UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Kajian ini bertujuan untuk memencilkan dan mencirikan aminoasilase termostabil
daripada bakterium termofilik. Dalam pemencilan bakterium, sampel air dan sedimen telah
diperolehi dari Air Panas Ulu Slim, Perak. Aminoasilase SZN termostabil diekstrak
secara intrasellular dan ditulenkan sehingga homogen dengan menggunakan kromatografi pertukaran
ion dan pengasingan saiz dalam eksperimen seterusnya. Aminoasilase SZN yang tulen telah
dicirikan pada pelbagai suhu, pH, ion logam dan perencat. Kajian struktur lebih lanjut
menggunakan spektrokopi sirkular dikroisma dilakukan bagi menentukan kestabilan a-heliks dan
lembaran dalam pelbagai suhu. Penghasil aminoasilase termofilik yang dipencilkan
itu dikenalpasti sebagai Geobacillus sp. strain SZN. Aminoasilase SZN dicirikan
sebagai enzim termostabil dengan aktiviti optimum pada 60°C, pH 7.5, tempoh separuh
hayat 16 jam dengan peningkatan aktiviti dan kestabilan dalam beberapa ion logam dan
perencat yang diuji. Keputusan daripada penentuan struktur menunjukkan pengurangan
a-heliks secara beransur-ansur daripada 36 hingga 27.6%, diikuti dengan
disorientasi mendadak struktur tersebut pada peralihan suhu daripada 60 hingga 70°C
(27.6 hingga 19.5%). Sebaliknya, peratusan lembaran , telah meningkat secara stabil pada suhu
yang diuji. Struktur a-heliks yang juga merupakan lokasi residu-residu pengikat logam dan
pemangkin yang penting, lemah sepenuhnya pada suhu melebihi 70°C lalu mengakibatkan kehilangan
aktiviti. Kesimpulannya, aminoasilase SZN telah dicirikan sebagai enzim termostabil
berdasarkan kepada integriti struktur a-heliks dan kestabilan fungsinya pada suhu
tinggi. Implikasi kajian ini menunjukkan bahawa aminoasilase SZN mampu menjadi enzim
altematif kepada bioindustri berdasarkan kepada peningkatan aktiviti enzim dalam suhu
tinggi dan kestabilan dalam pelbagai
perencat yang diuji.
|
References |
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389- 3402.
Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., & Inguaggiato, S. (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology, 1,37-58.
Ash, C., Farrow, J.A.E., Wallbanks, S., & Collins, M.D. (1991). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology,13, 202-206.
Bakker, M., Spruijt, A.S., Rantwijk, V. F. & Sheldon, R.A. (2000). Highly enantioselective aminoacylase-catalyzed transesterification of secondary alcohols. Tetrahedron: Asymmetry, 11, 1801-1808.
Barrett, A. J. (1994). Classification of peptidases. Methods in Enzymology, 244,1-15.
Bhattacharya, S., Chattopadhyay, D., Raha, S., Mukhopadhyay, A., & Division, M. B. (2012). International journal of institutional pharmacy and life sciences, 2, 345–355.
Bradford, M. M., (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Brown, R., Toogood, H. S., Hollingsworth, E. J., Brown, R. C., Taylor, I. N., Taylor, S. J. C. et al (2002). A thermostable L-aminoacylase from Thermococcus litoralis : Cloning, overexpression, characterization, and applications in biotransformations. Extremophiles, 6(2), 111-22.
Bryant, M. (2003). Biosynthesis of amino acids. Retrieved from Researchgate.com
Cho, H. Y., Tanizawa, K., Tanaka, H., & Soda, K. (1987). Thermostable aminoacylase from Bacillus thermoglucosidius: purification and characterization. Agricultural Biology Chemistry, 51, 2793- 2800.
Cihan, A.C., Tekin, N., Ozcan, B., & Cokmus, C. (2012). The Genetic Diversity Of Genus Bacillus And The Related Genera Revealed by 16S rRNA Gene Sequences and Ardra Analyses Isolated from Geothermal Regions of Turkey. Brazilian Journal of Microbiology, 43(1), 309–324.
Curley, P., Does, C., Dreissen, A. M., Kok, J., & Sinderen, D. V. (2003). Purification and characterisation of a lactococcal aminoacylase. Archieve Microbiology, 179, 402-408.
Deleage G., & Geourjon. C. (1995). SOPMA: significant improvements in protein secondary structure prediction by concensus prediction from multiple allignments. Computer Applications in the Biosciences, 11(6), 681-684.
Derekova, A., Mandeva, R., & Kambourova, M. (2008). Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World Journal of Microbiology and Biotechnology, 24, 1697-1702.
Faraldos, J., Arroyo, E., & Herradón, B. (1997). Biocatalysis in organic synthesis. Highly enantioselective kinetic resolution of secondary alcohols catalyzed by acylase. Synlett, 9, 367-370.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784-3788.
Greenfield, N. J. (2009). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890.
Handbook of Proteolytic Enzymes. (1998). London: Academic Press.
Hickey, D.A., & Singer, G.A. (2004). Genomic and proteomic adaptations to growth at high temperature. Genome Biology 5, (117), 1-117.
Holt, K. (2004). Biocatalysis and chemocatalysis - a powerful combination for the preparation of enantiomerically pure α-amino acids. Pharmachem 3, 2–4.
Hsu, C., Lai, W., Chang, W., & Liaw, S. (2002). Structural-based mutational analysis of D -aminoacylase from Alcaligenes faecalis DA1, Protein Science, 11, 2545–2550.
Huffer, S., Clark, M.E., Ning, J.C., Blanch, H.W., & Clark, D.S. (2011). The Role of Alcohols in Growth, Lipid Composition, and Membrane Fluidity of Yeast, Bacteria, and Archaea. Applied and Environmental Microbiology. 77(18), 6400–6408.
Hurst, L.D., & Merchant, A.R. (2001). High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proceedings. Biological sciences Royal Society, 268, (1466), 493.
Ishikawa, K., Ishida, H., Matsui, I., Kawarabayasi, Y., & Kikuchi, H. (2001). Novel bifunction hyperthermostable carboxypeptidase/aminoacylase from Pyrococcus horikoshii OT3. Applied and Environmental Microbiology, 67, 673-679.
Ivanov, K., Stoimenova, A., Obreshkova, D., & Saso, L. (2014). Biotechnology in the Production of Pharmaceutical Industry Ingredients: Amino Acids. Biotechnology & Biotechnological Equipment, 27(2), 3620-3626.
Joo, H.-S., and Choi, J. W. (2012). Purification and characterization of a novel alkaline protease from Bacillus horikoshii. Journal of Microbiology and Biotechnology, 22(1), 58–68.
Jozic, D., Bourenkow, G., Bartunik, H., Scholze, H., Dive, V., Henrich, et al (2002). Crystal structure of the dinuclear zinc aminopeptidase PepV from Lactobacillus delbrueckii unravels its preference for dipeptides. Structure, 10 (8), 1097–1106.
Kokkinidis, B. M., Glykos, N. M., & Fadouloglou, V. E. (2012). Chapter 7 - Protein Flexibility and Enzymatic Catalysis. Advances in Protein Chemistry and Structural Biology, 87: 181-218.
Koreishi, M., Asayama, F., Imanaka, H., Imamura, K., Kadota, M., Tsuno, T., & Nakanishi, K. (2005). Purification and characterization of a novel aminoacylase from Streptomyces mobaraensis. Bioscience, Biotechnology, and Biochemistry, 69(10), 1914–1922.
Koreishi, M., Nakatani, Y., Ooi, M., Imanaka, H., Imamura, K., & Nakanishi, K. (2009). Purification , Characterization , Molecular Cloning , and Expression of a New Aminoacylase from Streptomyces mobaraensis That Can Hydrolyze N - (Middle / Long) -chain-fatty-acyl-L-amino Acids as Well as N -Shortchain- acyl-L-amino acids. Bioscience, Biotechnology, and Biochemistry, 73 (9), 1940–1947.
Kramers, H.A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7,284–304.
Kumar, S., & Nussinov, R. (1999). Salt bridge stability in monomeric proteins. Journal of Molecular Biology, 293, 1241–1255.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 : Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets MEGA7. Molecular Biology and Evolution, 33(7),1870–1874.
Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of protein. Journal of Molecular Biology,157, 105-132.
Liljeblad, A., Aksela, R., and Kanerva, L.T. (2001). Use of enantio-, chemo- and regioselectivity of acylase I. Resolution of polycarboxylic acid esters. Tetrahedron Asymmetry, 12, 2059-2066.
Lin, L. L., Chen, M. H., Chien, H. C., Kan, S. C., Chen, C. C., Hu, H. Y., & Hsu, W. H. (2007). Characterization of abifunctional aminoacylase/carboxypeptidase from radioresistant bacterium Deninococcus radiodurans R1. Journal of Biotechnology, 128, 322-334.
Lindner, H. A., Lunin, V. V, Alary, A., Hecker, R., & Cygler, M. (2003). Essential Roles of Zinc Ligation and Enzyme Dimerization for Catalysis in the Aminoacylase-1 /M20 Family. Journal of Biological Chemistry, 278(45), 44496–44504.
Littlechild, J. A. (2015). Enzymes from extreme environments and their industrial applications. Process and Industrial Biotechnology, 3(161), 1–9.
Logan, N.A., Berge, O., Bishop, A,H., Busse, H.J., de Vos, P. et al (2009). Proposed minimal standards for describing new taxa of aerobic, endospore- forming bacteria. International Journal of Systematic and Evolutionary Microbiology, 59, 2114–2121.
Ludwig, W., Schleifer, K.H., & Whitman, W.B. (2007). Revised road map to the phylum Firmicutes. Bergey’s Manual Trust website http://www.bergeys.org/outlines/Bergeys.
Madigan, M.T. & Martino, J.M. (2006). Brock Biology of Microorganisms (11th ed.). p:136. Pearson.
Mallick, P., Boutz, D.R., Eisenberg, D., & Yeates, T.O. (2002). Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proceedings of the National Academy of Sciences,99, 9679– 9684.
Marguet, E., & Forterre, P. (1998). Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles, 2, 115-122.
Martínez-rodríguez, S., García-pino, A., Las, J., Clemente-jiménez, J. M., Rodríguezvico, F., García-ruiz, J. et al (2012). Mutational and Structural Analysis of L - N -Carbamoylase Reveals New Insights into a Peptidase M20 / M25 / M40 Family Member. Journal of Bacteriology,194 (21), 5759–5768.
McKee, T., & McKee, J. R., (2003). Enzymes. In: Biochemistry: The molecular basis of life, (3rd edition), New York, USA. pp: 161-199: McGraw- Hill Higher Education.
Miller. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Miñana-Galbis, D., Pinzón, D.L., Lorén, J.G., Manresa, A., & Oliart-Ros, R.M. (2010). Reclassification of Geobacillus pallidus as Aeribacillus pallidus gen. nov., comb. Nov. International Journal of Systematic and Evolutionary Microbiology, 60, 1600-1604.
Minasov, G., Shuvalova, L., Brunzelle, J.S., Collart, F.R., Anderson, W.F., & Midwest (unpublished). Crystal Structure of Bacillus Subtilis YXEP Protein (APC1829), a Dinuclear Metal Binding Peptidase from M20 Family Center for Structural Genomics (MCSG).
Moore, S. & Stein, W.H. (1948). Photometric Ninhydrin Method for Use in The Chromatography of Amino Acids. Journal of Biological Chemistry, 176, 367- 388.
Muñiz-Lozano, F., Domιnguez-Sánchez, G. & Dιaz-Viveros, Y. (1998). DAminoacylase from a novel producer: Stenotrophomonas maltophilia ITV- 059521: 296. The Journal of Industrial Microbiology and Biotechnology, 21 (6), 296–299.
Nakagawa, S., & Takai, K. (2006). The isolation of thermophiles from deep-sea hydrothermal environments. In Methods in Microbiology: Extremophiles (Eds). New York, NY, USA: Elsevier.
Natali, V., Russo, D., Estrin, D.A., Marti, M.A., & Roitberg, A.E. (2012). pHDependent Conformational Changes in Proteins and Their Effect on Experimental pK a s : The Case of Nitrophorin. PLOS Computational Biology, 8(11).
Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., Ivanov, M.V. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans,G. kaustophilus, G. thermoglucosidasius and G.thermodenitrificans. International Journal of Systematic Evolutionary Microbiology, 51, 433-446.
Otieno, D. O. (2010). Synthesis of β -Galactooligosaccharides from Lactose Using Microbial β –Galactosidases. Food Science & Technology, 9, 471–482.
Pace, N.R. 1997. L- and D- Amino Acids The biology place. Science, 276, 734–740. Retrieved from http://www.phschool.com/science/biology_place/biocoach/ bioprop/landd.html : Pearson Education
Parker B. M., Taylor I. N., Woodley J. M., Ward J. M. & Dalby P.A. (2011). Directed evolution of a thermostable l-aminoacylase biocatalyst. Journal of Biotechnology, 155 (4), 396-405.
Patel, R. N. (2013). Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals. Biomolecules,3, 741–777.
Petersen, T.N., Brunak, S., von Heijne, G.,& Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10),785-6.
Rainey, F.A., Fritze, D., & Stackebrandt, E. (1994). The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rRNA analysis. FEMS Microbiology Letters,115, 205-211.
Raja Noor Zaleha Rahman Raja Abdul Rahman, Geok, Mahiran Basri, & Abu Bakar Salleh, (2006). An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme purification and characterization. Enzyme and Microbial Technology. 39,1484-1491
Rampelotto, P. H. (2010). Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. Sustainability, 2, 1602-1623.
Raussens, V., Ruysschaert, J.M., & Goormaghtigh, E. (2003). Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method. Analytical Biochemistry, 114-21.
Raval, V. H., Rawal, C. M., Pandey, S., Bhatt, H. B., Dahima, B. R., & Singh, S. P. (2014). Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium. Annals of Microbiology. 65(1), 371–381.
Rawlings, N.D., Morton, F.R., Kok, C.Y., Kong, J., & Barrett, A.J. (2008). MEROPS: the peptidase database. Nucleic Acids Research,36, 320–325.
Razvi, A., & Scholtz, J. M. (2006). Lessons in stability from thermophilic proteins. Protein Science, 15,1569–1578.
Researchnester.com. (2018). Amino Acids Market : Global Demand Analysis & Opportunity Outlook 2024. Retrieved from https://www.researchnester.com/reports amino-acids-market-global-demandanalysis- opportunity-outlook-2024/424.
Research & Market. (2015). Amino Acids Market Analysis By Product (LGlutamate, Lysine, Methionine, Threonine, Tryptophan, Leucine, Iso- Leucine, Valine, Glutamine, Arginine, Glycine, Phenylalanine, Tyrosine, Citrulline, Creatine, Proline, Serine), By Source (Plant-Based & Animal- Based), By Application (Animal Feed, Food & Dietary Supplements & Pharmaceuticals) And Segment Forecasts To 2022. Amino Acids Market Size, Share, Trends, Global Industry Report, 2022. Retrieved from https://www.grandviewresearch.com/industry-analysis/amino-acids-market.
Robinson, P. K. (2015). Enzymes : principles and biotechnological applications, Essays Biochem. (2015) 59, 1–41.
Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archieve Biochemistry & Biophysics, 67,10-15.
Saitou, N., & Nei, M. (1987). The neighbor-joining method—a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4,406– 425.
Sakanyan, V., Desmarez, L., Legrain, C., Charlier, D., Mett, I., & Kochikyan, A. et al (1993). Gene cloning, sequence analysis, purification, and characterization of a thermostable aminoacylase from Bacillus strearothermophilus. Applied and Environmental Microbiology, 59, 3878-3888.
Schiraldi, C., Giuliano, M., & Rosa, M. D. E. (2002). Perspectives on biotechnological applications of archaea. Archaea, 1, 75–86.
Shock, E.L., McCollom, T., & Schulte, M.D. (1998). Thermophiles: the Keys to Molecular Evolution and the Origin of Life. 59–76.
Stetter, K. O. (1996). Hyperthermophile Prokaryotes. FEMS Microbiology Reviews, 18,149-158.
Story, S. V., Grunden, A. M., & Adams, M. W. (2001). Characterization of an aminoacylase from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 183, 4259-4268.
Subramaniam, S. (1998). The Biology Workbench: a seamless database and analysis environment for the biologist. Proteins, 32, 1-2.
Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighborjoining method. Proceedings of the National Academy of Sciences (USA) 101,11030-11035.
Tanimoto, K., Higashi, N., Nishioka, M., Ishikawa, K., & Taya, M. (2008). Characterization of thermostable aminoacylase from hyperthermophilic archaeon Pyrococcus horikoshii, Federation of European Biochemical Societies Journal , 275, 1140–1149.
Taylor, I.N., Brown, R.C., Bycroft, M., King, G., Littlechild, J.A., Lloyd, M.C. et al (2004). Application of thermophilic enzymes in commercial biotransformation processes. Biochemical Society Transactions, 32(2).
Ulrih, N.P., Gmajner, D., & Raspor, P. (2009). Structural and physico- chemical properties of polar lipids from thermophilic archaea. Applications of Microbiologyand Biotechnolology, 84,249–260.
Unsworth, L. D., Oost, J. Van Der, & Koutsopoulos, S. (2007). Hyperthermophilic enzymes stability, activity and implementation strategies for high temperature applications. Federation of European Biochemical Societies, 274, 4044–4056.
Uribe, S., & Sampedro, J. G. (2003). Measuring Solution Viscosity and its Effect on Enzyme Activity. Biological Procedures Online, 5(1),108–115. Vieille, C., &
Zeikus, G. J., (2001). Hyperthermophilic Enzymes: Sources Uses and Molecular Mechanisms for Thermostability Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiology and Molecular Biology Reviews, 65(1),1–43.
Vieille, C., Burdette, D. S., & Zeikus, J. G. (1996). Thermozymes. Biotechnology Annual Report, 2,1–83.
Vieille, C., Zeikus, G. J., & Vieille, C. (2001). Hyperthermophilic Enzymes : Sources Uses and Molecular Mechanisms for Thermostability. Microbiology and Molecular Biology Reviews, 65(1): 1–43.
Wardenga, R., Lindner, H. A., Hollmann, F., Thum, O., & Bornscheuer, U. (2010). Biochimie Increasing the synthesis / hydrolysis ratio of aminoacylase 1 by site-directed mutagenesis. Biochimie, 92(1), 102–109.
Weiß, H. M., Palm, G. J., & Rohm, K. (1995). Thermostable Aminoacylase from Bacillus stearothermophilus : Significance of the Metal Center for Catalysis and Protein Stability. Biological chemistry Hoppe-Seyler, 376, 643–649.
Wong, C. F, Noor, R., Raja, Z., Rahman, A., Salleh, A. B., & Basri, M. (2017). Construction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa. Iranian Journal of Biotechnology, 15(3), 194-200.
Wong, C. F, Noor, R., Raja, Z., Rahman, A., Salleh, A. B., & Basri, M. (2011). Role of α-Helical Structure in Organic Solvent-Activated Homodimer of Elastase Strain K, International Journal of Molecular Sciences, 12: 5797–5814.
Wu, G. (2009). Amino acids: Metabolism, functions and nutrition. Amino Acids, 37, 1-17.
Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1, 31-37.
Xie, Q., Meng, F., & Zhou, H. (2004). Low Temperature Induced Conformation Changes of Aminoacylase. Tsinghua Science and Technology, 9(1), 76–80.
Xindu, G., and Lili, W. (2008). Liquid chromatography of recombinant proteins and protein drugs. Journal of Chromatography B, 866, 133-153.
Youshko, M.I., Rantwijk,V.F., & Sheldon, R.A. (2001). Enantioselective acylation of chiral amines catalyzed by aminoacylase I. Tetrahedron: Asymmetr, 12, 3267-3271.
Yusoff, N., (2007). Purification and characterization of organic solvent tolerant protease from Pseudomonas aeruginosa strain K. (MS Thesis), Universiti Putra Malaysia, Malaysia.
Zhao, J., Chen, Z., & Wang, Q. (2018). The Survival Mechanisms of Thermophiles at High Temperatures : An Angle of Omics Base Biases of Thermophilic. Physiology, 30, 97–106.
Zhou, M., & Gomez-sanchez, C. E. (2000). Universal TA Cloning. Current Issues in Molecular Biology, 2, 1–7.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |