UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Mohd Farid Mohamad Yusof
Title :Optical trapping of organic solvents in the form of microdroplets in water
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This research aimed to develop a procedure to optically trap organic solvents in the form of  microdroplet and to evaluate its optical stiffness based on the corner frequency, ??. The selected organic solvents were 1,2-dichlorobenzene, acetonitrile, chloroform, ethanol,  ethyl acetate and toluene. Microdroplets in water solution were prepared by ultrasonication for 2  minutes. Microdroplets in the range of 2 to 3 µm in diameter were then trapped by using 915 nm  laser at power densities of 6.3, 7.4 and 8.4 MW/cm² with laser spot size 1.1 µm. A quadrant  photodiode (QPD) was used to collect the scattered light from the single trapped microdroplet. The  signal was analysed using custom made software  named  OSCal  to  determine  ??  of  the  optical   trap.  The  results  showed  that 1,2-dichlorobenzene,  chloroform  and  toluene  formed  stable   microdroplets  in  water. Thus, these microdroplets can be optical trapped. The optical stiffness  as judged by ?? is within 1 to 10 pN/µm. To conclude, only solvent with very low water solubility  can form microdroplet solution and ??  depends on the laser power density, type of solvent and  microdroplet size. This research implies that it can provide the information needed by other  researchers in choosi  g the suitable organic solvent for applications requiring an optical trapping technique.  


Ashkin,  A.  (1970).  Acceleration  and  Trapping  of  Particles  by  Radiation  Pressure.

Physical Review Letters, 24(4), 24–27.


Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray 

optics regime. Biophysical Journal, 61(2), 569–582.


Ashkin, A., & Dziedzic, J. M. (1975). Optical Levitation of Liquid Drops by Radiation Pressure. 

Science, 187(4181), 1073–1075.


Ashkin,  A.,  Dziedzic,  J.  M.,  Bjorkholm,  J.  E.,  &  Chu,  S.  (1986).  Observation  of  a 

single-beam  gradient  force  optical  trap  for  dielectric  particles.  Optics  Letters, 11(5), 



Berg-Sørensen,  K.,  &  Flyvbjerg,  H.  (2004).  Power  spectrum  analysis  for  optical tweezers. 

Review of Scientific Instruments, 75(3), 594–612.


Blázquez-Castro, A. (2019). Optical tweezers: Phototoxicity and thermal stress in cells and 

biomolecules. Micromachines, 10(8), 1–42.


Castberg,   R.   C.   (2008).   Characterisation   and   calibration   of   Optical   tweezers.

University of Oslo.


Crick, A. J., Theron, M., Tiffert, T., Lew, V. L., Cicuta, P., & Rayner, J. C. (2014). Quantitation 

 of  malaria  parasite-erythrocyte  cell-cell  interactions  using  optical tweezers. Biophysical 

Journal, 107(4), 846–853.


Deltoro, D., & Smith, D. E. (2014). Accurate measurement of force and displacement with  optical  

tweezers  using  DNA  molecules  as  metrology  standards.  Applied Physics Letters, 104(14), 1–5.


Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M. E. (2019). 

Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for 

Nanomanipulation and Mechanical Characterization. ACS Applied Materials and Interfaces, 11(37), 



Ericsson,  M.,  Hanstorp,  D.,  Hagberg,  P.,  &  Enger,  J.  (2000).  Sorting  Out  Bacterial 

Viability with Optical Tweezers, 182(19), 5551–5555.


Ferrari, E., Emiliani, V., Cojoc, D., Garbin, V., & Zahid, M. (2005). Biological samples 

micro-manipulation by means of optical tweezers. Microelectronic Engineering,

79, 575–581.


Friddin, M. S., Bolognesi, G., Salehi-Reyhani, A., Ces, O., & Elani, Y. (2019). Direct manipulation 

 of  liquid  ordered  lipid  membrane  domains  using  optical  traps. Communications Chemistry, 

2(1), 1–7.


Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810–816. Hamid,  M.  

Y.  (2017).  The  Development  of  Optical  Stiffness  Calibration  Software Based  on  

Equipartition  Theorem,  Boltzmann  Statistics  and  Power  Spectrum

Density. Universiti Pendidikan Sultan Idris.


Hegner, M., Gerber, C., Arntz, Y., Zhang, J., Bertoncini, P., Husale, S., Lang, H. P., Grange,   W. 

  (2003).   Biological   single   molecule   applications   and   advanced biosensing. Journal of 

Chromatography Library, 68(C), 241–263.


Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S., & Misawa, H. (1999). Fast optical switching 

by a laser-manipulated microdroplet of liquid crystal. Applied Physics Letters, 74(24), 3627–3629.


Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation using 

optical tweezers. Micromachines, 9(9), 1–21.


Kulin, S., Kishore, R., Helmerson, K., & Locascio, L. (2003). Optical manipulation and fusion of 

liposomes as microreactors. Langmuir, 19(20), 8206–8210.


MIT    Department    of    Physics.    (2014).    Optical    trapping.    Retrieved    from


Mohamad Yusof, M. F., Ayop, S. K., & Hamid, M. Y. (2019). Optical Fiber Laser Technology. (A. H. 

Ali & Z. Zakaria, Eds.). Penerbit UTHM.


Mondal, D., Bandyopadhyay, S. N., & Goswami, D. (2019). Elucidating optical field directed   

hierarchical   self-assembly   of   homogenous   versus   heterogeneous nanoclusters with 

femtosecond optical tweezers. PLoS ONE, 14(10), 1–14.


Mondal, D., Dinda, S., Bandyopadhyay, S. N., & Goswami, D. (2019). Polarization induced control of 

optical trap potentials in binary liquids. Scientific Reports, 9(1), 1–11.


Mondal,  D.,  &  Goswami,  D.  (2015).  Controlling  local  temperature  in  water  using 

femtosecond optical tweezer. Biomedical Optics Express, 6(9), 3190 - 3196.


Nemet,  B.  a,  &  Cronin-Golomb,  M.  (2003).  Measuring  microscopic  viscosity  with optical 

tweezers as a confocal probe. Applied Optics, 42(10), 1820–1832.


Neuman,  K.  C.,  &  Block,  S.  M.  (2004).  Optical  trapping.  Review  of  Scientific

Instruments, 75(9), 2787–2809.


Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: 

Amplitude bias and its elimination, with application to optical tweezers and atomic force 

microscope cantilevers. Review of Scientific Instruments, 81(7), 1 - 16.


Onteduca, D. O. C., Runetti, G. I. B., Lio, F. R. D. E. L. L. O., Rmenise, M. A. N. A., Rauss, T. 

H. F. K., & Iminelli, C. A. C. (2019). Monitoring of individual bacteria using electro-photonic 

traps. Biomedical Optics Express, 10(7), 3463–3471.


Osterman, N. (2010). TweezPal - Optical tweezers analysis and calibration software.

Computer Physics Communications, 181(11), 1911–1916.


Pan,  Y.  (2012).   Optical  Trapping  Force  on   a  Plasmonic  Substrate.  Albanova University 



Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using change  in  

properties  of  optically  trapped  red  blood  cells.  Biomedical  Journal, 40(2), 101–105.


Power,  R.,  Reid,  J.  P.,  Anand,  S.,  McGloin,  D.,  Almohamedi,  A.,  Mistry,  N.  S.,  & 

Hudson, A. J. (2012). Observation of the binary coalescence and equilibration of micrometer-sized  

droplets  of  aqueous  aerosol  in  a  single-beam  gradient-force optical trap. Journal of 

Physical Chemistry A, 116(35), 8873–8884.


Radenovic,   A.   (2007).   Optical   Trapping.   Advanced   Bioengineering   Methods Laboratory 

Optical Trapping, 1–25.


Ranaweera,  A.,  &  Bamieh,  B.  (2005).  Modelling,  identification,  and  control  of  a 

spherical particle trapped in an optical tweezer. International Journal of Robust and Nonlinear 

Control, 15(16), 747–768.


Reiner, J. E., Crawford, A. M., Kishore, R. B., Goldner, L. S., Helmerson, K., & Gilson,

M.  K.  (2006).  Optically  trapped  aqueous  droplets  for  single  molecule  studies.

Applied Physics Letters, 89(1), 0–3.


Samadi, A., Zhang, C., Chen, J., Reihani, S. N. S., & Chen, Z. (2015). Evaluating the toxic  effect 

 of  an  antimicrobial  agent  on  single  bacterial  cells  with  optical tweezers. Biomedical 

Optics Express, 6(1), 112.


Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative Study of Methods to Calibrate  the  

Stiffness  of  a  Single-beam  Gradient-force  Optical  Tweezers  over Various Laser Trapping 

Powers. Journal of Biomedical Opics, 19(11), 1–13.


Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezer 

microrheometer  by  sequential  impulse  response.  Rheologica  Acta,  52(5),  455– 465.


Spesyvtseva,  S.  E.  S.,  &  Dholakia,  K.  (2016).  Trapping  in  a  Material  World.  ACS

Photonics, 3(5), 719–736.


Supian, F. L., Richardson, T. H., Nabok, A. V, Deasy, M., & Azmi, M. S. M. (2014). Nanoscale  

growth  of  CdS  and  PbS  semiconductor  within  calix  [  4  ]  arene Langmuir-  Blodgett  LB  

film  for  ion  sensing  application.  Advanced  Materials Research, 895, 520–525.


Taylor, M. A. (2017). Optimizing Phase to Enhance Optical Trap Stiffness. Scientific Reports, 7(1), 



Thomas M., N. (2011). Quantitative Understanding of Biosystems : An Introduction to

Biophysics. Taylor & Francis Group.


Toli´c-Nørrelykke, I., Berg-Sørensen, K., & Flyvbjerg, H. (2004). MatLab program for precision  

calibration  of  optical  tweezers.  Computer  Physics  Communications, 159(3), 225–240.


Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNA

with optical tweezers. Biophysical Journal, 72(3), 1335–1346.




This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at or Whatsapp +60163630263 (Office hours only)