UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Koh, Khong Liang
Additional Authors :Nor Aishah Ahad
Title :Normality for nonnormal distributions
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
It has been usually assumed that a sample data is normally distributed when the sample size is at  least 30. This is the general rule in using central limit theorem based on the sample size being  greater or equal to 30. Many literary works  also  assumed  normality  when  sample  size  is  at  least  30. This  study  aims  to  determine  the least  required sample  size   that  satisfy    normality   assumption  from  three   non-normal  distributions,   Poisson,   Gamma  and  Exponential distributions. Computer simulations are carried out to study the least required sample  size for the three distributions. Through the study, it is found that sample data from Poisson and  Gamma distributions need sample size less than 30, while Exponential needs more than 30 to achieve normality.

References

Ahad, N. A., Yaacob, C. R., Othman, A. R., Ng, S. L., & Teoh, S. H. (2011). Central Limit Theorem  in a Skewed Leptokurtic Distribution. Jurmal Sains dan Matematik, 26-33.

Anacleto, O. (2018, February). Introduction to probability distributions. South Bridge, Edinburgh,  The United Kingdom.

Bian,       H.       (2016).       Non-parametric       Tests.       Retrieved       January        2,       2020,       from http://core.ecu.edu/ofe/statisticsresearch/Non-Parametric%20Tests.pdf

Chang, H. J., Huang, K. C., & Wu, C. H. (2006). Determination of Sample Size in Using Central Limit  Theorem for Weibull Distribution. Information and Management Sciences, 17(3), 31-46.

Chang,  H.  J.,  Wu,  C.  H.,  Ho,  J.  F.,  &  Chen,  P.  Y.  (2008).  On  Sample  Size  in  Using Central  Limit Theorem for Gamma Distribution. Information and Management Sciences, 19(1), 153-174.

Das,  K.  R.,  &  Imon,  A.  H.  (2016).  A  Brief  Review  of  Tests  for  Normality.  American  Journal  of Theoretical and Applied Statistics, 5-12.

Epstein, B. (1958). The Exponential Distribution and Its Role in Life Testing. Michigan: Department  of Mathematics, Wayne State University.

Kwak,  S.  G.,  &  Kim,  J.  H.  (2017).  Central  Limit  Theorem:  the  cornerstone  of  modern  statistics. Statistical Round, 144-156.

Kiche, J., Ngesa, O.   & Orwa, G. (2019). On Generalized Gamma Distribution and Its Application to  Survival Data. International Journal of Statistics and Probability, 8(5), 85-102.

Laha, A. K. (2006). A Note on Tests of Normality. Ahmedabad: Indian Institute of Management.

Miller,  I.,  &  Miller,  M.  (2014).  John  E.  Freund's  Mathematical  Statistics  with  Applications.  Pearson Education Limited.

NCSS.com.  (n.d.).  Normality  Tests.  Retrieved  January  2,  2020,  from  https://ncss-wpengine.netdna- ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Normality_Tests.pdf

Smith, Z. R., & Wells, C. S. (2006). Central Limit Theorem and Sample Size. New York: University of  Massachusetts Amherst.

Stine,  R.  A.  (2016).  Explaining  Normal  Quantile-Quantile  Plots  through.  The  American  Statistician, 145-147.

Tse, K.-K. (2014). Some Applications of the Poisson Process. Applied Mathematics, 3011-3017.

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of  Statistical Computation and Simulation, 2141-2155.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.