UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Integration of azo group into a polymer structure is one of the favourable options to enhance the conductivity and stability of a polymer. In this study, the azobenzene-linked nanowires were fabricated on three different solid electrodes by engaging electrooxidation to induce oxidative coupling. The formation of azobenzene-link in polymer structures was investigated and discussed. The X-ray photoelectron spectroscopy results revealed that the azobenzene-links were present in the polymeric structures. Besides that, the cyclic voltammograms proved the presence of azobenzene-linked and the nanowires shown to be stable upon repetitive scans. This study discovered that the nanowires formed a covalent bond on the surface of solid electrodes. Despite the differences in term of chemical composition between the electrodes, successful polymerisation had shown the potential of these electrodes to widely engage in areas such as energy storage and photonic devices. The photofunctionality and plausible mechanism for the photoelectric conversion of the electropolymerised porphyrin film were disclosed in this article. |
References |
[1] M. -P. Zhou, J. -J. Wu, X. -D. Wang, Y. -C. Tao, Y. Yuan & L. -S. Liao, Nat. Commun. 10, 1 (2019) 3839. [2] D. Song, S. Wang, R. Liu, J. Jiang, Y. Jiang, S. Huang, W. Li, Z. Chen & B. Zhao, Appl Surf Sci. 478 (2019) 290-298. [3] R. M. Bullock, A. K. Das, A. M. Appel, Chem-Eur J. 23, 32 (2017) 7626-7641. [4] U. Akiba, D. Minaki & J. Anzai, Polymers 9, 11 (2017) 553. [5] R. Das, K. K. Paul & P. K. Giri, Appl Surf Sci. 490 (2019) 318-330. [6] X. Yu, T. J. Marks & A. Facchetti , Nat. Materials 15, (2016)383-396. [7] F. Sabuzi, M. Tiravia, A. Vecchi, E. Gatto, M. Venanzi, B. Floris, V. Conte & P. Galloni, Dalton Trans 45 (2016)14745-14753. [8] W. Liu, Q. Shi, G. Zheng, J. Zhou & M. Chen, Anal. Chim. Acta 1075 (2019) 81-90. [9] R. Fu, Y. Lu, Y. Ding, L. Li, Z. Ren, X. Si & Q. Wu, Microchem J. 150 (2019) 104106. [10] Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye & J. Ye, Mater Chem Phys. 238 (2019) 121877. [11] I. Inamdar, H. S. Chavan, H. Kim & H. Im, Sol Energ Mat Sol C 201 (2019) 110121. [12] E. Kibena, U. Mäeorg, L. Matisen, P. Sulamägi & K. Tammeveski, J. Electroanal. Chem. 686 (2012) 46-53. [13] S. Mustafar, K. -H. Wu, R. Toyoda, K. Takada, H. Maeda, M. Miyachi, R. Sakamoto & H. Nishihara, Inorg Chem Front. 3, 3 (2016) 370-375. [14] S. Hebié, A. K. D. Dimé, C. H. Devillers & D. Lucas, Chem. - A Eur. J. 21 (2015) 8281-8289. [15] J. Yao, J. You, Y. Lei & L. Dong, J. Polym. Res. 16 (2009) 455-460. [16] K. -Y. Chiu, Y. -C. Chung & O. Y. Su. J. Chin Chem Soc- 53 (2006) 1413-1418. [17] S. Peng, Q. Guo, P. G. Hartley & T. C. Hughes. J. Mater. Chem. C. 2 (2014) 8303-8312. [18] G. S. Kumar & D. C. Neckers. Chem. Rev. 89 (1989) 1915-1925 [19] X. Zhou, H. Ren, H. Chen & M. Wang. J. Appl. Polym. Sci. 73 (1999) 1913-1920. [20] Samia, E. Feddi, C. A. Duque, M. E. Mora-Ramos, V. Akimov & J. D. Correa, Comput. Mater. 171 (2020) 109278. [21] K. M. Kadish & R. K. Rhodes, Inorg. Chem. 20 (1981) 2961-2966. [22] L. Rodney & R. F. N. Hand, J. Am. Chem. Soc. 96, 3 (1974) 850-860. [23] K. M. Kadish & R. K. Rhodes, Inorg. Chem. 20 (1981) 2961-2966. [24] A. Bettelheim, B. A. White, S. A. Raybuck & R. Murray, Inorg. Chem. 26, 7 (1987) 1009- 1017. [25] S. Chen, L. Bao, E. Ou, C. Peng, W. Wang & W. Xu, Nanoscale 7 (2015) 19673-19686. [26] C. M. Parnell, B. P. Chhetri, T. B. Mitchell, F. Watanabe, G. Kannarpady. A. B. RanguMagar, H. Zhou, K. M. Alghazali, A. S. Biris & A. Ghosh, Sci. Reports 9 (2019) 5650. [27] A. Kretschmann, M. -M. Walz, K Flechtner, H. -P. Steinruck, & J. M. Gottfried, Chem. Commun. 128 (2007) 568-570. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |