UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Ag-doped flowerlike rutile-phase (Ag-FR) TiO2 film with exposed (1 1 0) and (1 1 1) facet was fabricated by a facile hydrothermal method at 150 °C without additive or capping agent with different Ag content ranging from 0.5 to 2 wt%. This study investigated the influence of Ag content in enhancing the photocatalytic activity of AgFR TiO2 film. The flowerlike structures increased the active area of the TiO2 film. XPS revealed that the concentration of Ti3+-oxygen vacancy defects increased upon doping, while TEM revealed that the (1 1 0) and (1 1 1) are highly exposed facets of rods with flowerlike structure. The effectiveness of the Ag-FR TiO2 film was tested on methylene blue degradation under xenon lamp irradiation. The Ag-FR TiO2 film with 1 wt% Ag resulted in the highest methylene blue degradation, which was 20% higher than degradation by the undoped TiO2. The synergistic effect between both (1 1 0) and (1 1 1) facets and Ti3+-oxygen vacancy from Ag play an important role in reducing the band gap and acts as an electron trap. This suppresses recombination between electrons and holes to enhance the photocatalytic activity thus extending the lifetime of the photogenerated electron and hole. |
References |
[1] A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil mill effluent (POME) using membrane technology, Desalination 157 (1–3) (2003) 87–95. [2] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalyst 3 (2013) 189. [3] M. Haji, K. Sanaullah, S. Lim, S.A. Bhawani, T. Jamil, Photocatalytic treatment technology for palm oil mill effluent (POME) – a review, Process Saf. Environ. Prot. 102 (2016) 673. [4] J.L.H. Chau, Y.M. Lin, A.K. Li, et al., Transparent high refractive index nanocomposite thin films, Mater. Lett. 61 (2007) 2908. [5] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates, Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B 2 (110) (2004) 6004. [6] N.K.A. Hamed, Study on photocatalytic performance of rutile phased TiO2 microsize rods/flowers film towards methyl orange degradation, 2017. [7] X.F. Lei, X.X. Xue, H. Yang, Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light, Appl. Surf. Sci. 321 (2014) 396. [8] J. Yu, W. Wang, B. Cheng, et al., Enhancement of photocatalytic activity of mesoporous TiO powders by hydrothermal surface fluorination treatment enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (6) (2009) 6743. [9] K. Azad, P. Ganjanan, Photodegradation of methyl orange in aqueous solution by the visible light active Co:La: TiO2 nanocomposite, Chem Sci J. 8 (03) (2017) 164. [10] L.G. Devi, R. Kavitha, A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Appl. Surf. Sci. 360 (2016) 601–622. [11] Z. Zhao, X. Zhang, G. Zhang, et al., Effect of defects on photocatalytic activity of rutile TiO2 nanorods, Nano Res. 8 (12) (2015) 4061–4071. [12] A. Alvaro, S. Ramirez, A.P. Prospero, M.C. Elay, Enhanced photocatalytic activity of TiO2 film by modification with polyethylene glycol, Quim Nov. 35 (10) (2012) 1931–1935. [13] J. Yan, G. Wu, L. Li, Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile, Phys. Chem. 15 (5) (2013) 10978. [14] H.S. Jung, H. Kim, Origin of low photocatalytic activity of rutile TiO2, Electron. Mater. Lett. 5 (2) (2009) 73–76. [15] X. Zhang, H. Cui, M. Humayun, et al., Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride, Sci. Rep. 6 (2016) 1–8. [16] M.M. Yusoff, M.H. Mamat, A.S. Ismail, et al., Low-temperature-dependent growth of titanium dioxide nanorod arrays in an improved aqueous chemical growth method for photoelectrochemical ultraviolet sensing, J. Mater. Sci.: Mater. Electron. 30 (2) (2019) 1017–1033. [17] T. Huyen, T. Chi, N. Dung, H. Kosslick, N. Liem, Enhanced photocatalytic activity of {110}-faceted TiO2 rutile nanorods in the photodegradation of hazardous pharmaceuticals, Nanomaterials 8 (5) (2018) 276. [18] N. Masahashi, Y. Mizukoshi, S. Semboshi, N. Ohtsu, Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Appl. Catal. B Environ. 90 (1–2) (2009) 255–261. [19] Z. Pei, S. Weng, P. Liu, Enhanced photocatalytic activity by bulk trapping and spatial separation of charge carriers: a case study of defect and facet mediated TiO2, Appl. Catal. B Environ. 180 (2016) 463–470. [20] Y. Liu, S. Wang, P. Zheng, M. Ding, G. Yang, One-step synthesis of Ag-decorated Ti3+-doped TiO2 nanosheets with improved photocatalytic properties via deflagration method, Mater. Lett. 216 (2020) 127016. [21] M. Khairy, W. Zakaria, Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward the removal of organic dyes, Egypt J. Pet. 23 (4) (2014) 419. [22] M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen-doped TiO2 thin films, PCCP 6 (4) (2004) 865. [23] M. Li, H. Liu, T. Liu, Y. Qin, Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3+ self doped TiO2 nanocrystals with individual exposed (001) and (101) facets, Mater. Charact. 124 (2016) 136. [24] S.A. Abdullah, M.Z. Sahdan, N. Nayan, Z. Embong, Neutron beam interaction with rutile TiO2 single crystal Raman and XPS study on Ti3+ – oxygen vacancy formation, Mater. Lett. 111 (2019) 127143. [25] X. Zhou, V. Haublein, N. Liu, et al., TiO2 nanotubes: nitrogen-ion implantation at low dose provides noble-metal-free photocatalytic H2-evolution activity, Angew Chemie-Int. Ed. 55 (11) (2016) 3763. [26] S. Pan, X. Liu, M. Guo, et al., Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications, J. Mater. Chem. A 3 (21) (2015) 11437. [27] S.K. Md Saad, A. Ali Umar, M.I. Ali Umar, et al., Two-dimensional, hierarchical Agdoped TiO2 nanocatalysts: effect of the metal oxidation state on the photocatalytic, ACS Omega 3 (3) (2018) 2579–2587. [28] W. Kallel, S. Chaabene, S. Bouattour, Novel (Ag, Y) doped TiO2 plasmonic photocatalyst with enhanced photocatalytic activity under visible light, Physicochem. Probl. Miner Process. 55 (3) (2019) 745–759. [29] X. Wang, X. Hou, W. Luan, D. Li, K. Yao, The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol-gel method silver, Appl. Surf. Sci. 258 (20) (2012) 8241. [30] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light, Mater. Chem. Phys. 212 (2018) 325. [31] C. Peng, W. Wang, W. Zhang, Y. Liang, L. Zhuo, Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination, Appl. Surf. Sci. 420 (2017) 286–295. [32] M.K. Kumar, K. Bhavani, G. Naresh, B. Srinivas, A. Venugopal, Plasmonic resonance nature of Ag-Cu/TiO2 photocatalyst under solar and artificial light: synthesis, characterization and evaluation of H2O splitting activity, Appl. Catal. B Environ. 199 (2016) 282–291. [33] Y.X. Dong, X.L. Wang, E.M. Jin, S.M. Jeong, B. Jin, S.H. Lee, One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for a dye-sensitized solar cell application, Renew. Energy 135 (2019) 1207. [34] G. Zhou, H. Meng, Y. Cao, et al., Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticles-decorated Ti3+ self-doped porous black TiO2 pillars, J. Ind. Eng. Chem. 64 (2018) 188–193. [35] S. Demirci, T. Dikici, M. Yurddaskal, S. Gultekin, Synthesis and characterization of Ag-doped TiO2 heterojunction films and their photocatalytic performances, Appl. Surf. Sci. 390 (2016) 591. [36] S. Perumal, K. Monikandaprabu, C.G. Sambandam, A.P. Mohamed, Synthesis and characterization studies of solvothermally synthesized undoped and Ag-doped TiO2 nanoparticles using toluene as a solvent, Int. J. Eng. Res. Appl. 4 (7) (2014) 184. [37] P. Chen, A novel synthesis of Ti3+ self-doped Ag2O/TiO2 (p-n) nanoheterojunctions for enhanced visible photocatalytic activity, Mater. Lett. 163 (2016) 130. [38] M.K. Ahmad, A. Fitrah, A. Aziz, C.F. Soon, N. Nafarizal, Rutile Phased Titanium Dioxide (TiO2) Nanorod/Nanoflower Based Waste Water Treatment Device, 2017. [39] M.M. Mohamed, M.S. Al-Sharif, Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates, Appl. Catal. B Environ. 142–143 (2013) 432. [40] F. Bensouici, T. Souier, A.A. Dakhel, A. Iratni, M. Bououdina, Synthesis, characterization and photocatalytic behaviour of Ag-doped TiO2 thin film, Superlatt. Microstruct. 85 (2015) 255. [41] M.M. Yusoff, M.M. Mamat, A.S. Ismail, et al., Enhancing the performance of selfpowered ultraviolet photosensor using rapid aqueous chemical-grown Aluminiumdoped titanium oxide nanorod arrays as an electron transport layer, Thin Solid Films 655 (2018) 1. [42] N.K.A. Hamed, Influence of hydrochloric acid volume on the growth of titanium [43] M.K. Ahmad, S.M. Mokhtar, C.F. Soon, et al., Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using a one-step hydrothermal method, J. Mater. Sci.: Mater. Electron. 27 (8) (2016) 7920. [44] J.V. Hernández, S. Coste, A.G. Murillo, F.C. Romo, A. Kassiba, Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behaviour of nanostructured TiO2, J. Alloys Compd. 710 (2017) 355. [45] L.M. Santos, W.A. Machado, M.D. Franca, et al., Structural characterization of Agdoped TiO2 with enhanced photocatalytic activity, RSC Adv. 5 (125) (2015) 103752. [46] Z. Lai, F. Peng, et al., A new insight into regulating high energy facets of rutile TiO2, J. Mater. Chem. A 111 (2013) 1–4. [47] T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, Growth of micro flower rutile TiO2 films by chemical bath deposition technique: study on the properties of structural, surface morphological, vibrational, optical and compositional, Surf. Interfaces 4 (2016) 59. [48] V. Jordan, U. Javornik, J. Plavec, A. Podgornik, A. Recnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment, Sci. Rep. 6 (4) (2016) 1–13. [49] A.A. Jalil, M. Mohamed, S. Triwahyono, N.S. Hassan, New insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst, J Clean Prod. 168 (10) (2017) 1150–1162. [50] R.V. Nair, M. Jijith, V.S. Gummaluri, C. Vijayan, A novel and efficient surfactantfree synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity, Opt. Mater. (Amst.) 55 (2016) 38. [51] N. Kamalia, Influence of hydrochloric acid volume on the growth of titanium dioxide (TiO2) nanostructures by hydrothermal method, Sains Malaysiana 45 (11) (2016) 1669–1673. [52] M. Ye, H.Y. Liu, C. Lin, Z. Lin, Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates, Small 9 (2) (2013) 312. [53] J. Su, J. Chen, Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides, RSC Adv. 4 (2014) 13979–13988. [54] P.M. Oliver, G.W. Watson, E.T. Kelsey, S.C. Parker, Atomistic simulation of the [55] R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol. 61 (1) (2012) 1. [56] A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values, Meas. J. Int. Meas. Confed. 56 (2014) 155. [57] S. Mathew, A.K. Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method, J. Fluoresc. 22 (6) (1563.) 2012. [58] X. Pan, M. Yang, N. Zhang, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, Nanoscale 5 (2013) 3601. [59] L. Xiong, J. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application, J. Nanomater. 2012 (2011) 1. [60] L. Le, J. Xu, Z. Zhou, H. Wang, R. Xiong, J. Shi, Effect of oxygen vacancies and Ag deposition on the magnetic properties of Ag/N co-doped TiO2 single-crystal films, Mater. Res. Bull. 102 (2018) 337. [61] L.B. Xiong, J.L. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application, J Nanomater 2012 (2011) 1. [62] M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells, Sci. Rep. 11 (2017) 1. [63] Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z. Zhang, Hydrothermal preparation of AgTiO2 nanostructures with exposed 001}/{101 facets for enhancing visible light photocatalytic activity, Ceram. Int. 43 (3) (2017) 3118. [64] F. Bensouici, T. Souier, A.A. Dakhel, A. Iratni, R. Tala-ighil, M. Bououdina, Synthesis, characterization and photocatalytic behaviour of Ag-doped TiO2 thin film, Superlattices Microstruct. 85 (2015) 255. [65] H. Li, X. Shen, Y. Liu, L. Wang, J. Lei, J. Zhang, Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity, J. Alloys Compd. 646 (2015) 380. [66] J. Schneider, M. Matsuoka, M. Takeuchi, et al., Understanding TiO2 photocatalysis: mechanisms and materials, Am. Chem. Soc. 114 (2014) 9919. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |