UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In this study, a new module for telemedicine architecture, namely Tier 4, was developed
to provide intelligent data and services management in the telemedicine environment. For
a suitable hospital to provide remote healthcare services, a new hospital selection
framework based on multi-criteria decision making (MCDM) of Tier 4 was developed for
chronic heart disease patients who lived in remote places. An experiment was conducted
on the basis of three stages. Firstly, health data, such as electrocardiogram, oxygen
saturation sensor, blood pressure monitor, and non-sensory measurement, were collected
from 500 patients with different symptoms. The number of healthcare services
representing the hospital status was collected from 12 hospitals located in Baghdad City.
A decision matrix based on the crossover of ?multi-healthcare services‘ and ?hospital list‘
of Tier 4 was also constructed. Secondly, the hospitals were then ranked using MCDM
techniques, namely the integrated Analytic Hierarchy Process (AHP) and
Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Thirdly, means and
standard deviations were computed to ensure hospital ranking could be systematically
performed to facilitate objective validation. The results showed that (1) the integration of
AHP and VIKOR would able to effectively solve hospital selection problems. (2) In the
objective validation, significant differences in scores between groups were observed,
indicating that the ranking results were identical. (3) In the evaluation, the results
revealed that the proposed framework was more effective by 56.25% than the benchmark
framework. In conclusion, hospitals with multiple-healthcare services received the
highest ranks compared to those of the hospitals with fewer healthcare services. The
implications of this study provide several benefits to medical organizations by balancing
the healthcare services loading among hospitals, assist medical teams by performing a
timely and accurate treatment for their patients, and provide healthcare services for
patients living in unserved or underserved areas. |
References |
Abdullah, L. (2013). Fuzzy multi criteria decision making and its applications : A brief review of category. Procedia - Social and Behavioral Sciences, 97, 131–136. https://doi.org/10.1016/j.sbspro.2013.10.213
Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., & Zaidan, B. B. (2016). An evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248. https://doi.org/10.1186/s40064-016-1828-y
Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013). A Survey on Ambient Intelligence in Health Care. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 101(12), 2470–2494. https://doi.org/10.1109/JPROC.2013.2262913
Adibi, S. (2015). A mobile health network disaster management system. In 2015 Seventh International Conference on Ubiquitous and Future Networks (pp. 424–428). IEEE. https://doi.org/10.1109/ICUFN.2015.7182579
Adunlin, G., Diaby, V., & Xiao, H. (2015). Application of multicriteria decision analysis in health care: a systematic review and bibliometric analysis. Health Expectations, 18(6), 1894–1905.
Ahmadi, H., Nilashi, M., & Ibrahim, O. (2015). Organizational decision to adopt hospital information system: An empirical investigation in the case of Malaysian public hospitals. International Journal of Medical Informatics, 84(3), 166–188.
Akdag, H., Kalayc?, T., Karagöz, S., Zülfikar, H., & Giz, D. (2014). The evaluation of hospital service quality by fuzzy MCDM. Applied Soft Computing, 23, 239–248.
Aktan, H. E., & Samut, P. K. (2013). Agricultural performance evaluation by integrating fuzzy AHP and VIKOR methods. International Journal of Applied Decision Sciences, 6(4), 324. https://doi.org/10.1504/IJADS.2013.056865
Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., & Alsalem, M. A. (2018, August 23). Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects. Journal of Medical Systems. Springer US. https://doi.org/10.1007/s10916-018-0983-9
Aldlaigan, A. H., & Buttle, F. A. (2002). SYSTRA-SQ: a new measure of bank service quality. International Journal of Service Industry Management, 13(4), 362–381.
Ali, R., Siddiqi, M., Idris, M., Ali, T., Hussain, S., Huh, E.-N., … Lee, S. (2015). GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare. Sensors, 15(12), 15772–15798. https://doi.org/10.3390/s150715772
Almadani, B., Saeed, B., & Alroubaiy, A. (2016). Healthcare systems integration using Real Time Publish Subscribe (RTPS) middleware. Computers & Electrical Engineering, 50, 67–78. https://doi.org/10.1016/j.compeleceng.2015.12.009
Alnanih, R., Ormandjieva, O., & Radhakrishnan, T. (2013). Context-based and Rule- based Adaptation of Mobile User Interfaces in mHealth. Procedia Computer Science, 21, 390–397. https://doi.org/10.1016/j.procs.2013.09.051
Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, O. S., Albahri, A. S., … Mohammed, K. I. (2018). Systematic Review of an Automated Multiclass Detection and Classification System for Acute Leukaemia in Terms of Evaluation and Benchmarking, Open Challenges, Issues and Methodological Aspects. Journal of Medical Systems, 42(11), 204. https://doi.org/10.1007/s10916-018-1064-9
Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Madhloom, H. T., Azeez, N. D., & Alsyisuf, S. (2018). A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 158, 93–112. https://doi.org/10.1016/j.cmpb.2018.02.005
Ar, I. M., & Kurtaran, A. (2013). Evaluating the relative efficiency of commercial banks in Turkey: an integrated AHP/DEA approach. International Business Research, 6(4), 129.
Archenaa, J., & Anita, E. A. M. (2015). A Survey of Big Data Analytics in Healthcare and Government. Procedia Computer Science, 50(4), 408–413. https://doi.org/10.1016/j.procs.2015.04.021
Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American Journal of Information Systems, 1(1), 31–43.
Ashour, O. M., & Okudan, G. E. (2010). Fuzzy AHP and utility theory based patient sorting in emergency departments. International Journal of Collaborative Enterprise, 1(3–4), 332–358.
Azeez, D., Ali, M. A. M., Gan, K. B., & Saiboon, I. (2013). Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. SpringerPlus, 2(1), 416.
Baehr, D., McKinney, S., Quirk, A., & Harfoush, K. (2014). On the practicality of elliptic curve cryptography for medical sensor networks. In 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy) (pp. 41–45). IEEE. https://doi.org/10.1109/HONET.2014.7029358
Baig, M. M., & Gholamhosseini, H. (2013). Smart health monitoring systems: an overview of design and modeling. Journal of Medical Systems, 37(2), 9898.
Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., & Petrillo, A. (2016). An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. International Journal of Information Technology & Decision Making, 15(04), 861–885.
Beck, C., & Georgiou, J. (2016). A wearable, multimodal, vitals acquisition unit for intelligent field triage. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 2016–July, pp. 1530–1533). IEEE. https://doi.org/10.1109/ISCAS.2016.7538853
Bellini, P., di Claudio, M., Nesi, P., & Rauch, N. (2013). Tassonomy and Review of Big Data Solutions Navigation. In Big Data Computing (pp. 57–101). https://doi.org/10.1201/b16014-4
Belton, V., & Stewart, T. J. (2002). Multiple Criteria Decision Analysis. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-1495-4
Ben Elhadj, H., Elias, J., Chaari, L., & Kamoun, L. (2016). Multi-Attribute Decision Making Handover Algorithm for Wireless Body Area Networks. Computer Communications, 81, 97–108. https://doi.org/10.1016/j.comcom.2016.01.007
Ben, H., Elias, J., Chaari, L., Kamoun, L., Ben Elhadj, H., Elias, J., … Kamoun, L. (2015). A Priority based Cross Layer Routing Protocol for healthcare applications. Ad Hoc Networks, 42, 1–18. https://doi.org/10.1016/j.adhoc.2015.10.007
Ben Othman, S., Zgaya, H., Hammadi, S., Quilliot, A., Martinot, A., & Renard, J.-M. (2016). Agents endowed with uncertainty management behaviors to solve a multiskill healthcare task scheduling. Journal of Biomedical Informatics, 64, 25–43. https://doi.org/10.1016/j.jbi.2016.08.011
Benmansour, T., Ahmed, T., & Moussaoui, S. (2016). Performance Evaluation of IEEE 802.15.6 MAC in Monitoring of a Cardiac Patient. In 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops) (pp. 241–247). IEEE. https://doi.org/10.1109/LCN.2016.054
Benson, M., Koenig, K. L., & Schultz, C. H. (1996). Disaster Triage: START, then SAVE—A New Method of Dynamic Triage for Victims of a Catastrophic Earthquake. Prehospital and Disaster Medicine, 11(02), 117–124. https://doi.org/10.1017/S1049023X0004276X
Bernocchi, P., Scalvini, S., Tridico, C., Borghi, G., Zanaboni, P., Masella, C., … Marzegalli, M. (2012). Healthcare continuity from hospital to territory in Lombardy: TELEMACO project. American Journal of Managed Care, 18(3), 101–108.
Bernstein, S. L., & D‘Onofrio, G. (2009). Public Health in the Emergency Department: Academic Emergency Medicine Consensus Conference Executive Summary. Academic Emergency Medicine, 16(11), 1037–1039. https://doi.org/10.1111/j.1553- 2712.2009.00548.x
Besaleva, L. I., & Weaver, A. C. (2013). Mobile electronic triaging for emergency response improvement through crowdsourced and sensor-detected information. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining - ASONAM ’13 (pp. 1092–1093). New York, New York, USA: ACM Press. https://doi.org/10.1145/2492517.2500327
best doctors. (n.d.). Retrieved November 5, 2017, from https://bestdoctors.com/
Beveridge, R., Clarke, B., Janes, L., Savage, N., Thompson, J., Dodd, G., … Vadeboncoeur, A. (1998). Implementation Guidelines for The Canadian Emergency Department Triage & Acuity Scale ( CTAS ) - endorsed by the Canadian Association of Emergency Physicians, the National Emergency Nurses Affiliation of Canada, and l‘association des medecins d‘urgence du. Canadian Association of Emergency Physicians, 1–32.
Bharatula, S., & Meenakshi, M. (2016). Design of Cognitive Radio Network for Hospital Management System. Wireless Personal Communications, 90(2), 1021–1038. https://doi.org/10.1007/s11277-016-3280-2
Bouakaz, S., Vacher, M., Bobillier Chaumon, M.-E., Aman, F., Bekkadja, S., Portet, F., … Chevalier, T. (2014). CIRDO: Smart companion for helping elderly to live at home for longer. IRBM, 35(2), 100–108. https://doi.org/10.1016/j.irbm.2014.02.011
Boursalie, O., Samavi, R., & Doyle, T. E. (2015). M4CVD: Mobile Machine Learning Model for Monitoring Cardiovascular Disease. Procedia Computer Science, 63(Icth), 384–391. https://doi.org/10.1016/j.procs.2015.08.357
Bradai, N., Chaari Fourati, L., & Kamoun, L. (2015). WBAN data scheduling and aggregation under WBAN/WLAN healthcare network. Ad Hoc Networks, 25(PA), 251–262. https://doi.org/10.1016/j.adhoc.2014.10.017
Bradai, N., Charfi, E., Fourati, L. C., & Kamoun, L. (2016). Priority consideration in inter-WBAN data scheduling and aggregation for monitoring systems. Transactions on Emerging Telecommunications Technologies, 27(4), 589–600. https://doi.org/10.1002/ett.2995
Bresó, A., Martínez-Miranda, J., Fuster-García, E., & García-Gómez, J. M. (2016). A novel approach to improve the planning of adaptive and interactive sessions for the treatment of Major Depression. International Journal of Human-Computer Studies, 87, 80–91. https://doi.org/10.1016/j.ijhcs.2015.11.003
Brunetti, N. D., Dellegrottaglie, G., Di Giuseppe, G., Antonelli, G., & Di Biase, M. (2014). All for one, one for all: Remote telemedicine hub pre-hospital triage for public Emergency Medical Service 1-1-8 in a regional network for primary PCI in Apulia, Italy. European Research in Telemedicine/La Recherche Européenne En Télémédecine, 3(1), 9–15.
Brunetti, N. D., Scalvini, S., Acquistapace, F., Parati, G., Volterrani, M., Fedele, F., & Molinari, G. (2015). Telemedicine for cardiovascular disease continuum: a position paper from the Italian Society of Cardiology Working Group on Telecardiology and Informatics. International Journal of Cardiology, 184, 452–458.
Busse, R., Schreyögg, J., & Smith, P. C. (2008). Variability in healthcare treatment costs amongst nine EU countries–results from the HealthBASKET project. Health Economics, 17(S1).
Çal??kan, H. (2013). Selection of boron based tribological hard coatings using multicriteria decision making methods. Materials & Design, 50, 742–749.
Calyam, P., Mishra, A., Antequera, R. B., Chemodanov, D., Berryman, A., Zhu, K., … Skubic, M. (2016). Synchronous Big Data analytics for personalized and remote physical therapy. Pervasive and Mobile Computing, 28, 3–20. https://doi.org/10.1016/j.pmcj.2015.09.004
Chakraborty, S., Ghosh, S. K., Jamthe, A., & Agrawal, D. P. (2013). Detecting Mobility for Monitoring Patients with Parkinson‘s Disease at Home using RSSI in a Wireless Sensor Network. Procedia Computer Science, 19, 956–961. https://doi.org/10.1016/j.procs.2013.06.132
Chang, M.-Y., Pang, C., Tarn, J. M., Liu, T.-S., & Yen, D. C. (2015). Exploring user acceptance of an e-hospital service: An empirical study in Taiwan. Computer Standards & Interfaces, 38, 35–43.
Chang, T. H. (2014). Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Information Sciences, 271, 196–212. https://doi.org/10.1016/j.ins.2014.02.118
Chiang, H., Lai, C., & Huang, Y. (2014). A green cloud-assisted health monitoring service on wireless body area networks. Information Sciences, 284, 118–129. https://doi.org/10.1016/j.ins.2014.07.013
Chowdhury, M., Mciver, W., & Light, J. (2012). Data association in remote health monitoring systems. IEEE Communications Magazine, 50(6), 144–149. https://doi.org/10.1109/MCOM.2012.6211499
Christensen, D., Jensen, N. M., Maaløe, R., Rudolph, S. S., Belhage, B., & Perrild, H. (2011a). Low compliance with a validated system for emergency department triage. Danish Medical Bulletin, 58(6), A4294. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21651880
Christensen, D., Jensen, N. M., Maaløe, R., Rudolph, S. S., Belhage, B., & Perrild, H. (2011b). Nurse-administered early warning score system can be used for emergency department triage. Danish Medical Bulletin, 58(6), A4221. https://doi.org/DMBA4221 [pii]
Chung, S., & Shannon, M. (2007). Reuniting children with their families during disasters: a proposed plan for greater success. American Journal of Disaster Medicine, 2(3), 113–117.
Chung, Y., & Liu, C. (2013). Design of a Wireless Sensor Network Platform for Tele- Homecare. Sensors, 13(12), 17156–17175. https://doi.org/10.3390/s131217156
Cicero, M. X., Walsh, B., Solad, Y., Whitfill, T., Paesano, G., Kim, K., … Cone, D. C. (2015). Do You See What i See? Insights from Using Google Glass for Disaster Telemedicine Triage. Prehospital and Disaster Medicine, 30(1), 4–8. https://doi.org/10.1017/S1049023X1400140X
Cohn, J. N. (1988). Current therapy of the failing heart. Circulation, 78(5), 1099–1107.
Cross, K. P., & Cicero, M. X. (2013). Head-to-Head Comparison of Disaster Triage Methods in Pediatric, Adult, and Geriatric Patients. Annals of Emergency Medicine, 61(6), 668–676.e7. https://doi.org/10.1016/j.annemergmed.2012.12.023
Culley, J. M., Svendsen, E., Craig, J., & Tavakoli, A. (2014). A Validation Study of 5 Triage Systems Using Data From the 2005 Graniteville, South Carolina, Chlorine Spill. Journal of Emergency Nursing, 40(5), 453–460. https://doi.org/10.1016/j.jen.2014.04.020
D Kelen, G., L McCarthy, M., K Kraus, C., Ding, R., B Hsu, E., Li, G., … B Green, G. (2009). Creation of Surge Capacity by Early Discharge of Hospitalized Patients at Low Risk for Untoward Events. Disaster Medicine and Public Health Preparedness, 3, S10-6.
De Backere, F., Bonte, P., Verstichel, S., Ongenae, F., & De Turck, F. (2017). The OCarePlatform: A context-aware system to support independent living. Computer Methods and Programs in Biomedicine, 140, 111–120. https://doi.org/10.1016/j.cmpb.2016.11.008
de la Piedra, A., Braeken, A., Touhafi, A., & Wouters, K. (2013). Secure event logging in sensor networks. Computers & Mathematics with Applications, 65(5), 762–773. https://doi.org/10.1016/j.camwa.2012.06.019
Demchenko, Y., Grosso, P., de Laat, C., & Membrey, P. (2013). Addressing big data issues in Scientific Data Infrastructure. In 2013 International Conference on Collaboration Technologies and Systems (CTS) (pp. 48–55). IEEE. https://doi.org/10.1109/CTS.2013.6567203
Diaby, V., Campbell, K., & Goeree, R. (2013). Multi-criteria decision analysis (MCDA) in health care: a bibliometric analysis. Operations Research for Health Care, 2(1), 20–24.
Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2013). Patients‘ preferences and priorities regarding colorectal cancer screening. Medical Decision Making, 33(1), 59–70.
Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., & Foguem, C. (2014). Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise. Telematics and Informatics, 31(4), 648–659. https://doi.org/10.1016/j.tele.2014.01.003
Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., & Foguem, C. (2015). A framework for decision making on teleexpertise with traceability of the reasoning. IRBM, 36(1), 40–51. https://doi.org/10.1016/j.irbm.2014.09.002
Duke, J. M., & Aull-Hyde, R. (2002). Identifying public preferences for land preservation using the analytic hierarchy process. Ecological Economics, 42(1), 131–145.
Durisko, C., McCue, M., Doyle, P. J., Dickey, M. W., & Fiez, J. A. (2016). A Flexible and Integrated System for the Remote Acquisition of Neuropsychological Data in Stroke Research. Telemedicine and E-Health, 22(12), 1032–1040.
Faulin, J., Juan, A. A., Grasman, S. E., & Fry, M. J. (2012). Decision Making in Service Industries: A Practical Approach. CRC Press.
Fernandes, C. M., Wuerz, R., Clark, S., & Djurdjev, O. (1999). How Reliable Is Emergency Department Triage? Annals of Emergency Medicine, 34(2), 141–147. https://doi.org/10.1016/S0196-0644(99)70248-9
Fezari, M., Rasras, R., & Emary, I. M. M. El. (2015). Ambulatory Health Monitoring System Using Wireless Sensors Node. Procedia Computer Science, 65(Iccmit), 86– 94. https://doi.org/10.1016/j.procs.2015.09.082
Fourati, H., Idoudi, H., Val, T., Van Den Bossche, A., & Saidane, L. A. (2015). Performance evaluation of IEEE 802.15.6 CSMA/CA-based CANet WBAN. In 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA) (pp. 1–7). IEEE. https://doi.org/10.1109/AICCSA.2015.7507181
Fratini, A., & Caleffi, M. (2014). Medical emergency alarm dissemination in urban environments. Telematics and Informatics, 31(3), 511–517. https://doi.org/10.1016/j.tele.2013.11.007
Fu, H.-P., Chu, K.-K., Chao, P., Lee, H.-H., & Liao, Y.-C. (2011). Using fuzzy AHP and VIKOR for benchmarking analysis in the hotel industry. The Service Industries Journal, 31(14), 2373–2389. https://doi.org/10.1080/02642069.2010.503874
Gambhir, S., & Kathuria, M. (2016). DWBAN: Dynamic priority based WBAN architecture for healthcare system. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).
Ganapathy, K., Priya, B., Priya, B., Dhivya, Prashanth, V., & Vaidehi, V. (2013). SOA Framework for Geriatric Remote Health Care Using Wireless Sensor Network. Procedia Computer Science, 19(Fams), 1012–1019. https://doi.org/10.1016/j.procs.2013.06.141
Ganapathy, K., Vaidehi, V., Kannan, B., & Murugan, H. (2014). Hierarchical Particle Swarm Optimization with Ortho-Cyclic Circles. Expert Systems with Applications, 41(7), 3460–3476. https://doi.org/10.1016/j.eswa.2013.10.050
Ganz, A., Schafer, J. M., Tang, J., Yang, Z., Yi, J., & Ciottone, G. (2015). Urban Search and Rescue Situational Awareness using DIORAMA Disaster Management System. Procedia Engineering, 107, 349–356. https://doi.org/10.1016/j.proeng.2015.06.091
Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007
Ghanavati, S., Abawaji, J., & Izadi, D. (2015). A Congestion Control Scheme Based on Fuzzy Logic in Wireless Body Area Networks. In 2015 IEEE 14th International Symposium on Network Computing and Applications (pp. 235–242). IEEE. https://doi.org/10.1109/NCA.2015.38
Ghanavati, S., Abawajy, J., & Izadi, D. (2016). ECG rate control scheme in pervasive health care monitoring system. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 2265–2270). IEEE. https://doi.org/10.1109/FUZZ- IEEE.2016.7737975
Gilboy, N., Tanabe, P., Travers, D., & Rosenau, A. M. (2012). Emergency Severity Index (ESI): a triage tool for emergency department care, version 4. Implementation Handbook, 12–14.
Gilpin, R., & Gilpin, J. M. (2000). The challenge of global capitalism: The world economy in the 21st century (Vol. 5). Princeton University Press Princeton, NJ.
Godfrey, B., et al. (2000). Emergency Medical Guidelines. Sunshine Act of Florida, (3), 245.
Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient Monitoring System Based on Internet of Things. Procedia Computer Science, 83(Ant), 90–97. https://doi.org/10.1016/j.procs.2016.04.103
Gunasekaran, S., & Suresh, M. (2014). A novel control of disaster protection (NCDP) for pilgrims by pan technology. In 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO) (pp. 103–107). IEEE. https://doi.org/10.1109/ISCO.2014.7103927
Gündo?du, K., & Çalhan, A. (2016). An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay. Journal of Medical Systems, 40(3), 75. https://doi.org/10.1007/s10916-016-0443-3
Hamdi, O., Chalouf, M. A., Ouattara, D., & Krief, F. (2014). eHealth: Survey on research projects, comparative study of telemonitoring architectures and main issues. Journal of Network and Computer Applications, 46, 100–112. https://doi.org/10.1016/j.jnca.2014.07.026
Haque, S. A., & Aziz, S. M. (2013). False Alarm Detection in Cyber-physical Systems for Healthcare Applications. AASRI Procedia, 5, 54–61. https://doi.org/10.1016/j.aasri.2013.10.058
He, C., Fan, X., & Li, Y. (2013). Toward Ubiquitous Healthcare Services With a Novel Efficient Cloud Platform. IEEE Transactions on Biomedical Engineering, 60(1), 230–234. https://doi.org/10.1109/TBME.2012.2222404
Hedin, D. S., Kollmann, D. T., Gibson, P. L., Riehle, T. H., & Seifert, G. J. (2014). Distance bounded energy detecting ultra-wideband impulse radio secure protocol. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2014, pp. 6619–6622). IEEE. https://doi.org/10.1109/EMBC.2014.6945145
Herath, G., & Prato, T. (2006). Using multi-criteria decision analysis in natural resource management. Ashgate Publishing, Ltd.
Hermens, H., op den Akker, H., Tabak, M., Wijsman, J., & Vollenbroek, M. (2014). Personalized Coaching Systems to support healthy behavior in people with chronic conditions. Journal of Electromyography and Kinesiology, 24(6), 815–826. https://doi.org/10.1016/j.jelekin.2014.10.003
Hilgerink, M. P., Hummel, M. J. M., Manohar, S., Vaartjes, S. R., & IJzerman, M. J. (2011). Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis. Medical Devices (Auckland, NZ), 4, 107.
Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., & Fattouh, A. (2016). Enabling Remote Health-Caring Utilizing IoT Concept over LTE-Femtocell Networks. PLOS ONE, 11(5), e0155077. https://doi.org/10.1371/journal.pone.0155077
Hodgetts, T. J., Hall, J., Maconochie, I., & Smart, C. (1998). Paediatric triage tape. Pre- Hospital Immediate Care, 2, 155–159.
Hu, L., Zhang, Y., Feng, D., Hassan, M. M., Alelaiwi, A., & Alamri, A. (2015). Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network. Journal of Medical Systems, 39(12), 192. https://doi.org/10.1007/s10916-015-0336-x
Hummel, M. J. M., Volz, F., van Manen, J. G., Danner, M., Dintsios, C.-M., IJzerman, M. J., & Gerber, A. (2012). Using the analytic hierarchy process to elicit patient preferences. The Patient: Patient-Centered Outcomes Research, 5(4), 225–237.
Hung, C. Y., Chang, P. Y., & Huang, Y. H. (2006). Comparison of fuzzy-based MCDM and non-fuzzy MCDM in setting a new fee schedule for orthopedic procedures in Taiwan‘s national health insurance program. WSEAS Transactions on Mathematics, 5(1), 149–153.
Hussain, A., Wenbi, R., da Silva, A. L., Nadher, M., & Mudhish, M. (2015). Health and emergency-care platform for the elderly and disabled people in the Smart City. Journal of Systems and Software, 110, 253–263. https://doi.org/10.1016/j.jss.2015.08.041
Hussain, M., Zaidan, A. A., Zidan, B. B., Iqbal, S., Ahmed, M. M., Albahri, O. S., & Albahri, A. S. (2018). Conceptual framework for the security of mobile health applications on Android platform. Telematics and Informatics, 35(5), 1335–1354. https://doi.org/10.1016/j.tele.2018.03.005
Hwang, T. H., Kim, D. S., & Kim, J. G. (2013). An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems. Sensors (Switzerland), 13(1), 375–392. https://doi.org/10.3390/s130100375 IFRC. (2015). Disaster and crisis management. Retrieved November 2, 2017, from https://www.ifrc.org/en/what-we-do/disaster-management/
Iftikhar, M., & Ahmad, I. (2014). A Novel Analytical Model for Provisioning QoS in Body Area Sensor Networks. Procedia Computer Science, 32, 900–907. https://doi.org/10.1016/j.procs.2014.05.509
Iftikhar, M., Elaiwi, N. Al, & Aksoy, M. S. (2014). Performance Analysis of Priority Queuing Model for Low Power Wireless Body Area Networks (WBANs). Procedia Computer Science, 34, 518–525. https://doi.org/10.1016/j.procs.2014.07.060
Ilangkumaran, M., Sasirekha, V., Anojkumar, L., & Raja, M. B. (2012). Machine tool selection using AHP and VIKOR methodologies under fuzzy environment. International Journal of Modelling in Operations Management, 2(4), 409. https://doi.org/10.1504/IJMOM.2012.049133
Innes, K., Plummer, V., & Considine, J. (2011). Nurses‘ perceptions of their preparation for triage. Australasian Emergency Nursing Journal, 14(2), 81–86. https://doi.org/10.1016/j.aenj.2011.03.003
Jadhav, A., & Sonar, R. (2009). Analytic Hierarchy Process (AHP), Weighted Scoring Method (WSM), and Hybrid Knowledge Based System (HKBS) for Software Selection: A Comparative Study. In Emerging Trends in Engineering and Technology (ICETET), 2009 2nd International Conference on (pp. 991–997). IEEE.
Jentsch, M., & Ramirez, L. (2013). The reconfiguration of triage by introduction of technology. In Proceedings of the 15th international conference on Humancomputer interaction with mobile devices and services (MobileHCI ’13) (pp. 55–64). New York, New York, USA: ACM Press. https://doi.org/10.1145/2493190.2493212
Jeong, S., Youn, C.-H., Shim, E. B., Kim, M., Cho, Y. M., & Peng, L. (2012). An integrated healthcare system for personalized chronic disease care in home–hospital environments. IEEE Transactions on Information Technology in Biomedicine, 16(4), 572–585.
Johnson, C. D., & Taylor, I. (2004). Recent Advances in Surgery 27 (Vol. 27). CRC Press.
Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement, 118, 83–95. https://doi.org/10.1016/j.measurement.2018.01.011
Jumaah, F. M., Zaidan, A. A., Zaidan, B. B., Bahbibi, R., Qahtan, M. Y., & Sali, A. (2017). Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommunication Systems, 1–19.
Kaiser Family Foundation. (2009). Trends in Health Care Costs and Spending. Health Care, (650), 1–2.
Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., & Albahri, A. S. (2018). Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization ?Large Scales Data? Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology. Journal of Medical Systems, 42(4). https://doi.org/10.1007/s10916-018-0916-7
Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., & Muzammil, H. (2018). Based Real Time Remote Health Monitoring Systems: A Review on Patients Prioritization and Related" Big Data" Using Body Sensors information and Communication Technology. Journal of Medical Systems, 42(2), 30.
Kanter, R. K. (2007). Strategies to improve pediatric disaster surge response: Potential mortality reduction and tradeoffs. Critical Care Medicine, 35(12), 2837–2842. https://doi.org/10.1097/01.CCM.0000287579.10746.43
Kateretse, C., Lee, G.-W., & Huh, E.-N. (2013). A practical traffic scheduling scheme for differentiated services of healthcare systems on wireless sensor networks. Wireless Personal Communications, 71(2), 909–927.
Katib, A., Rao, D., Rao, P., Williams, K., & Grant, J. (2015). A prototype of a novel cell phone application for tracking the vaccination coverage of children in rural communities. Computer Methods and Programs in Biomedicine, 122(2), 215–228. https://doi.org/10.1016/j.cmpb.2015.08.008
Kaur, J., Saini, K. S., & Grewal, R. (2015). Priority based congestion avoidance hybrid scheme for Wireless Sensor Network. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT) (pp. 158–165). IEEE. https://doi.org/10.1109/NGCT.2015.7375104
Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press.
Khan, A. M. R., Prasad, P. N., & Rajamanoharane, S. (2010). A decision-making framework for service quality measurements in hospitals. International Journal of Enterprise Network Management, 4(1), 80–91.
Kiah, M. L. M., Haiqi, A., Zaidan, B. B., & Zaidan, A. A. (2014). Open source EMR software: profiling, insights and hands-on analysis. Computer Methods and Programs in Biomedicine, 117(2), 360–382.
Kiah, M. L. M., Zaidan, B. B., Zaidan, A. A., Nabi, M., & Ibraheem, R. (2014). MIRASS: Medical Informatics Research Activity Support System Using Information Mashup Network. Journal of Medical Systems, 38(4), 37. https://doi.org/10.1007/s10916-014-0037-x
Kim, H.-K. (2014). Convergence agent model for developing u-healthcare systems. Future Generation Computer Systems, 35, 39–48. https://doi.org/10.1016/j.future.2013.10.025
Kim, K., Kyung, T., Kim, W., Shin, C., Song, Y., Lee, M. Y., … Cho, Y. (2009). Efficient management design for swimming exercise treatment. The Korean Journal of Physiology & Pharmacology, 13(6), 497–502.
Kim, W., Han, S. K., Oh, K. J., Kim, T. Y., Ahn, H., & Song, C. (2010). The dual analytic hierarchy process to prioritize emerging technologies. Technological Forecasting and Social Change, 77(4), 566–577.
Kitamura, Y. (2010). Decision?making process of patients with gynecological cancer regarding their cancer treatment choices using the analytic hierarchy process. Japan Journal of Nursing Science, 7(2), 148–157.
Klersy, C., De Silvestri, A., Gabutti, G., Regoli, F., & Auricchio, A. (2009). A metaanalysis of remote monitoring of heart failure patients. Journal of the American College of Cardiology, 54(18), 1683–1694.
Klimova, B. (2016). Mobile Health Devices for Aging Population Groups: A Review Study. In M. Younas, I. Awan, N. Kryvinska, C. Strauss, & D. van Thanh (Eds.) (Vol. 9847, pp. 295–301). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-44215-0_24
Kormanyos, B., & Pataki, B. (2013). Multilevel simulation of daily activities: Why and how? In 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1–6). IEEE. https://doi.org/10.1109/CIVEMSA.2013.6617386
Kovalchuk, S. V., Krotov, E., Smirnov, P. A., Nasonov, D. A., & Yakovlev, A. N. (2018). Distributed data-driven platform for urgent decision making in cardiological ambulance control. Future Generation Computer Systems, 79, 144–154. https://doi.org/2016.09.017
Kumar, N., Kaur, K., Jindal, A., & Rodrigues, J. J. P. C. (2015). Providing healthcare services on-the-fly using multi-player cooperation game theory in Internet of Vehicles (IoV) environment. Digital Communications and Networks, 1(3), 191–203. https://doi.org/10.1016/j.dcan.2015.05.001
Lahby, M., Cherkaoui, L., & Adib, A. (2013). A Novel Ranking Algorithm Based Network Selection For Heterogeneous Wireless Access. JNW, 8(2), 263–272.
Lam, K., & Zhao, X. (1998). An application of quality function deployment to improve the quality of teaching. International Journal of Quality & Reliability Management, 15(4), 389–413.
Lamprinakos, G. C., Asanin, S., Broden, T., Prestileo, A., Fursse, J., Papadopoulos, K. A., … Venieris, I. S. (2015). An integrated remote monitoring platform towards Telehealth and Telecare services interoperability. Information Sciences, 308(March), 23–37. https://doi.org/10.1016/j.ins.2015.02.032
Leister, J., & Stausberg, J. (2007). Why do patients select a hospital? A conjoint analysis in two German hospitals. Journal of Hospital Marketing & Public Relations, 17(2), 13–31.
Lerner, E. B., Cone, D. C., Weinstein, E. S., Schwartz, R. B., Coule, P. L., Cronin, M., … Hunt, R. C. (2011). Mass Casualty Triage: An Evaluation of the Science and Refinement of a National Guideline. Disaster Medicine and Public Health Preparedness, 5(02), 129–137. https://doi.org/10.1001/dmp.2011.39
Lerner, E. B., Schwartz, R., L. Coule, P., Weinstein, E., C. Cone, D., C. Hunt, R., … O‘Connor, R. (2009). Mass Casualty Triage: Universal Versus Specific: Lerner et al reply. Disaster Medicine and Public Health Preparedness, 3.
Li, C., Yuan, X., Yang, L., & Song, Y. (2015). A Hybrid Lifetime Extended Directional Approach for WBANs. Sensors, 15(12), 28005–28030. https://doi.org/10.3390/s151128005
Li, N., Lin, K., Yong, S., Chen, X., Wang, X., & Zhang, X. (2015). Design and implementation of a MAC protocol for a wearable monitoring system on human body. In 2015 IEEE 11th International Conference on ASIC (ASICON) (pp. 1–4). IEEE. https://doi.org/10.1109/ASICON.2015.7517194
Li, S. H., Cheng, K. A., Lu, W. H., & Lin, T. C. (2012). Developing an active emergency medical service system based on WiMAX technology. Journal of Medical Systems, 36(5), 3177–3193. https://doi.org/10.1007/s10916-011-9809-8
Liberatore, M. J., & Nydick, R. L. (2008). The analytic hierarchy process in medical and health care decision making: A literature review. European Journal of Operational Research, 189(1), 194–207.
Lin, D., Labeau, F., Yao, Y., Vasilakos, A. V, & Tang, Y. (2016). Admission Control over Internet of Vehicles Attached with Medical Sensors for Ubiquitous Healthcare Applications. IEEE Journal of Biomedical and Health Informatics, 20(4), 1195– 1204. https://doi.org/10.1109/JBHI.2015.2431744
Lingsma, H. F., Steyerberg, E. W., Eijkemans, M. J. C., Dippel, D. W. J., Scholte Op Reimer, W. J. M., Van Houwelingen, H. C., & Investigators, N. S. S. (2009). Comparing and ranking hospitals based on outcome: results from The Netherlands Stroke Survey. QJM: An International Journal of Medicine, 103(2), 99–108.
Liu, C.-T., Long, A.-G., Li, Y.-C., Tsai, K.-C., & Kuo, H.-S. (2001). Sharing patient care records over the World Wide Web. International Journal of Medical Informatics, 61(2), 189–205.
Lounis, A., Hadjidj, A., Bouabdallah, A., & Challal, Y. (2016). Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Future Generation Computer Systems, 55, 266–277. https://doi.org/10.1016/j.future.2015.01.009
Lwin, M. O., Vijaykumar, S., Fernando, O. N. N., Cheong, S. A., Rathnayake, V. S., Lim, G., … Foo, S. (2014). A 21st century approach to tackling dengue: Crowdsourced surveillance, predictive mapping and tailored communication. Acta Tropica, 130, 100–107. https://doi.org/10.1016/j.actatropica.2013.09.021
Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.
Mamoon, I. Al, Muzahidul-Islam, A. K. M., Baharun, S., Komaki, S., & Ahmed, A. (2015). Architecture and communication protocols for cognitive radio network enabled hospital. In 2015 9th International Symposium on Medical Information and Communication Technology (ISMICT) (Vol. 2015–May, pp. 170–174). IEEE. https://doi.org/10.1109/ISMICT.2015.7107522
Mansooreh, M., & Pet-Edwards, J. (1997). Technical Briefing: Making Multiple- Objective Decisions. The Institute of Electrical ve Electronics Engineers Inc., IEEE Computer Society Press, USA.
Mazomenos, E. B., Biswas, D., Acharyya, A., Chen, T., Maharatna, K., Rosengarten, J., … Curzen, N. (2013). A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications. IEEE Journal of Biomedical and Health Informatics, 17(2), 459–469. https://doi.org/10.1109/TITB.2012.2231312
Megahed, F. M., & Jones-Farmer, L. A. (2015). Statistical Perspectives on ?Big Data.? In Frontiers in Statistical Quality Control 11 (Vol. 11th ed, pp. 29–47). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-12355-4_3
Meizoso, J. P., Allen, C. J., Ray, J. J., Van Haren, R. M., Teisch, L. F., Baez, X. R., … Proctor, K. G. (2016). Evaluation of Miniature Wireless Vital Signs Monitor in a Trauma Intensive Care Unit. Military Medicine, 181(5S), 199–204. https://doi.org/10.7205/MILMED-D-15-00162
Mendes, J., Simões, H., Rosa, P., Costa, N., Rabadão, C., & Pereira, A. (2014). Secure Low-cost Solution for Elder‘s eCardio Surveillance. Procedia Computer Science, 27(Dsai 2013), 46–56. https://doi.org/10.1016/j.procs.2014.02.007
Merin, O., Miskin, I. N., Lin, G., Wiser, I., & Kreiss, Y. (2011). Triage in mass-casualty events: the Haitian experience. Prehospital and Disaster Medicine, 26(5), 386–390.
Merzougui, R. (2015). Adaptation of an Intelligent Mobile Assistant Medical (IMAM) of the Heterogeneous Data for the Telemedicine Services: Design and Implementation. Wireless Personal Communications, 84(4), 3091–3107.
Miah, S. J., Hasan, J., & Gammack, J. G. (2017). On-Cloud Healthcare Clinic: An ehealth consultancy approach for remote communities in a developing country. Telematics and Informatics, 34(1), 311–322. https://doi.org/10.1016/j.tele.2016.05.008
Miao, F., Cheng, Y., He, Y., He, Q., & Li, Y. (2015). A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone. Sensors, 15(5), 11465–11484. https://doi.org/10.3390/s150511465
Minelli, M., Chambers, M., & Dhiraj, A. (2013). Big Data Analytics - Emerging BI and Analitics trends for today’s businesses.
Minutolo, A., Esposito, M., & De Pietro, G. (2015). Design and validation of a lightweight reasoning system to support remote health monitoring applications. Engineering Applications of Artificial Intelligence, 41, 232–248. https://doi.org/10.1016/j.engappai.2015.01.019
Mirkovic, J., Bryhni, H., & Ruland, C. M. (2012). A framework for the development of ubiquitous patient support systems. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on (pp. 81–88). IEEE.
Misra, S., & Chatterjee, S. (2014). Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: Data aggregation and channelization. Information Sciences, 284, 95–117. https://doi.org/10.1016/j.ins.2014.05.010
Misra, S., & Sarkar, S. (2015). Priority-Based Time-Slot Allocation in Wireless Body Area Networks During Medical Emergency Situations: An Evolutionary Game- Theoretic Perspective. IEEE Journal of Biomedical and Health Informatics, 19(2), 541–548. https://doi.org/10.1109/JBHI.2014.2313374
Moghadas, A., Jamshidi, M., & Shaderam, M. (2008). Telemedicine in healthcare system. In Automation Congress, 2008. WAC 2008. World (pp. 1–6). IEEE.
Mohaghar, A., Fathi, M. R., Zarchi, M. K., & Omidian, A. (1969). A Combined VIKOR – Fuzzy AHP Approach to Marketing Strategy Selection. Business Management and Strategy, 3(1). https://doi.org/10.5296/bms.v3i1.957
Moore, P., Thomas, A., Qassem, T., Bessis, N., & Hu, B. (2015). Monitoring Patients with Mental Disorders. In 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 65–70). IEEE. https://doi.org/10.1109/IMIS.2015.15
Moreno, S., Quintero, A., Ochoa, C., Bonfante, M., Villareal, R., & Pestana, J. (2016). Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room. In 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA) (pp. 1–5). IEEE. https://doi.org/10.1109/STSIVA.2016.7743353
Moretti, S., Cicalò, S., Mazzotti, M., Tralli, V., & Chiani, M. (2014). Content/Context - aware Multiple Camera Selection and Video Adaptation for the Support of m-Health Services. Procedia Computer Science, 40, 206–213. https://doi.org/10.1016/j.procs.2014.12.028
Moutacalli, M. T., Marmen, V., Bouzouane, A., & Bouchard, B. (2013). Activity pattern mining using temporal relationships in a smart home. In 2013 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE) (pp. 83–87). IEEE. https://doi.org/10.1109/CICARE.2013.6583073
Mühlbacher, A. C., & Kaczynski, A. (2016). Making good decisions in healthcare with multi-criteria decision analysis: the use, current research and future development of MCDA. Applied Health Economics and Health Policy, 14(1), 29–40.
Nageba, E., Rubel, P., & Fayn, J. (2013). Towards an intelligent exploitation of heterogeneous and distributed resources in cooperative environments of eHealth. IRBM, 34(1), 79–85. https://doi.org/10.1016/j.irbm.2012.12.002
Nager, A. L., & Khanna, K. (2009). Emergency department surge: models and practical implications. Journal of Trauma and Acute Care Surgery, 67(2), S96–S99.
Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Systems with Applications, 42(4), 2184–2197.
Nilsson, H., Nordström, E.-M., & Öhman, K. (2016). Decision support for participatory forest planning using AHP and TOPSIS. Forests, 7(5), 100.
Niswar, M., Ilham, A. A., Palantei, E., Sadjad, R. S., Ahmad, A., Suyuti, A., … Adi. (2013). Performance evaluation of ZigBee-based wireless sensor network for monitoring patients‘ pulse status. In 2013 International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 291–294). IEEE. https://doi.org/10.1109/ICITEED.2013.6676255
Niswar, M., Wijaya, A. S., Ridwan, M., Adnan, A., Ilham, A. A., Sadjad, R. S., & Vogel, A. (2015). The design of wearable medical device for triaging disaster casualties in developing countries. In 2015 5th International Conference on Digital Information Processing and Communications, ICDIPC 2015 (pp. 207–212). IEEE. https://doi.org/10.1109/ICDIPC.2015.7323030
Nodhturft, V., Schneider, J. M., Hebert, P., Bradham, D. D., Russo, K., ARNPC, C., … Clark, V. (2000). Chronic disease self-management. Nurs Clin North Am, 35, 507– 518.
Okura, T., Enomoto, D., Miyoshi, K., Nagao, T., Kukida, M., Tanino, A., … Uemura, H. (2016). The Importance of Walking for Control of Blood Pressure: Proof Using a Telemedicine System. Telemedicine and E-Health, 22(12), 1019–1023.
Oliveira, M., Fontes, D. B. M. M., & Pereira, T. (2013). Multicriteria decision making: a case study in the automobile industry. In International Symposium on Operational Research and Applications (ISORAP2013).
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5–21.
Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1
Organization, W. H. (2003). Surgical care at the district hospital. World Health Organization.
Ortíz, M. A., Cómbita, J. P., Hoz, Á. lvaro A. D. la, Felice, F. De, & Petrillo, A. (2016). An integrated approach of AHP-DEMATEL methods applied for the selection of allied hospitals in outpatient service. International Journal of Medical Engineering and Informatics, 8(2), 87–107.
Palozzi, G., Binci, D., & Appolloni, A. (2017). E-Health and Co-production: Critical Drivers for Chronic Diseases Management Models, Strategies, Tools.
Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 9(1), 21. https://doi.org/10.1186/1743-0003-9-21
Paulus, A., Meisen, P., Meisen, T., Jeschke, S., Czaplik, M., & Hirsch, F. (2015). AUDIME: Augmented disaster medicine. In 2015 17th International Conference on E-health Networking, Application & Services (HealthCom) (pp. 342–345). IEEE. https://doi.org/10.1109/HealthCom.2015.7454522
Peleg, M., Shahar, Y., Quaglini, S., Broens, T., Budasu, R., Fung, N., … van Schooten, B. (2017). Assessment of a personalized and distributed patient guidance system. International Journal of Medical Informatics, 101, 108–130. https://doi.org/10.1016/j.ijmedinf.2017.02.010
Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service model for smart cities supported by Internet of Things. Transactions on Emerging Telecommunications Technologies, 25(1), 81–93. https://doi.org/10.1002/ett.2704
Petrovic-Lazarevic, S., & Abraham, A. (2004). Hybrid fuzzy-linear programming approach for multi criteria decision making problems. ArXiv Preprint Cs/0405019.
Puri, T., Challa, R. K., & Sehgal, N. K. (2015). Energy efficient QoS aware MAC layer time slot allocation scheme for WBASN. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 966–972). IEEE. https://doi.org/10.1109/ICACCI.2015.7275736
Qader, M. A., Zaidan, B. B., Zaidan, A. A., Ali, S. K., Kamaluddin, M. A., & Radzi, W. B. (2017). A methodology for football players selection problem based on multimeasurements criteria analysis. Measurement: Journal of the International Measurement Confederation, 111, 38–50. https://doi.org/10.1016/j.measurement.2017.07.024
Radhakrishnan, S., Duvvuru, A., & Kamarthi, S. V. (2014). Investigating Discrete Event Simulation Method to Assess the Effectiveness of Wearable Health Monitoring Devices. Procedia Economics and Finance, 11(14), 838–856. https://doi.org/10.1016/S2212-5671(14)00248-2
Rae Hyun Kim, Pyung Soo Kim, & Jeong Gon Kim. (2015). An effect of delay reduced MAC protocol for WBAN based medical signal monitoring. In 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) (Vol. 2015–Novem, pp. 434–437). IEEE. https://doi.org/10.1109/PACRIM.2015.7334876
Rahman, H., Begum, S., & Ahmed, M. U. (2016). Ins and Outs of Big Data : A Review, 18–19.
Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2017). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658. https://doi.org/10.1016/j.future.2017.02.014
Raikhelkar, J., & Raikhelkar, J. K. (2015). The Impact of Telemedicine in Cardiac Critical Care. Critical Care Clinics, 31(2), 305–317. https://doi.org/10.1016/j.ccc.2014.12.008
Rajkumar, R., & Sriman Narayana Iyengar, N. C. (2013). Dynamic Integration of Mobile JXTA with Cloud Computing for Emergency Rural Public Health Care. Osong Public Health and Research Perspectives, 4(5), 255–264. https://doi.org/10.1016/j.phrp.2013.09.004
Ren, J., Wu, G., Li, X., Pirozmand, P., & Obaidat, M. S. (2015). Probabilistic responsetime analysis for real-time systems in body area sensor networks. International Journal of Communication Systems, 28(16), 2145–2166. https://doi.org/10.1002/dac.2990
Renner, A., Williams, R., McCartney, M., Harmon, B., Boswell, L., Ganapathy, S., … Weinle, N. (2014). RIPPLE: Scalable medical telemetry system for supporting combat rescue. In NAECON 2014 - IEEE National Aerospace and Electronics Conference (Vol. 2015–Febru, pp. 228–232). IEEE. https://doi.org/10.1109/NAECON.2014.7045807
Rezaee, A. A., Yaghmaee, M. H., & Rahmani, A. M. (2014). Optimized Congestion Management Protocol for Healthcare Wireless Sensor Networks. Wireless Personal Communications, 75(1), 11–34. https://doi.org/10.1007/s11277-013-1337-z
Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., & Mohajerzadeh, A. H. (2014a). HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications, 37(1), 216–228. https://doi.org/10.1016/j.jnca.2013.02.014
Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., & Mohajerzadeh, A. H. (2014b). HOCA: Healthcare Aware Optimized Congestion Avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications, 37, 216–228.
Rezvani, S., & Ghorashi, S. A. (2013). Context aware and channel-based resource allocation for wireless body area networks. IET Wireless Sensor Systems, 3(1), 16– 25. https://doi.org/10.1049/iet-wss.2012.0100
Ritchie, C., & Lai, R. (2005). A systematic review of the scientific evidence for the efficacy of a palliative care approach in dementia A systematic review of the scientific evidence. International Psychogeriatrics, 17(November 2014), 31–40. https://doi.org/10.1017/S1041610205001018
Rn, A. B., Nurse, C., Rn, D. E. C., & Dean, A. (2013). Reducing uncertainty in triaging mental health presentations : Examining triage decision-making. INTERNATIONAL EMERGENCY NURSING, 1–5. https://doi.org/10.1016/j.ienj.2013.01.005
Rocha, A., Martins, A., Freire, J. C., Kamel Boulos, M. N., Vicente, M. E., Feld, R., … Rodr??guez-Molinero, A. (2013). Innovations in health care services: The CAALYX system. International Journal of Medical Informatics, 82(11), 1–14. https://doi.org/10.1016/j.ijmedinf.2011.03.003
Rodrigues, E. M. G., Godina, R., Cabrita, C. M. P., & Catalão, J. P. S. (2017). Biomedical Signal Processing and Control Experimental low cost reflective type oximeter for wearable health systems. Biomedical Signal Processing and Control, 31, 419–433. https://doi.org/10.1016/j.bspc.2016.09.013
Rodriguez, D., Heuer, S., Guerra, A., Stork, W., Weber, B., & Eichler, M. (2014). Towards automatic sensor-based triage for individual remote monitoring during mass casualty incidents. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 544–551). IEEE. https://doi.org/10.1109/BIBM.2014.6999217
Rogove, H. J., McArthur, D., Demaerschalk, B. M., & Vespa, P. M. (2012). Barriers to telemedicine: survey of current users in acute care units. Telemedicine and EHealth, 18(1), 48–53.
Ru Kong, Chen, C., Yu, W., Yang, B., & Guan, X. (2013). Data priority based slot allocation for Wireless Body Area Networks. In 2013 International Conference on Wireless Communications and Signal Processing (pp. 1–6). IEEE. https://doi.org/10.1109/WCSP.2013.6677273
Rubio, Ó. J., Trigo, J. D., Alesanco, Á., Serrano, L., & García, J. (2016). Analysis of ISO/IEEE 11073 built-in security and its potential IHE-based extensibility. Journal of Biomedical Informatics, 60, 270–285. https://doi.org/10.1016/j.jbi.2016.02.006
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.
Saaty, T. L. (1980). The Analytic Hierarchy Process, New York: McGrew Hill. International, Translated to Russian, Portuguesses and Chinese, Revised Edition, Paperback (1996, 2000), Pittsburgh: RWS Publications.
Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two. Mathematical and Computer Modelling, 38(3–4), 233–244.
Sakanushi, K., Hieda, T., Shiraishi, T., Ode, Y., Takeuchi, Y., Imai, M., … Tanaka, H. (2013). Electronic triage system for continuously monitoring casualties at disaster scenes. Journal of Ambient Intelligence and Humanized Computing, 4(5), 547–558. https://doi.org/10.1007/s12652-012-0130-2
Sakr, S., & Elgammal, A. (2016). Towards a Comprehensive Data Analytics Framework for Smart Healthcare Services. Big Data Research, 4(May), 44–58. https://doi.org/10.1016/j.bdr.2016.05.002
Saksrisathaporn, K., Bouras, A., Reeveerakul, N., & Charles, A. (2016). Application of a decision model by using an integration of AHP and TOPSIS approaches within humanitarian operation life cycle. International Journal of Information Technology & Decision Making, 15(04), 887–918.
Sakuragui, R. R. M., Rebelo, M. S., Gutierrez, M. A., Näslund, M., & Håkansson, P. (2013). Mobile health in emerging countries : A survey of research initiatives in Brazil. International Journal of Medical Informatics, 82(5), 283–298. https://doi.org/10.1016/j.ijmedinf.2013.01.003
Saleem, K., Derhab, A., Al-Muhtadi, J., & Shahzad, B. (2015). Human-oriented design of secure Machine-to-Machine communication system for e-Healthcare society. Computers in Human Behavior, 51, 977–985. https://doi.org/10.1016/j.chb.2014.10.010
Salman, O. H., Rasid, M. F. A., Saripan, M. I., & Subramaniam, S. K. (2014). Multisources data fusion framework for remote triage prioritization in telehealth. Journal of Medical Systems, 38(9), 103. https://doi.org/10.1007/s10916-014-0103-4
Salman, O. H., Rasid, M. F. A., Saripan, M. I., & Subramaniam, S. K. (2014). Multi- Sources Data Fusion Framework for Remote Triage Prioritization in Telehealth. Journal of Medical Systems, 38(9), 103. https://doi.org/10.1007/s10916-014-0103-4
Salman, O. H., Zaidan, A. A., Zaidan, B. B., Naserkalid, & Hashim, M. (2017). Novel Methodology for Triage and Prioritizing Using ?Big Data? Patients with Chronic Heart Diseases Through Telemedicine Environmental. International Journal of Information Technology & Decision Making, 16(05), 1211–1245. https://doi.org/10.1142/S0219622017500225
Sanders, T. H., Devergnas, A., Wichmann, T., & Clements, M. A. (2013). Remote smartphone monitoring for management of Parkinson‘s Disease. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments (p. 42). ACM.
Santos, J. R. B. Dos, Blard, G., Oliveira, A. S. R., & Carvalho, N. B. De. (2015). Wireless Sensor Tag and Network for Improved Clinical Triage. In 2015 Euromicro Conference on Digital System Design (pp. 399–406). IEEE. https://doi.org/10.1109/DSD.2015.66
Sarkar, P., & Sinha, D. (2014). An approach to continuous pervasive care of remote patients based on priority based assignment of nurse. In IFIP International Conference on Computer Information Systems and Industrial Management (pp. 327–338). Springer.
Sebillo, M., Tortora, G., Tucci, M., Vitiello, G., Ginige, A., & Di Giovanni, P. (2015). Combining personal diaries with territorial intelligence to empower diabetic patients. Journal of Visual Languages & Computing, 29, 1–14. https://doi.org/10.1016/j.jvlc.2015.03.002
Seising, R., & Tabacchi, M. (2013). Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care. (R. Seising & M. E. Tabacchi, Eds.) (Vol. 302). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3- 642-36527-0
Sene, A., Kamsu-foguem, B., & Rumeau, P. (2015). Telemedicine framework using casebased. Computer Methods and Programs in Biomedicine, 121(1), 21–35. https://doi.org/10.1016/j.cmpb.2015.04.012
Services, C. for M. and M. (2015). The Affordable Care Act: helping providers help patients: a menu of options for improving care.
Sevin, A., Bayilmis, C., & Kirbas, I. (2016). Design and implementation of a new quality of service-aware cross-layer medium access protocol for wireless body area networks. Computers & Electrical Engineering, 56, 145–156. https://doi.org/10.1016/j.compeleceng.2016.02.003
Shah, M. A., Kim, J., Khadra, M. H., & Feng, D. (2014). Home Area Network for Optimizing Telehealth Services- Empirical Simulation Analysis. 36th Annual International Conference of the IEEE Engineering in Medicince and Biology Society, 1370–1373. https://doi.org/10.1109/EMBC.2014.6943854
Sherekar, V., Tatikonda, M., & Student, M. (2016). Impact of Factor Affecting on Labour Productivity in Construction Projects by AHP Method. International Journal of Engineering Science and Computing, 6.
Singh, S., Dolan, J. G., & Centor, R. M. (2006). Optimal management of adults with pharyngitis–a multi-criteria decision analysis. BMC Medical Informatics and Decision Making, 6(1), 14.
Smith, J., Cook, A., & Packer, C. (2010). Evaluation criteria to assess the value of identification sources for horizon scanning. International Journal of Technology Assessment in Health Care, 26(3), 348–353.
Sneha, S., & Varshney, U. (2013). A framework for enabling patient monitoring via mobile ad hoc network. Decision Support Systems, 55(1), 218–234. https://doi.org/10.1016/j.dss.2013.01.024
Sockolow, P. S., Bowles, K. H., Adelsberger, M. C., Chittams, J. L., & Liao, C. (2014). Impact of homecare electronic health record on timeliness of clinical documentation, reimbursement, and patient outcomes. Applied Clinical Informatics, 5(2), 445.
Sparks, R., Celler, B., Okugami, C., Jayasena, R., & Varnfield, M. (2016). Telehealth Monitoring of Patients in the Community. Journal of Intelligent Systems, 25(1), 37– 53. https://doi.org/10.1515/jisys-2014-0123
Sudha, G. F., Karthik, S., & Kumar, N. S. (2014). Activity aware energy efficient prior ity based multi patient monitoring adaptive system for body sensor networks. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 22(2), 167–77. https://doi.org/10.3233/THC-140782
Sun, J., Guo, Y., Wang, X., & Zeng, Q. (2016). mHealth For Aging China: Opportunities and Challenges. Aging and Disease, 7(1), 53. https://doi.org/10.14336/AD.2015.1011
Sung, W., & Chang, K. (2014). Health parameter monitoring via a novel wireless system. Applied Soft Computing, 22, 667–680. https://doi.org/10.1016/j.asoc.2014.04.036
Tamura, T., Maeno, S., Hattori, T., Kimura, Y., Kimura, Y., Yoshida, M., & Minato, K. (2014). Assessment of participant compliance with a Web-based home healthcare system for promoting specific health checkups. Biocybernetics and Biomedical Engineering, 34(1), 63–69. https://doi.org/10.1016/j.bbe.2013.12.001
Tawfik, H., & Anya, O. (2015). Evaluating practice-centered awareness in crossboundary telehealth decision support systems. Telematics and Informatics, 32(3), 486–503. https://doi.org/10.1016/j.tele.2014.11.002
Tegegne, T., & (Theo) van der Weide, T. P. (2014). Enriching queries with user preferences in healthcare. Information Processing & Management, 50(4), 599–620. https://doi.org/10.1016/j.ipm.2014.03.004
Teijeiro, T., Félix, P., Presedo, J., & Zamarrón, C. (2013). An open platform for the protocolization of home medical supervision. Expert Systems with Applications, 40(7), 2607–2614. https://doi.org/10.1016/j.eswa.2012.11.001
Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., … Watkins, J. (2016). Multiple criteria decision analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value in Health, 19(1), 1–13.
Topol, E. J. (2015). The patient will see you now: the future of medicine is in your hands. Tantor Media. https://doi.org/http://dx.doi.org/10.4258/hir.2015.21.4.321
Touati, F., & Tabish, R. (2013). U-healthcare system: State-of-the-art review and challenges. Journal of Medical Systems, 37(3), 9949. https://doi.org/10.1007/s10916-013-9949-0
Triantaphyllou, E. (2000). Multi-criteria Decision Making Methods: A Comparative Study. Multi-criteria decision making methods: A comparative study (Vol. 44). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4757-3157-6
Triantaphyllou, E., Shu, B., Sanchez, S. N., & Ray, T. (1998). Multi-criteria decision making: an operations research approach. Encyclopedia of Electrical and Electronics Engineering, 15(1998), 175–186.
Ullah, F., Khelil, A., Sheikh, A. A., Felemban, E., & Bojan, H. M. A. (2013). Towards automated self-tagging in emergency health cases. In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013) (pp. 658–663). IEEE. https://doi.org/10.1109/HealthCom.2013.6720758
Urovi, V., Jimenez-del-Toro, O., Dubosson, F., Ruiz Torres, A., & Schumacher, M. I. (2017). COMPOSE: Using temporal patterns for interpreting wearable sensor data with computer interpretable guidelines. Computers in Biology and Medicine, 81, 24– 31. https://doi.org/10.1016/j.compbiomed.2016.11.015
Vaidehi, V., Vardhini, M., Yogeshwaran, H., Inbasagar, G., Bhargavi, R., & Hemalatha, C. S. (2013). Agent Based Health Monitoring of Elderly People in Indoor Environments Using Wireless Sensor Networks. Procedia Computer Science, 19(Ant), 64–71. https://doi.org/10.1016/j.procs.2013.06.014
van Dyk, L. (2014). A review of telehealth service implementation frameworks. International Journal of Environmental Research and Public Health, 11(2), 1279– 1298. https://doi.org/10.3390/ijerph110201279
van Til, J. A., Renzenbrink, G. J., Dolan, J. G., & IJzerman, M. J. (2008). The use of the analytic hierarchy process to aid decision making in acquired equinovarus deformity. Archives of Physical Medicine and Rehabilitation, 89(3), 457–462.
Varshney, U. (2014). A model for improving quality of decisions in mobile health. Decision Support Systems, 62, 66–77. https://doi.org/10.1016/j.dss.2014.03.005
Villalonga, C., Pomares, H., Rojas, I., & Banos, O. (2017). MIMU-Wear: Ontologybased sensor selection for real-world wearable activity recognition. Neurocomputing, 250(2017), 76–100. https://doi.org/10.1016/j.neucom.2016.09.125
Villarreal, V., Fontecha, J., Hervas, R., & Bravo, J. (2014). Mobile and ubiquitous architecture for the medical control of chronic diseases through the use of intelligent devices: Using the architecture for patients with diabetes. Future Generation Computer Systems, 34, 161–175. https://doi.org/10.1016/j.future.2013.12.013
Wallis, L. A., & Carley, S. (2006). Comparison of paediatric major incident primary triage tools. Emergency Medicine Journal, 23(6), 475–478.
Wang, J., Qiu, M., & Guo, B. (2017). Enabling real-time information service on telehealth system over cloud-based big data platform. Journal of Systems Architecture, 72, 69–79. https://doi.org/10.1016/j.sysarc.2016.05.003
Wang, L., & Alexander, C. A. (2015). Big Data in Medical Applications and Health Care. American Medical Journal, 6(1), 1–8. https://doi.org/10.3844/amjsp.2015.1.8
Westergren, H., Ferm, M., & Häggström, P. (2014). First evaluation of the paediatric version of the Swedish rapid emergency triage and treatment system shows good reliability. Acta Paediatrica, 103(3), 305–308.
Widgren, B. R., & Jourak, M. (2011). Medical Emergency Triage and Treatment System (METTS): A New Protocol in Primary Triage and Secondary Priority Decision in Emergency Medicine. The Journal of Emergency Medicine, 40(6), 623–628. https://doi.org/10.1016/j.jemermed.2008.04.003
Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641–658.
Winkler, S., Schieber, M., Lücke, S., Heinze, P., Schweizer, T., Wegertseder, D., … Braecklein, M. (2011). A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—feasibility study. International Journal of Cardiology, 153(1), 55–58.
Wiseman, D. B., Ellenbogen, R., & Shaffrey, C. I. (2002). Triage for the neurosurgeon. Neurosurgical Focus, 12(3), E5. https://doi.org/120305 [pii]
Wizig, L. H. (2004, May 11). Method and system for providing a user-selected healthcare services package and healthcare services panel customized based on a user‘s selections. Google Patents.
Wolfe, P. J. (2013). Making sense of big data. Proceedings of the National Academy of Sciences, 110(45), 18031–18032. https://doi.org/10.1073/pnas.1317797110
Wyte-Lake, T., Claver, M., & Dobalian, A. (2016). Assessing Patients‘ Disaster Preparedness in Home-Based Primary Care. Gerontology, 62(3), 263–274.
Xiong, W., Bair, A., Sandrock, C., Wang, S., Siddiqui, J., & Hupert, N. (2012). Implementing telemedicine in medical emergency response: concept of operation for a regional telemedicine hub. Journal of Medical Systems, 36(3), 1651–1660.
Yas, Q. M., Zadain, A. A., Zaidan, B. B., Lakulu, M. B., & Rahmatullah, B. (2017). Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. International Journal of Pattern Recognition and Artificial Intelligence, 31(03), 1759002.
Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., & Abdul Karim, H. (2018). Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement, 114, 243–260. https://doi.org/10.1016/j.measurement.2017.09.027
Yeguas, V., & Casado, R. (2014). Big data issues in computational chemistry. In Proceedings - 2014 International Conference on Future Internet of Things and Cloud, FiCloud 2014 (pp. 389–392). https://doi.org/10.1109/FiCloud.2014.69
Yi, C., Alfa, A. S., & Cai, J. (2016). An Incentive-Compatible Mechanism for Transmission Scheduling of Delay-Sensitive Medical Packets in E-Health Networks. IEEE Transactions on Mobile Computing, 15(10), 2424–2436. https://doi.org/10.1109/TMC.2015.2500241
Yi, C., Zhao, Z., Cai, J., Lobato de Faria, R., & (Michael) Zhang, G. (2016). Priority aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Computer Networks, 98, 29–43. https://doi.org/10.1016/j.comnet.2016.01.010
Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: an introduction (Vol. 104). Sage publications.
Yuan, X., Li, C., Song, Y., Yang, L., & Ullah, S. (2015). On energy-saving in ehealthcare: A directional MAC protocol for WBAN. In 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings. https://doi.org/10.1109/GLOCOMW.2015.7414214
Zachariasse, J. M., Seiger, N., Rood, P. P. M., Alves, C. F., Freitas, P., Smit, F. J., … Moll, H. A. (2017). Validity of the Manchester triage system in emergency care: A prospective observational study. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0170811
Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390–404. https://doi.org/10.1016/j.jbi.2014.11.012
Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 8(4), 223–238. https://doi.org/10.1007/s12553-018-0223-9
Zaidan, A. A., Zaidan, B. B., Kadhem, Z., Larbani, M., Lakulu, M. B., & Hashim, M. (2015). Challenges, Alternatives, and Paths to Sustainability: Better Public Health Promotion Using Social Networking Pages as Key Tools. Journal of Medical Systems, 39(2), 7. https://doi.org/10.1007/s10916-015-0201-y
Zaidan, A. A., Zaidan, B. B., Qahtan, M. Y., Albahri, O. S., Albahri, A. S., Alaa, M., … Lim, C. K. (2018). A survey on communication components for IoT-based technologies in smart homes. Telecommunication Systems, 69(1), 1–25. https://doi.org/10.1007/s11235-018-0430-8
Zaidan, B. B., & Zaidan, A. A. (2017). Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. Journal of Circuits, Systems and Computers, 26(07), 1750116.
Zaidan, B. B., & Zaidan, A. A. (2018). Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement, 117, 277–294.
Zaidan, B. B., Zaidan, A. A., Abdul Karim, H., & Ahmad, N. N. (2017). A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. International Journal of Information Technology & Decision Making, 1–42.
Zanjal, S. V., & Talmale, G. R. (2016). Medicine Reminder and Monitoring System for Secure Health Using IOT. Procedia Computer Science, 78(3), 471–476. https://doi.org/10.1016/j.procs.2016.02.090
Zarabzadeh, A., O‘Donoghue, J., O‘Connor, Y., O‘Kane, T., Woodworth, S., Gallagher, J., & O‘Connor, S. (2013). Variation in health care providers‘ perceptions: decision making based on patient vital signs. Journal of Decision Systems, 22(3), 168–189. https://doi.org/10.1080/12460125.2013.817063
Zhang, J., Goode, K. M., Cuddihy, P. E., & Cleland, J. G. F. (2009). Predicting hospitalization due to worsening heart failure using daily weight measurement: analysis of the Trans?European Network?Home?Care Management System (TENHMS) study. European Journal of Heart Failure, 11(4), 420–427.
Zhang, K., Liang, X., Baura, M., Lu, R., & Shen, X. (Sherman). (2014). PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Information Sciences, 284, 130–141. https://doi.org/10.1016/j.ins.2014.06.011
Zhang Yi, Wang Zhu-juan, Li Jin, Wang Jun, Xiao Shi, Xia Ge, & Fang Hao. (2015). Emergency treatment in smart terminal-based e-healthcare networks. In 2015 4th International Conference on Computer Science and Network Technology (ICCSNT) (pp. 1178–1181). IEEE. https://doi.org/10.1109/ICCSNT.2015.7490943
Zhao, Y., & Kerkhoff, H. G. (2014). Design of an Embedded Health Monitoring Infrastructure for Accessing Multi-processor SoC Degradation. In 2014 17th Euromicro Conference on Digital System Design (pp. 154–160). IEEE. https://doi.org/10.1109/DSD.2014.80
Zhu, G., Hu, J., Qi, J., Gu, C., & Peng, Y. (2015). An integrated AHP and VIKOR for design concept evaluation based on rough number. Advanced Engineering Informatics, 29(3), 408–418. https://doi.org/10.1016/j.aei.2015.01.010
Zionts, S. (1979). MCDM—If not a Roman numeral, then what? Interfaces, 9(4), 94– 101.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |