UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Here, we report high output piezoelectric voltage generation from oxidized ZnO nanowires (100nm). Periodic high output voltage peaks were observed during series of oxygen exposure experiments. Gradual rise in piezoelectric potential from oxidized ZnO nanowires is being evidenced for the very first time. Sharp voltagepeaks 464mV, 803mV, 1.354 V, 1.795V and 2.44V are observed for an exposure of oxygen for 1h, 2h, 3h, 4h and 5h respectively in a sealed chamber at 50ppm. Ithas been observed maximum output value has been saturated after 5h of O exposure. Enhanced piezoelectric potential appearing at output stages is due to the adsorption of oxygen molecules on long ZnO nanowires, giving rise to “Edge Effects” and consequently reducing reverse leakage current through nanowires and enhancing output voltage. SEM images revealed the surface morphology ZnO nanowires, diameter range was found around 100nm. XRD pattern verified vertical growth orientation of ZnO nanowires on ITO (indium Tin oxide) coated PET (poly ethylene terephthalate) substrates. Minute external force ?50nN is used to produce piezoelectric potential within nanowires. |
References |
1. Z. L. Wang , J.H.S., Science, (2006). 312. 2. Topark, A., piezo electric energy harvesting. applied physics reviews, 2014. 1: p. 031104. 3. Z. Zhong, F.Q., D.Wang, C. M. Liber, , Nano letters, 2003. 3. 4. Y. Tang, B.Z.C.C.L., Nano letters, (2008). 8. 5. X.M. Zhang, M.Y.L., Advaned materials, (2009). 21. 6. M.H Yung, Y.W., Adv.Matter, (2001). 13 7. Science, Z.R.D., Adv. Funct.Mater, (2003). 13. 8. X.Y Kong , Z.L.W., Nano Lett., 2003. 3. 9. Y.Xi, J.H.S., J.Matter.Chem, 2009. 19. 10. R.S. Yang , Y.D., Z.L.Wang, Nano Lett., (2004). 4. 11. Ahmad.M, K.J., Luxton.R, Indian journal of engineering and material sciences (2014). 21. 12. Ahmad.M, K.J., Luxton.R, Sensing and bio sensing research, (2016). 7. 13. Ahmad.M, K.J., Luxton.R, Journal of physics and chemistry of solids, (2017). 104. 14. Myeong-LokSeol, J.-W., Dong-IlMoon, Nano Energy, 2018. 44. 15. Zhong Lin Wang, R.Y., Jun Zhou,, Materials Science and Engineering R, 2010. 70. 16. Christian Falconi, G.M., Arnaldo D’Amico, Sensors and Actuators B: Chemical, 2009. 139. 17. Meng FangLin, J., JiangxinWang, KaushikParida,, Nano Energy, 2018. 44. 18. Guang Zhu, R.Y., Sihong Wang, and Zhong Lin Wang, Nano Letters, 2010. 10. 19. VuNguyen, R., RusenYang, Nano Energy, 2015. 14. 20. Sheng Xu, Y.Q., Chen Xu, Yaguang Wei, Rusen Yang and Zhong Lin Wang, Nature nanotechnology, 2010. 46. 21. Zhong Lin Wang, R.Y., Jun Zhou, Yong Qin, Chen Xu, Youfan Hu, Sheng Xu, Materials Science and Engineering R 2010. 70. 22. J. Zhou, P.F., Y.D. Gu, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Nano Lett., 2008. 8. 23. J. Zhou, Y.D.G., P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Nano Lett. , 2008. 8: p. 3035. 24. Lanqin Tang, Y., YanhuaLiub, ZichenWangb, BingZhou, Ceramics International, 2012. 08: p. 77. 25. Chun-Jie Chang , Y.-H.L., Chi-An Dai , Chih-Chung Hsiao, Microelectronic Engineering, 2011. 88. 26. F.Chaabouni, M.A., B.Rezig,, sensors and Actuators B, 2004. 100. 27. Z. Fan, D.W., P.-C.Chang,W.-Y.Tseng, Applied physics letters, 2004. 85. 28. A.T. Tilke, F.C.S., H. Lorenz, R.H. Blick, J.P. Kotthaus, Physics review B, 2003. 68. 29. S. Xu, Y.Q., C. Xu, Y.G. Wei, R.S. Yang, Z.L. Wang, Nature nanotechnology 2010. 30. R.S. Yang, Y.Q., L.M. Dai, Z.L. Wang,, Nature nanotechnology, 2009. 4. 31. R.S. Yang, Y.Q., C. Li, G. Zhu, Z.L. Wang, Nano Lett. 9 (2009) 1201, Nano Lett., 2009. 9. 32. Suo Baia, LuZhanga,, QiXua, YoubinZhenga, YongQina, Zhong LinWangb, Nano Energy, 2013. 2. 33. Wang, Z.L., et al., . Materials Science and Engineering: R: Reports, (2010). 70.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |