UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Background TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved.
Methods We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes.
Results Both lobes of CaMhelped induce CDI.Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton.
Conclusions The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC’s coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
|
References |
1. Berridge MJ: Calcium signalling remodelling and disease. Biochem Soc Trans 40: 297–309, 2012 2. Greka A,Mundel P:Cell biology and pathology of podocytes. Annu Rev Physiol 74: 299–323, 2012 3. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, et al.: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37: 739–744, 2005 4. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al.: A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804, 2005 5. ClaphamDE: TRP channels as cellular sensors.Nature 426: 517–524, 2003 6. Nilius B, Owsianik G, Voets T, Peters JA: Transient receptor potential cation channels in disease. Physiol Rev 87: 165–217, 2007 7. Dryer SE, Reiser J: TRPC6 channels and their binding partners in podocytes: Role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299: F689–F701, 2010 8. Dietrich A, Chubanov V, Gudermann T: Renal TRPathies. J Am Soc Nephrol 21: 736–744, 2010 9. Heeringa SF,Möller CC,Du J, Yue L,Hinkes B, Chernin G, et al.: A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4: e7771, 2009 10. Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, et al.: Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-g1 and nephrin: Effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 22: 1824–1835, 2011 11. Sun ZJ, Ng KH, Liao P, Zhang Y, Ng JL, Liu ID, et al.: Genetic interactions between TRPC6 and NPHS1 variants affect posttransplant risk of recurrent focal segmental glomerulosclerosis. Am J Transplant 15: 3229–3238, 2015 12. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259–263, 1999 13. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, et al.: The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)- permeable cation channel. Circ Res 88: 325–332, 2001 14. Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y, Flockerzi V, et al.: Critical roles of Gi/o proteins and phospholipase C-d1 in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A 113: 1092–1097, 2016 15. Blair NT, Kaczmarek JS, Clapham DE: Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. JGen Physiol 133: 525–546, 2009 16. Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, et al.: Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273: 10279–10287, 1998 17. Kwon Y, Hofmann T, Montell C: Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6.Mol Cell 25: 491–503, 2007 18. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, et al.: Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275: 27799–27805, 2000 19. Shi J,Mori E,Mori Y,Mori M, Li J, Ito Y, et al.:Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561: 415–432, 2004 20. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS: Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interactionwith a site in the C terminus of TrpC1. MolCell 9: 739–750, 2002 21. Armstrong CM: Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54: 553–575, 1969 22. Chad J, Eckert R, Ewald D: Kinetics of calcium-dependent inactivation of calcium current in voltage-clamped neurones of Aplysia californica. J Physiol 347: 279–300, 1984 23. Gigante M, Caridi G, Montemurno E, Soccio M, d’Apolito M, Cerullo G, et al.: TRPC6 mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Clin J AmSoc Nephrol 6: 1626–1634, 2011 24. Riehle M, Büscher AK, Gohlke BO, Kaßmann M, Kolatsi-Joannou M, Bräsen JH, et al.: TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol 27: 2771–2783, 2016 25. Imai Y, Itsuki K,Okamura Y, Inoue R,MoriMX: A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5) P2-diacylglycerol signalling. J Physiol 590: 1101–1119, 2012 26. Mercado J, Gordon-Shaag A, ZagottaWN, Gordon SE: Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 30: 13338–13347, 2010 27. MoriMX, Imai Y, Itsuki K, Inoue R:Quantitativemeasurement of Ca(2+)- dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. Biochemistry 50: 4685–4696, 2011 28. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, et al.: Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A 98: 3168–3173, 2001 29. Saimi Y, Kung C: Calmodulin as an ion channel subunit. Annu Rev Physiol 64: 289–311, 2002 30. Mori M, Konno T, Ozawa T, Murata M, Imoto K, Nagayama K: Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: Does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39: 1316–1323, 2000 31. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M: Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22: 6582–6591, 2002 32. Mundel P, Reiser J, Zúñiga Mejía Borja A, Pavenstädt H, Davidson GR, Kriz W, et al.: Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236: 248–258, 1997 33. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT: Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 31: 973–985, 2001 34. MoriM, Konno T, Morii T,Nagayama K, Imoto K: Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe. Biochem Biophys Res Commun 307: 290–296, 2003 35. Delaglio F, Grzesiek S, Vuister GW, ZhuG, Pfeifer J, Bax A: NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277–293, 1995 36. Goddard TD, Kneller DG. 1999. SPARKY 3. University of California, San Francisco. 37. ForstAL, OlteanuVS,Mollet G,Wlodkowski T, Schaefer F, DietrichA, et al.: Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J Am SocNephrol 27: 848–862, 2016 38. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, et al.: Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106: 5400–5405, 2009 39. IlatovskayaDV, Palygin O, Chubinskiy-Nadezhdin V,Negulyaev YA,MaR, Birnbaumer L, et al.: Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int 86: 506–514, 2014 40. Andrews P: Morphological alterations of the glomerular (visceral) epithelium in response to pathological and experimental situations. J Electron Microsc Tech 9: 115–144, 1988 41. D’Agati VD, Kaskel FJ, Falk RJ: Focal segmental glomerulosclerosis. N Engl J Med 365: 2398–2411, 2011 42. Hoeflich KP, Ikura M: Calmodulin in action: Diversity in target recognition and activation mechanisms. Cell 108: 739–742, 2002 43. Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, et al.: Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415: 396–402, 2002 44. Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, et al.: Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J Biol Chem 287: 43030–43041, 2012 45. Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, HeydenM, Tobias DJ, et al.: Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat Struct Mol Biol 20: 1085–1092, 2013 46. Yap KL, Yuan T, Mal TK, Vogel HJ, Ikura M: Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. J Mol Biol 328: 193–204, 2003 47. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, et al.: Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem289: 6372–6382, 2014 48. Li M, Yu Y, Yang J: Structural biology of TRP channels. Adv Exp Med Biol 704: 1–23, 2011 49. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D: Structure of the TRPA1 ion channel suggests regulatorymechanisms. Nature 520: 511–517, 2015 50. Tsuruda PR, Julius D, Minor DL Jr.: Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51: 201–212, 2006 51. Phelps CB, Gaudet R: The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem 282: 36474–36480, 2007 52. Jansen C, Sahni J, Suzuki S, Horgen FD, Penner R, Fleig A: The coiledcoil domain of zebrafish TRPM7 regulatesMgznucleotide sensitivity. Sci Rep 6: 33459, 2016 53. Azumaya CM, Sierra-Valdez F, Cordero-Morales JF, Nakagawa T: Cryo- EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6). J Biol Chem 293: 10381–10391, 2018 54. Tang Q, Guo W, Zheng L,Wu JX, Liu M, Zhou X, et al.: Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res 28: 746–755, 2018 55. Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, et al.: Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 7: e36615, 2018 56. Hughes TET, Pumroy RA, Yazici AT, Kasimova MA, Fluck EC, Huynh KW, et al.: Structural insights on TRPV5 gating by endogenous modulators. Nat Commun 9: 4198, 2018 57. ZhuB,ChenN,Wang ZH, PanXX, RenH, ZhangW, et al.: Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 664: 84–90, 2009 58. Yu H, Kistler A, Faridi MH, Meyer JO, Tryniszewska B, Mehta D, et al.: Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria. J Am Soc Nephrol 27: 3308–3319, 2016 59. Koehler S, Brähler S, Kuczkowski A, Binz J, HacklMJ, Hagmann H, et al.: Single and transient Ca2+ peaks in podocytes do not induce changes in glomerular filtration and perfusion. Sci Rep 6: 35400, 2016 60. Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, PollakMR: TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296: C558–C569, 2009 61. FaulC, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, DelfgaauwJ, et al.: The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14: 931–938, 2008 62. Chiluiza D, Krishna S, Schumacher VA, Schlöndorff J: Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signalregulated kinases 1/2 (ERK1/2). J Biol Chem 288: 18407–18420, 2013 63. Shibata S, Nagase M, Yoshida S, KawarazakiW, Kurihara H, Tanaka H, et al.: Modification of mineralocorticoid receptor function by Rac1 GTPase: Implication in proteinuric kidney disease. Nat Med 14: 1370–1376, 2008 64. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, KimS, et al.: A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358: 1332–1336, 2017
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |