kutta  methods  based  on  generalized  summation-by-parts  operators. 22nd AIAA 

Computational Fluid Dynamics Conference, 2757, 1-15.

 

Branch,  M.  &  Mahshahr,  I.  R.  I.  (2016).  Computing  simulation  of  the  generalized duffing 

 oscillator  basedon  EBM  and  MHPM.  Mechanics  and  Mechanical Engineering, 20(4), 595-604.

 

Burrage,  K.  &  Butcher,  J.  C.  (1979).  Stability  criteria  for  implicit  Runge-Kutta 

methods. SIAM Journal on Numerical Analysis, 16(1), 46-57.

 

Butcher,    J.    C.    (1964).    Implicit    Runge-Kutta    processes.    Mathematics    of 

Computation, 18(85), 50-64.

 

Butcher,  J.  C.  (1996).  A  history  of   Runge-Kutta  methods.   Applied  Numerical Mathematics, 

20(3), 247-260.

 

Butcher,  J.  C.  (1997).  An  introduction  to  “Almost  Runge-Kutta”  methods.  Applied Numerical 

Mathematics, 24(2-3), 331-342.

 

Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations. United Kingdom: John 

Wiley & Sons.

 

Calvo, M., Franco, J. M., Montijano, J. I. & Rández, L. (2009). Sixth-order symmetric and 

symplectic exponentially fitted Runge-Kutta methods of the Gauss type. Journal of Computational and 

Applied Mathematics, 223(1), 387–398.

 

Cash,  J.  R.  (1975).  A  class  of  implicit  Runge-Kutta  methods  for  the  numerical 

integration   of   stiff   ordinary  differential   equations.   Journal   of   the   ACM (JACM), 

22(4), 504-511.

 

Cerrolaza,  M.,  Shefelbine,  S.  &  Garzón-Alvarado,  D.  (Eds.).  (2018).  Numerical Methods and 

Advanced Simulation in Biomechanics and Biological Processes. London, UK: Academic Press.

 

Chan, R. P. K. (1990). On symmetric Runge-Kutta methods of high order. Computing, 45(4), 301–309.

 

Chan, R. P. K. & Gorgey, A. (2013). Active and passive symmetrization of Runge- Kutta Gauss 

methods. Applied Numerical Mathematics, 67, 64–77.

 

Chan, R. P. K. & Razali, N. (2014). Smoothing effects on the IMR and ITR. Numerical

Algorithms, 65(3), 401-420.

 

Cong, N. H. (1994). Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial-value  

problems.  Journal  of  Computational  and  Applied  Mathematics, 51(1), 117–125.

 

Cooper, G. J. & Butcher, J. C. (1983). An iteration scheme for implicit Runge-Kutta methods. IMA 

Journal of Numerical Analysis, 3(2), 127-140.

 

Dahlquist, G. G. (1963). A special stability problem for linear multistep methods. BIT Numerical 

Mathematics, 3(1), 27-43.

 

Dekker, K. & Verwer J.G. (1984). Stability of Runge-Kutta methods for stiff nonlinear differential 

equations. North-Holland: CWI Monographs.

 

DeVries, P. & Hasbun, J. (2011). A First Course in Computational Physics. Sudbury, MA: Jones and 

Bartlett Publishers.

 

Dormand,   J.   R.   (2018).   Numerical   Methods   for   Differential   Equations:   A 

Computational Approach. Boca Raton, FL: CRC Press.

 

Ehle,    B.    L.    (1973).    A-stable    methods    and    Padé    approximations    to    the 

exponential. SIAM Journal on Mathematical Analysis, 4(4), 671-680.

 

Enright, W. H., Hull, T. E. & Lindberg, B. (1975). Comparing numerical methods for stiff systems of 

ODEs. BIT Numerical Mathematics, 15(1), 10-48.

 

Fan,  Z.,  Song,  M.  &  Liu,  M.  (2009).  The  αth  moment  stability  for  the  stochastic 

pantograph      equation.      Journal      of      Computational      and      Applied 

Mathematics, 233(2), 109-120.

 

Faragó,  I.,  Havasi,  Á.  &  Zlatev,  Z.  (2013).  The convergence  of  diagonally implicit 

Runge-Kutta methods combined with Richardson extrapolation. Computers and Mathematics with 

Applications, 65(3), 395–401.

 

Fatunla,  S.  O.  (2014).  Numerical  Methods  for  Initial  Value  Problems  in  Ordinary 

Differential Equations. San Diego, CA: Academic Press, Inc.

 

Gear, C. W. (1980). Runge-Kutta starters for multistep methods. ACM Transactions on Mathematical 

Software (TOMS), 6(3), 263-279.

 

González-Pinto,  S.,  González-Concepción,  C.  &  Montijano,  J.  I.  (1994).  Iterative schemes   

  for     Gauss     methods.     Computers     and     Mathematics     with Applications, 27(7), 

67-81.

 

González-Pinto, S., Hernández-Abreu, D. & Montijano, J. I. (2019). Variable step-size control     

based     on     two-steps     for     Radau     IIA     methods.     Preprint: 

https://www.researchgate.net/publication/331687918_Variable_step-

l_based_on_two-steps_for_Radau_IIA_methods

 

González-Pinto, S., Montijano, J. I. & Rández, L. (1995). Iterative schemes for three-

stage implicit Runge-Kutta methods. Applied Numerical Mathematics, 17(4), 363–382.

 

Gorgey, A. (2012). Extrapolation of symmetrized Runge-Kutta methods. PhD thesis, ResearchSpace @ 

University of Auckland.

 

Gorgey, A. (2015). Extrapolation of symmetrized Runge-Kutta methods in the variable stepsize    

setting.    International    Journal    of    Applied    Mathematics    and Statistics, 55(2), 

14-22.

 

Gorgey,  A.  &  Chan,  R.  P.  K.  (2015).  Choice  of  strategies  for  extrapolation  with 

symmetrization    in    the    constant    stepsize    setting.    Applied    Numerical 

Mathematics, 87, 31-37.

 

Gorgey, A. & Mat, N. A. A. (2018). Efficiency of Runge-Kutta methods in solving simple harmonic 

oscillators. Matematika, 34(1), 1-12.

 

Gorgey, A. & Muhammad, H. (2017). Efficiency of Runge-Kutta methods in solving Kepler problem. AIP 

Conference Proceedings. 1847(1), 020016.

 

Guo,  P.  &  Li,  C.  J.  (2019).  Razumikhin-type  technique  on  stability  of  exact  and 

numerical   solutions   for   the   nonlinear   stochastic   pantograph   differential equations. 

BIT Numerical Mathematics, 59(1), 77-96.

 

Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit Runge-Kutta  

  methods.    ACM    Transactions    on    Mathematical    Software (TOMS), 20(4), 496-517.

 

Hairer, E. & Wanner, G. (1981). Algebraically stable and implementable Runge-Kutta methods of high 

order. SIAM Journal on Numerical Analysis, 18(6), 1098-1108.

 

Hairer, E. & Wanner, G. (1996). Solving Ordinary Differential Equations II. London: Springer-Verlag 

Berlin Heidelberg.

 

Hairer, E. & Wanner, G. (1999). Stiff differential equations solved by Radau methods.

Journal of Computational and Applied Mathematics, 111(1-2), 93-111.

 

Higham, N. J. (1993). The accuracy of floating point summation. SIAM Journal on Scientific 

Computing, 14(4), 783-799.

 

Hindmarsh,  A.  C.  (1980).  LSODE  and  LSODI,  two  new  initial  value  ordinary differential 

equation solvers. ACM Signum Newsletter, 15(4), 10-11.

 

Hitchens, F. (2015). Propeller Aerodynamics: The History, Aerodynamics & Operation of Aircraft 

Propellers. Wellington, NZ: Andrews UK Limited.

 

Holder, A. & Eichholz, J. (2019). Modeling with delay differential equations. In An

Introduction to Computational Science. Switzerland: Springer, Cham. 377-387.

 

Hussain, E. A. & Abdul-Abbass, Y. M. (2019). On Fuzzy differential equation. Journal

of Al-Qadisiyah for Computer Science and Mathematics, 11(2), 1-9.

 

Iserles, A. (2009). A first course in the numerical analysis of differential equations.

New York, US: Cambridge University Press.

 

Ismail, A. & Gorgey, A. (2015). Behaviour of the extrapolated implicit midpoint and implicit   

trapezoidal   rules   with   and   without   compensated   summation. Matematika, 31(1), 47–57.

 

Kennedy, C. A. & Carpenter, M. H. (2019). Diagonally implicit Runge-Kutta methods for stiff ODEs. 

Applied Numerical Mathematics, 146(6), 221-244.

 

Kim, I. P. & Kräuter, A. R. (2018). Decompositions of a matrix by means of its dual matrices with 

applications. Linear Algebra and its Applications, 537, 100-117.

 

Kulikov, G. Y. (2015). Embedded symmetric nested implicit Runge-Kutta methods of Gauss and  Lobatto 

types for solving stiff  ordinary differential equations and Hamiltonian systems. Computational 

Mathematics and Mathematical Physics, 55(6), 983–1003.

 

Kuntzmann,   J.   (1961).   Neuere   entwicklungen   der   methode   von   runge   und kutta. 

ZAMM?Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und 

Mechanik, 41(1), 28-31.

 

Lambert,  J.  D.  (1991).  Numerical  Methods  for  Ordinary  Differential  Systems:  The Initial 

Value Problem. New York, US: John Wiley & Sons, Inc.

 

Lapidus, L. & Schiesser, W. E. (1976). Numerical Methods for Differential Systems: Recent   

Developments   in  Algorithms,   Software,   and  Applications.   United Kingdom: Academic Press 

Inc.

 

Liu,  Y.  (1995).  Stability  analysis  of  θ-methods  for  neutral  functional-differential 

equations. Numerische Mathematik, 70(4), 473-485.

 

Liu, M. Y., Zhang, L. & Zhang, C. F. (2019). Study on banded implicit Runge-Kutta methods  for  

solving  stiff  differential  equations.  Mathematical  Problems  in Engineering, 2019, 4850872.

 

Muhammad, M. H. (2018). An Efficient Implementation Technique for Implicit Runge- Kutta Methods in 

Solving the Stiff Problems. Universiti Pendidikan Sultan Idris.

 

Muhammad, M. H. & Gorgey, A. (2018). Investigation on the most efficient ways to solve the implicit 

equations for Gauss methods in the constant stepsize setting. Applied Mathematical Sciences, 12(2), 

93-103.

 

Najafi, R. & Nemati, S. B. (2017). Numerical solution of the forced Duffing equations using   

Legendre   multiwavelets.   Computational   Methods   for   Differential

tions, 5(1), 43-55.

 

Nazari, F., Mohammadian, A., Charron, M. & Zadra, A. (2014). Optimal high-order

diagonally-implicit  Runge-Kutta  schemes for  nonlinear  diffusive  systems  on atmospheric 

boundary layer. Journal of Computational Physics, 271, 118-130.

 

Owolabi,  K.  M.  (2019).  Mathematical modelling and  analysis  of  love  dynamics:  A fractional 

approach. Physica A: Statistical Mechanics and its Applications, 525, 849-865.

 

Peat, K. D. & Thomas, R. M. (1989). Implementation of iteration schemes for implicit Runge-Kutta 

methods. University of Manchester. Department of Mathematics.

 

Prothero, A., & Robinson, A. (1974). On the stability and accuracy of one-step methods for  solving 

 stiff  systems  of  ordinary  differential  equations.  Mathematics  of Computation, 28(125), 

145-162.

 

Ramos, H.  (2019).  Development of a new Runge?Kutta method and its economical implementation. 

Computational and Mathematical Methods, 1(2), e1016.

 

Rang, J. (2016). The Prothero and Robinson example: Convergence studies for Runge- Kutta and 

Rosenbrock-Wanner methods. Applied Numerical Mathematics, 108, 37-56.

 

Rasedee, A. F. N., Ishak, N., Hamzah, S. R., Ijam, H. M., Suleiman, M., Ibrahim, Z. B., et al. 

(2017). Variable order variable stepsize algorithm for solving nonlinear Duffng oscillator. Journal 

of Physics: Conference Series, 890, 012045.

 

Razali, N., Nopiah, Z. M. & Othman, H. (2018). Comparison of one-step and two-step symmetrization  

in  the  variable  stepsize  setting.  Sains  Malaysiana,  47(11), 2927-2932.

 

Rechenberg, H. (2001). The Historical Development of Quantum Theory, Volume 1.

New York, US: Springer Science & Business Media.

 

Robertson, H. H. (1966). The solution of a set of reaction rate equations. Cambridge, 

Massachusetts: Academic Press. 178-182.

 

Roussel, M. R. (2019). Nonlinear Dynamics: A hands-on introductory survey. Bristol, UK: Morgan & 

Claypool Publishers.

 

Rushanan,  J.  J.  (1989).  On  the  Vandermonde  matrix.  The  American  Mathematical Monthly, 

96(10), 921-924.

 

Sanderse, B. & Koren, B. (2012). Accuracy analysis of explicit Runge-Kutta methods applied    to    

the    incompressible    Navier-Stokes    equations.    Journal    of Computational Physics, 

231(8), 3041– 3063.

 

Sanz-Serna, J. (1988). Runge-Kutta schemes for Hamiltonian systems. BIT Numerical

Mathematics, 28(4), 877-883.

 

Sanz-Serna,  J.  M.  (2016).  Symplectic  Runge-Kutta  schemes  for  adjoint  equations,

automatic differentiation, optimal control, and more. SIAM Review, 58(1), 3-33.

 

Schäfer,  E.  (1975).  A  new  approach  to  explain  the  “high  irradiance  responses”  of 

photomorphogenesis  on  the  basis  of  phytochrome.  Journal  of  Mathematical Biology, 2(1), 

41-56.

 

Shampine,  L.  F.  (1984).  Stability  of  explicit  Runge-Kutta  methods.  Computers  & 

Mathematics with Applications, 10(6), 419-432.

 

Shampine, L. F. (1985). Local error estimation by doubling. Computing, 34(2), 179- 190.

 

Shampine, L. F. (2018). Numerical Solution of Ordinary Differential Equations. Boca Raton, FL: 

Routledge.

 

Skvortsov,  L.  M.  &  Kozlov,  O.  S.  (2014).  Efficient  implementation  of  diagonally implicit 

   Runge-Kutta    methods.    Mathematical    Models    and    Computer Simulations, 6(4), 415-424.

 

Sun, G. A. (2000). Simple way constructing symplectic Runge-Kutta methods. Journal of Computational 

Mathematics, 18(1), 61–68.

 

Swart, D., Jacques, J. B. & Lioen, W. M. (1998). Collecting real-life problems to test solvers for 

implicit differential equations. CWI Quarterly, 11(1), 83-100.

 

Toufik,  M.  &  Atangana,  A.  (2017).  New  numerical  approximation  of  fractional derivative  

with  non-local  and  non-singular  kernel:  application  to  chaotic models. The European Physical 

Journal Plus, 132(10), 444.

 

Varah, J. M. (1979). On the efficient implementation of implicit Runge-Kutta methods.

Mathematics of Computation, 33(146), 557.

 

Wang, P., Zhou, J., Wang, R. & Chen, J. (2017). New generalized variable stepsizes of the   CQ   

algorithm   for   solving   the   split   feasibility  problem.   Journal   of Inequalities and 

Applications, 2017(1), 135.

 

Wang, Y. & Chen, Y. (2020). Shifted Legendre Polynomials algorithm used for the dynamic analysis of 

viscoelastic pipes conveying fluid with variable fractional order model. Applied Mathematical 

Modelling, 81, 159-176.

 

Wilkie,  J.   &   Çetinba?,   M.   (2005).   Variable-stepsize   Runge-Kutta   methods   for 

stochastic Schrödinger equations. Physics Letters A, 337(3), 166-182.

 

Williams, G. (2017). Linear Algebra with Applications. United State of America: Jones & Barlett 

Learning.

 

Willoughby, R. A. (1974). Stiff Differential Systems. International Symposium on Stiff

Differential Systems. Boston, MA: Springer. 1-19.

 

Xu, P., Yuan, Z., Jian, W. & Zhao, W. (2015). Variable step-size method based on a reference 

separation system for source separation.  Journal of Sensors, 2015. 964098.

 

Yaici, M. & Hariche, K. (2019). A particular block Vandermonde matrix. ITM Web of Conferences, 24. 

01008.

 

Yang, H., Yang, Z., Wang, P. & Han, D. (2019). Mean-square stability analysis for nonlinear 

stochastic pantograph equations by transformation approach. Journal of Mathematical Analysis and 

Applications, 479(1), 977-986.

 

Yang, X., Yang, Z. & Xiao, Y. (2020). Asymptotical mean-square stability of linear θ- methods for 

stochastic pantograph differential equations: variable stepsize and transformation          

approach.          Unpublished          manuscript.          DOI: 10.22541/au.159023888.86381071

 

Ycart,   B.   (2012).    A   Case   of   Mathematical   Eponymy:   The    Vandermonde Determinant. 

arXiv preprint arXiv:1204.4716.

 

Ye,  K.  (2017).  New  classes  of  matrix  decompositions.  Linear  Algebra  and  its 

Applications, 514, 47-81.

 

Yu, W. &  Jafari, R. (2019). Fuzzy Differential Equations. In Modeling and Control of Uncertain 

Nonlinear Systems with Fuzzy Equations and Z-Number, Piscataway, NJ: Wiley-IEEE Press. 21-37.

 

Zhang,  D.  K.  (2019).  Discovering  New  Runge-Kutta  Methods  using  Unstructured Numerical 

Search. arXiv preprint arXiv:1911.00318.

 

Zhang,  H.,  Sandu,  A.  &  Tranquilli,  P.  (2015).  Application  of  approximate  matrix 

factorization to high order linearly implicit Runge-Kutta methods. Journal of Computational and 

Applied Mathematics, 286, 196–210.

 

Zhu, B., Hu, Z., Tang, Y. & Zhang, R. (2016). Symmetric and symplectic methods for gyrocenter   

dynamics   in   time-independent   magnetic   fields.   International

eling, Simulation, and Scientific Computing, 7(02), 1650008.

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.