UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :LB Theory and practice of education
Main Author :Nor Shaida Mohd Saufi
Title :The development and implementation of computer-based measurement system for energy band gap of semiconductor diode
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This study is conducted to develop computer-based measurement system to obtain energy band gap of semiconductor diode. The forward voltage technique is a common technique used to determine energy band gap of diode driven by constant current source. The system is developed to adapt and implement an equation of energy band gap deduced from previous research using computer-based measurement in order to produce more accurate and reliable result of energy band gap. The system is consisted of personal computer, interface board, sensors and circuit. The graphical user interface (GUI) of the system is developed using LabVIEW from National Instruments. The developed system is tested on silicon and germanium diode and four types light-emitting diode (LED) which are red, orange, blue and green. Their temperature-forward voltage characteristics (T versus VF) under 12mA constant current source are measured to calculate energy band gap and wavelength of emitted photon. Measurement was carried from 5ºC to 95ºC with temperature intervals of 5ºC. Result shows that the system successfully measured energy band gap of all tested diode. The band gaps of silicon diode 1N4007 and germanium diode 1N34 were determined to be 1.99 ± 0.05 eV and 0.88 ± 0.03 eV respectively. The band gaps of orange, red, blue and green LEDs were obtained to be 1.82 ± 0.03 eV, 1.98 ± 0.02 eV, 3.90 ± 0.03 eV and 2.58 ± 0.05 eV. This study implies that this computer-based measurement system has improved and simplifies the experiment set-up and process to obtain the energy band gap as reported in previous studies.

References

Carolina  Sparavigna,  A.  (2014).  Light-Emitting  Diodes  in  the  Solid-State  Lighting

Systems. International       Journal       Of       Sciences, 0(11),       9-17.       doi:

10.18483/ijsci.593

 

Davis, N. (2017). What you need to  know before  your next LED design. Retrieved January   7,   

2019,   from   https://www.powerelectronicsnews.com/problems- 

solutions/what-you-need-to-know-before-your-next-led-design

 

Dharma,  J.,  Pisal,  A.,  &  Shelton,  C.  T.  (2009).  Simple  method  of  measuring  the energy  

band  gap  value  of  TiO2  in  the  powder  form  using  a  UV/Vis/NIR spectrometer. Application 

Note.

 

Garg,  A.  &  Dhingra,  V.  (2010).  Automating  Energy  Bandgap  Measurements  in Semiconductors   

Using      LabVIEW. European      Journal      of      Physics Education, 1(1), 2-14.

 

Haruyama,  T.,  &  McDonald,  P.  C.  (1992).  Evaluation  of  simple  constant  current sources    

for    silicon    diode    thermometers. Measurement    Science    and Technology, 3(8), 713.

 

Jiles, D. (2012). Introduction to the electronic properties of materials.  Niederlande: Springer 

Science Business Media B.V.

 

Kanchi, R. R., & Uttarkar, N. K. (2018). Design and development of a semiconductor bandgap  

measurement  system  using  Microcontroller:  MSP430G2553  and ZigBee: CC2500. Materials Today: 

Proceedings, 5(1), 351-359.

 

Khan,   A.   (2005).   Introduction   to   electrical,   electronics   and   communication 

engineering. Firewall Media

 

Kumar, B., & Jain, S. B. (2014). Electronic devices and circuits. Delhi: PHI Learning

Private Limited.

 

LED    PANEL    LIGHT    LEDS    and    Determining    Planck    is    Constant    from

http://www.lumin-lighting.com/news/LED-PANEL-LIGHT-LEDS-and- Determining-Planck-is-Constant.htm

 

Low, J. J., Kreider, M. L., Pulsifer, D. P., Jones, A. S., & Gilani, T. H. (2008). Energy

band gap in silicon. Am. J. Undergrad. Res., 7(1), 27-32.

 

Mukaro, R., Taele, B. M., & Tinarwo, D. (2006). In situ measurement of the energy

gap  of  a  semiconductor  using  a  microcontroller-based  system. European journal of physics, 

27(3), 531.

 

Naidu, S. M. (2010). A text book of applied physics. Chennai: Pearson.

 

National  Instruments.  (2009).  Overview  of  Curve  Fitting  Models  and  Methods  in LabVIEW     

[White     Papers].     Retrieved     August     12,     2018,     from 

http://www.ni.com/white-paper/6954/en/

 

National Instruments. (2017). LabVIEW for Measurement and Data Analysis. [White Papers].    

Retrieved    August    13,    2018,    from    http://www.ni.com/white- paper/3566/en/.

 

 

Ocaya, R. O., & Luhanga, P. V. C. (2011). A fresh look at the semiconductor bandgap using constant 

current data. European Journal of Physics, 32(5), 1155.

 

Precker,  J.  W.  (2007).  Simple  experimental  verification  of  the  relation  between  the 

band-gap  energy  and  the  energy  of  photons  emitted  by  LEDs. European journal of physics, 

28(3), 493.

 

Phidgets. (2016). CE-IZ02-32MS2-0.5 DC Current Sensor 0-1A. Retrieved January 6, 2019, from 

http://socialmediatoday.comhttps://www.phidgets.com/?tier=3&catid=16&pci d=14&prodid=387

 

Precker, J. W., & da Silva, M. A. (2002). Experimental estimation of the band gap in silicon   and  

 germanium   from   the   temperature–voltage   curve   of   diode thermometers. American Journal 

of Physics, 70(11), 1150-1153.

 

Triyana, K., Ramadhan, S., & Barata, A. M. I. (2014). Determination of Energy band gap   of   

Semiconductor   in   Homojunction   Structure   Devices   by   Using Customized Microcontroller 

Based Apparatus. Advanced Materials Research, (896).

 

Wagner,  E.  P.  (2016).  Investigating  Bandgap  Energies,  Materials,  and  Design  of 

Light-Emitting Diodes. Journal of Chemical Education, 93(7), 1289-1298.

 

Travis,   J.,   Kring,   Jim.(2006).   Introduction   to   Graphical   Programming   With LabVIEW.  

Retrieved             June             16,             2018,             from 

http://www.informit.com/articles/article.aspx?p=662895&seqNum=3

 

Schubert, E. F. (2018). Light-emitting diodes. E. Fred Schubert.

 

Schuetze, A. P., Lewis, W., Brown, C., & Gertz, W. J. (2004). A laboratory on the

four-point probe techniques. American Journal of Physics. 72(2), 149-153.

 

Salivahanan, S. (2011). Electronic devices and circuits. Tata McGraw-Hill Education.

 

Sailaja, D., & Reddy, K. C. MEASUREMENT OF ENERGY GAP BY THE FOUR PROBE METHOD.

 

Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices.

 

Vijaya, M. S., & Rangarajan, G. (2003). Materials science. Tata Mcgraw-Hill.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)