UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Hybridization is one of the popular approaches in modifying the conjugate gradient method. In this paper, a new hybrid conjugate gradient is suggested and analyzed in which the parameter ?k is evaluated as a convex combination of while using exact line search. The proposed method is shown to possess both sufficient descent and global convergence properties. Numerical performances show that the proposed method is promising and has overpowered other hybrid conjugate gradient methods in its number of iterations and central processing unit per time.
|
References |
[1] M. Rivaie, M. Mamat, L. W. June, and I. Mohd, “A new class of nonlinear conjugate gradient coefficients with global convergence properties,” Appl. Math. Comp. vol. 218, pp. 11323-11332. 2012. [2] N. S. Mohamed, M. Mamat, and M. Rivaie, “A new coefficient of conjugate gradient methods for nonlinear unconstrained optimization,”Jurnal Teknologi. vol. 78, no. 6-4, pp. 131-136. 2016. [3] M. Rivaie, M. Mamat and A. Abashar, “A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches,” Appl. Math. Comp. vol. 268, 1152-1163. 2015. [4] M. A. H. Ibrahim, M. Mamat and L. W. June, “BFGS method: a new search direction,” Sains Malaysia. vol. 43, no.10, pp. 1591-1597. 2014. [5] M. R. Hestenes and E. Steifel, J. Res. “Methods of conjugate gradients for solving linear systems,” Nat. Bur. Stand, vol. 49, pp. 409-436. 1952. [6] R. Fletcher and C. Reeves, “Methods of conjugate gradients for solving linear systems,” Computational Journal, vol. 7, pp. 149-154. 1964. [7] E. Polak, and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” Rev. Francaise Informat Recherche Operationelle, 3E Annee, vol. 16, pp.35-43. 1969. [8] R. Fletcher, “Practical Methods of Unconstrained Optimization,” J. Wiley and Sons, New York, 1987. [9] Y. H. Dai, and Y. Yuan, “A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property,” SIAM Journal Optimization, vol. 10, pp. 177-182. 2000. [10] Y. Liu, C. Storey, “Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization,”J. Optim. Theory Appl. vol. 69, pp.129–137. 1991. [11] N. Andrei, “Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization,” J. Optim. Theory. Appl. vol. 141, pp. 249-264. 2009. [12] N. Andrei, “Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization,” Bull. Malay. Math. Sci. Soc. vol. 34, pp. 319–330. 2011. [13] S. Syazni, M. Rivaie and M. Mamat, “A Modification of Classical Conjugate Gradient Method using Strong Wolfe line search,” AIP Conference Proceeding 1739, American Institute of Physics, Melville, NY, 2016. [14] A. A. Abderahman, M. Mamat, M. Rivaie, and O. Omer, “The Proof of Sufficient Descent Condition for a New Type of Conjugate Gradient Methods,” AIP Conference Proceedings 1602, American Institute of Physics, Melville, NY, 2014, pp-296. [15] N. Hajar, M. Mamat, M. Rivaie, and Z. Salleh, “A combination of Polak-Ribiere and Hestenes-Steifel coefficient in conjugate gradient method for unconstrained optimization,” Applied Mathematical Sciences, vol. 9, no. 63, pp.3131-3142. 2015. [16] M. Hamoda, M. Mamat, M. Rivaie, and Z. Salleh, “A conjugate gradient method with strong Wolfe-Powell line search for unconstrained optimization,” Applied Mathematical Science, vol. 10, no. 15, pp. 721-734. 2016. [17] M. Rivaie, A. Abderahman, M. Mamat, and I. Mohd, “The convergence properties of a new type of conjugate gradient methods,” Applied Mathematical Sciences, vol. 8, no. 1, pp.33-34. 2014. [18] N. S. Mohamed, M. Mamat, and M. Rivaie, “Solving a Large Scale Nonlinear Unconstrained Optimization with Exact Line Search Direction by Using New Coefficient of Conjugate Gradient Methods,” AIP Conference Proceeding 1787, American Institute of Physics, Melville, NY, 2016. [19] N. Shapiee, M. Rivaie, and M. Mamat, “A New Classical Conjugate Gradient Coefficient with Exact Line Search,” AIP Conference Proceedings 1739, American Institute of Physics, Melville, NY, 2016. [20] Z. Z. Abidin, M. Mamat, M. Rivaie, and I. Mohd, “A New Steepest Descent Method,” AIP Conference Proceedings 1602, American Institute of Physics, Melville, NY, 2014. [21] A. Abdelrahman, “A New Type of Conjugate Gradient Methods with Sufficient Descent Property for Unconstrained Optimizations,” Ph.D. thesis, Universiti Malaysia Terengganu, 2014. [22] I. Jusoh, “New Family of Conjugate Gradient Methods with Sufficient Descent Condition and Global Convergence for Unconstrained Optimizations,” Ph.D. thesis, Universiti Sultan Zainal Abidin, 2015. [23] N. Hamizah, M. Rivaie, and M. Mamat, “A Modified Form of Conjugate Gradient Method for Unconstrained Optimization Problems,” AIP Conference Proceedings 1739, American Institute of Physics, Melville, NY, 2016. [24] N. Aini, M. Mamat, and M. Rivaie, ”A modified Conjugate Gradient Coefficient with Inexact Line Searchfor Unconstrained Optimization,” AIP Conference Proceeding 1787, American Institute of Physics, NY, 2016). [25] D. Touati-Ahmed, C. Storey, C. "Efficient hybrid conjugate gradient techniques,” J. Optim. Theory Appl. vol. 64, pp. 379–397. 1990. [26] Y. F. Hu,C. Storey. “Global convergence result for conjugate gradient methods,” J. Optim. Theory. Appl. vol. 71, pp. 399–405. 1991. [27] J. Jinbao, H. Lin, and J. Xianzhen, “A hybrid conjugate gradient method with descent property for unconstrained optimization,” Applied Mathematical Modelling. 2014. [28] Z. X. Wei, S.W. Yao, L.Y. Liu, “The convergence properties of some new conjugate gradient methods,” Appl. Math. Computational. vol. 183, pp. 1341–1350. 2006. [29] S.W. Yao, Z.X. Wei, H. Huang, “A note about WYL’s conjugate gradient method and its application,” Appl. Math. Computational. vol. 191, pp. 381–388. 2007. [30] X. Z. Jiang, L. Han, J.B. Jian, “A globally convergent mixed conjugate gradient method with Wolfe line search,” Math. Numer. Sin. vol. 34, pp. 103–112. 2012 [31] M. J. D. Powell, ”Nonconvex minimization calculations and the conjugate gradient method,” Notes in Mathematics, vol. 1066, pp. 122–141, Springer, Berlin, 1984.
[32] Y.H. Dai and Y. Yuan, ”An efficient hybrid conjugate gradient method for unconstrained optimization,” Annals of Operating Research, vol. 103, pp. 33-47. 2001. [33] G. Zoutendijk, Abadie J. Editors. Integer and Nonlinear Programming, pp. 37-86. 1970. [34] N. Andrei, “An Unconstrained Optimization Test Functions Collection,” Advanced Modelling and Optim. Vol. 10, no. 1. 2008. [35] J. J. More, B. Garbow, and K. E. Hillstrom, Journal ACM Transaction on Mathematical Software, vol. 7, 1, pp. 17-41. (1981). [36] K.E. Hilstrom, ”A Simulation Test Approach to the Evaluation of Nonlinear Optimization Algorithms,” A.C.M. Trans. Maths. Softw. vol. 3, pp. 305–315. 1977. [37] E. Dolan, J.J. More, “Benchmarking optimization software with performance profiles,” Maths. Prog. Ser. vol. 91, pp. 201–213. 2002. [38] N. S. Mohamed, M. Mustafa, M. Rivaie, S. M. Shaharuddin, “Global Convergence of a New Coefficient Nonlinear Conjugate Gradient Method,” Indonesian Journal of Electrical Engineeting and Computer Science, vol. 11, 3, 2018. [39] S. M. Shaharuddin, N. Ahmad, N. H. Zainuddin, N. S. Mohamed, “Identification of Rainfall Patterns on Hydrological Simulation using Robust Prinicipal Component Analysis,” Indonesian Journal of Electrical Engineeting and Computer Science, 11, 3, 2018.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |