UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The purpose of this study was to determine simultaneously of bisphenol A and uric acid by
zinc/aluminium-layered double hydroxide 2(2,4-dichlorophenoxy)propionate paste electrode. The
morphology of the electrode materials was performed by using scanning electron microscopy
and transmission electron microscopy. The electrochemical performance of modified paste
electrode was studied by using cyclic voltammetry, square wave voltammetry, electrochemical
impedance spectroscopy and chronocoulometry. Special importance effecting sensitivity and
selectivity of the modified electrode must evaluated via optimization conditions which include
effect of modifier composition percentage (15%), types of supporting electrolyte (PBS), pH of
electrolyte (6.0) and square wave voltammetry parameters that encompassed of frequency
(180Hz), pulse size (80mV) and step increment (7mV). The square wave voltammetry studies at an
applied potential of -0.30 V to + 1.0V, showed fast response within 1 second and detected
at high sensitivity. The modified sensor had showed a linear range from 5.0 µM to 0.7 mM with
detection limit of 0.871 µM and 0.795 µM for bisphenol A and uric acid, respectively. The
modified sensors also exhibited good anti-interferences towards nitrate, chloride,
sulphate, captopril, phthaldialdehyde, aspartic acid, glycine and fructose. In conclusion,
the modified electrodes have been developed are able to detect bisphenol A and uric
acid. By implication, the electrodes have been developed can be used as a suitable alternative for
the determination of bisphenol A and uric acid because it has characteristics such
as high sensitivity, reproducibility, repeatability and stability. |
References |
A.Bulger, H., & E.Johns, H. (1941). The determination of Plasma Uric Acid. J.Biol.Chem, 140.
Abdelwahab, A. A., & Shim, Y. B. (2015). Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors and Actuators, B: Chemical, 221, 659–665.
Adams, R. N. (1958). Carbon Paste Electrodes. Analytical Chemistry, 30, 1576–1576.
Ahmad, M. S., Isa, I., Hashim, N., Si, S. M., & Saidin, M. I. (2018). A highly sensitive sensor of paracetamol based on zinc-layered hydroxide- L - phenylalanate-modified multiwalled carbon nanotube paste electrode.
Ahmad, M. S., Isa, I. M., Hashim, N., Rosmi, M. S., & Mustafar, S. (2018). Electrochemical detection of hydroquinone by square wave voltammetry using a Zn layered hydroxide-ferulate (ZLH-F) modified MWCNT paste electrode. International Journal of Electrochemical Science, 13, 373–383.
Alderman, M., & Aiyer, K. J. V. (2006). Uric acid: role in cardiovascular disease and effects of losartan. Current Medical Research and Opinion, 20, 369–379.
Ali, G. A. M., Aruni, S., Manaf, A., & Divyashree, A. (2016). Superior supercapacitive performance in porous nanocarbons. Journal of Energy Chemistry.
Allard, P. (2014). Bisphenol A. Biomarkers in Toxicology. Elsevier Inc.
Amiri-Aref, M., Raoof, J. B., & Ojani, R. (2016). Utilization of a bioactive anthocyanin for the fabrication of a novel carbon nanotube-based electrochemical sensor and its electrocatalytic properties for selective determination of l-dopa in the presence of uric acid. Ionics, 22, 125–134.
Anson, F. C., & Osteryoung, R. A. (1983). Chronocoulometry: A convenient, rapid and reliable technique for detection and determination of adsorbed reactants. Journal of Chemical Education, 60, 293.
Arvand, M., Ansari, R., & Heydari, L. (2011). Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Materials Science and Engineering C, 31, 1819–1825.
Arvand, M., & Hassannezhad, M. (2014). Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Materials Science and engineering C, 36, 160–167.
Arvand, M., & Hassannezhad, M. (2015). Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics, 21, 3245–3256.
Ashkenani, H., & Taher, M. A. (2012). Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. Journal of Electroanalytical Chemistry, 683, 80–87.
Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends in Environmental Analytical Chemistry. Elsevier.
Bansod, B. K., Kumar, T., Thakur, R., Rana, S., & Singh, I. (2017). A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics, 94, 443–455.
Bard, A. J., & Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, Inc (2nd ed.).
Barker, G. C., & I.L.Jenkins. (1952). Square-Wave Polarography.
Bates, F., & del Valle, M. (2015). Voltammetric sensor for theophylline using sol–gel immobilized molecularly imprinted polymer particles. Microchimica Acta, 182, 933–942.
Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., Shanesaz, M., & Maleh, H. K. (2015). A Novel Strategy for Simultaneous Determination of Dopamine and Uric Acid Using a Carbon Paste Electrode Modified with CdTe Quantum Dots. Electroanalysis, 27, 524–533.
Beitollahi, H., Karimi-Maleh, H., & Khabazzadeh, H. (2008). Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3- phenyl-3,4-dihydro-quinazolinyl)-N’-phenyl-hydrazinecarbothioamide. Analytical Chemistry, 80, 9848–9851.
Ben Messaoud, N., Ghica, M. E., Dridi, C., Ben Ali, M., & Brett, C. M. A. (2017). Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors and Actuators, B: Chemical, 253, 513–522.
Bernama. (2012). BPA Milk Bottle Bpa Milk Bottles Banned In Malaysia, 58.
Bi, X., Zhang, H., & Dou, L. (2014). Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics, 6, 298–332.
Biesheuvel, P. . M., & Dykstra, J. E. (2018). The difference between Faradaic and Nonfaradaic processes in Electrochemistry. Physics and Chemistry, 1–10.
Bouabi, Y. E. L., Farahi, A., Labjar, N., Hajjaji, S. El, Bakasse, M., & Mhammedi, M. A. El. (2016). Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode : Application in natural water samples , commercial tablets and human urines. Materials Science & Engineering C, 58, 70–77.
Braungardt, C. B. (2015). Evaluation of Analytical Instrumentation. Part XXVI: Instrumentation for Voltammetry. Analytical Methods, 7, 1249–1260.
Brownson, D. a. C., & Banks, C. E. (2014). The Handbook of Graphene Electrochemistry.
Bruna, F., Celis, R., Pavlovic, I., Barriga, C., Cornejo, J., & Ulibarri, M. A. (2009). Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro- 2-methylphenoxy)acetic acid (MCPA): Systems Mg-Al, Mg-Fe and Mg-Al-Fe. Journal of Hazardous Materials, 168, 1476–1481.
Cao, X., Corriveau, J., & Popovic, S. (2009). Survey of Bisphenol A in Canned Drink Products. Journal of Agricultural and Food Chemistry, 57, 1307–1311.
Cao, X. L., Dufresne, G., Belisle, S., Clement, G., Falicki, M., Beraldin, F., & Rulibikiye, A. (2008). Levels of bisphenol A in canned liquid infant formula products in Canada and dietary intake estimates. Journal of Agricultural and Food Chemistry, 56, 7919–7924.
CDC. (2014). National Health and Nutrition Examination Survey. Retrieved July 28, 2018, from https://wwwn.cdc.gov/Nchs/Nhanes/2009-2010/EPH_F.htm
Chao, M., Ma, X., & Li, X. (2012). Graphene-modified electrode for the selective determination of uric acid under coexistence of dopamine and ascorbic acid. International Journal of Electrochemical Science, 7, 2201–2213.
Chen, A., & Shah, B. (2013). Electrochemical sensing and biosensing based on square wave voltammetry. Analytical Methods, 5, 2158–2173.
Chen, H., Zhang, Z., Cai, R., Rao, W., & Long, F. (2014). Molecularly imprinted electrochemical sensor based on nickel nanoparticles-graphene nanocomposites modified electrode for determination of tetrabromobisphenol A. Electrochimica Acta, 117, 385–392.
Chen, Z., Tang, C., Zeng, Y., Liu, H., Yin, Z., & Li, L. (2014). Determination of Bisphenol A Using an Electrochemical Sensor Based on a Molecularly Imprinted Polymer-Modified Multiwalled Carbon Nanotube Paste Electrode. Analytical Letters, 47, 996–1014.
Chitravathi, S., & Munichandraiah, N. (2015). Simultaneous Determination of Catecholamines in Presence of Uric Acid and Ascorbic Acid at a Highly Sensitive Electrochemically Activated Carbon Paste Electrode. Journal of the Electrochemical Society, 162, 163-172.
Compans, R. W., & Cooper, M. D. (2008). Advances in Multiple Sclerosis and Experimental Demyelinating Diseases. Current Topics in Microbiology and Immunology , 318.
Compton, R. G., Eduardo, L., & Ward, R. K. (2013). Understanding voltammetry: Simulation of Electrode Processes. Imperial college press.
Cunha, S. C., Pena, A., & Fernandes, J. O. (2015). Dispersive liquid-liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters. Journal of Chromatography A, 1414, 10–21.
Deng, P., Xu, Z., & Feng, Y. (2013). Sensitive determination of bisphenol A in plastic products by derivative voltammetry using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan. International Journal of Environmental Analytical Chemistry, 93, 1116–1131.
Dodds, D. C., & Lawson, W. (1938). Molecular structure in relation to oestrogenic activity . Compounds without a phenanthrene nucleus.
Dogan-Topal, B., Ozkan, S. A., & Uslu, B. (2010). The Analytical Applications of Square Wave Voltammetry on Pharmaceutical Analysis. The Open Chemical and Biomedical Methods Journal, 3, 56–73.
Du, L., Zhang, C., Wang, L., Liu, G., Zhang, Y., & Wang, S. (2014). Ultrasensitive time-resolved microplate fluorescence immunoassay for bisphenol A using a system composed on gold nanoparticles and a europium(III)-labeled streptavidin tracer. Microchimica Acta, 182, 539–545.
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95, 197–206.
Erden, P. E., & Kiliç, E. (2013). A review of enzymatic uric acid biosensors based on amperometric detection. Talanta, 107, 312–323.
Estrela, P., Hammond, J. L., Carrara, S., Tkac, J., & Formisano, N. (2016). Electrochemical biosensors and nanobiosensors. Essays In Biochemistry, 60, 69– 80.
Fu, S., Fan, G., Yang, L., & Li, F. (2015). Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochimica Acta, 152, 146–154.
G.C Barker, A.W. Gardner, M. J. W. (1973). A multi-mode polarograph. Electroanalytical Chemistry and Interracial Electrochemistry, 42, 21–26.
Galbán, J., Andreu, Y., Almenara, M. J., De Marcos, S., & Castillo, J. R. (2001). Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54, 847–854.
Gao, Yong, Cao, Y., Yang, D., Luo, X., Tang, Y., & Li, H. (2012). Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. Journal of Hazardous Materials, 199–200, 111–118.
Gao, Yunqiao, Wang, M., Yang, X., Sun, Q., & Zhao, J. (2014). Rapid detection of quinoline yellow in soft drinks using polypyrrole/single-walled carbon nanotubes composites modified glass carbon electrode. Journal of Electroanalytical Chemistry, 735, 84–89.
Ghiaci, M., Rezaei, B., & Arshadi, M. (2009). Characterization of modified carbon paste electrode by using Salen Schiff base ligand immobilized on SiO2-Al2O3as a highly sensitive sensor for anodic stripping voltammetric determination of copper(II). Sensors and Actuators, B: Chemical, 139, 494–500.
Ghoreishi, S. M., Behpour, M., Ghoreishi, F. S., & Mousavi, S. (2017). Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes. Arabian Journal of Chemistry, 10, 1546-1552.
Gooding, J. J., Praig, V. G., & Hall, E. A. H. (1998). Platinum-Catalyzed Enzyme Electrodes Immobilized on Gold Using Self-Assembled Layers. Analytical Chemistry, 70, 2396–2402.
Guo, W., Zhang, A., Zhang, X., Huang, C., Yang, D., & Jia, N. (2016). Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A. Analytical and Bioanalytical Chemistry, 408, 7173–7180.
Habibi, B., Azhar, F. F., Fakkar, J., & Rezvani, Z. (2017). Ni–Al/layered double hydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide. Analytical Methods, 9, 1956–1964.
Harrington, D. A. (2015). The rate-determining step in electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 737, 30–36.
Hashim, N, & Hussein, M. Z. (2012). Layed Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides Layered Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides, 21–36.
Hashim, Norhayati, Hussein, M. Z., Kamari, A., Mohamed, A., Rosmi, M. S., & Jaafar, A. M. (2012). Layered Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides. Jurnal Sains Dan Matematik, 4, 22–36.
Hashim, Norhayati, Sharif, S. N. M., Hussein, M. Z., Isa, I. M., Kamari, A., Mohamed, A., … Mamat, M. (2016). Layered hydroxide anion exchanger and their applications related to pesticides: a brief review. Materials Research Innovations, (S).
Heinze, J. (1984). Cyclic Voltammetry—“Electrochemical Spectroscopy”. New Analytical Methods. Angewandte Chemie International Edition in English.
Heyrovský, J. (1924). The processes at the mercury dropping cathode. Trans. Faraday Soc., 19, 692–702.
Huang, N., Liu, M., Li, H., Zhang, Y., & Yao, S. (2015). Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. Analytica Chimica Acta, 853, 249–257.
Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2010). Synthesis of an herbicides-inorganic nanohybrid compound by ion exchange-intercalation of 3(2-chlorophenoxy)propionate into layered double hydroxide. Journal of Experimental Nanoscience, 5, 548–558.
Hussein, Mohd Zobir, Rahman, N. S. S. A., Sarijo, S. H., & Zainal, Z. (2012). Herbicide-intercalated zinc layered hydroxide nanohybrid for a dual-guest controlled release formulation. International Journal of Molecular Sciences, 13, 7328–7342.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.
Isa, Illyas M., Dahlan, S. N. A., Hashim, N., Ahmad, M., & Ghani, S. A. (2012). Electrochemical sensor for cobalt(ii) by modified carbon paste electrode with zn/al-2(3-chlorophenoxy)propionate nanocomposite. International Journal of Electrochemical Science, 7, 7797–7808.
Isa, Illyas M., Saruddin, S., Hashim, N., Ahmad, M., & Ghani, S. A. (2016). Determination of hydrazine in various water samples by square wave voltammetry with zinc-layered hydroxide-3(4-methoxyphenyl) Propionate Nanocomposite Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 11, 4619–4631.
Isa, Illyas M., Sohaimi, N. M., Hashim, N., Kamari, A., Mohamed, A., Ahmad, M., … Suyanta. (2013). Determination of salicylate ion by potentiometric membrane electrode based on zinc aluminium layered double hydroxides-4(2,4- dichlorophenoxy)butyrate nanocomposites. International Journal of Electrochemical Science, 8, 2112–2121.
Isa, Illyas Md, Sharif, S. N. M., Hashim, N., & Ghani, S. A. (2015). Amperometric determination of nanomolar mercury(II) by layered double nanocomposite of zinc/aluminium hydroxide-3(4-methoxyphenyl)propionate modified single- walled carbon nanotube paste electrode. Ionics, 21, 2949–2958.
J. He, M. Wei, B. Li, Y. Kang, D. G. E. & X. D. (2005). Layered double hydroxides. Developments in Clay Science, 119, 89–119.
J.Radej, I.Ruzic, D.Konrad, & M.Branica. (1973). Instrument for Characterization of Electrochemical Processes. Electroanalytical Chemistry and Interfacial Electrochemistry, 261–280.
Jadon, N., Jain, R., & Sharma, S. (2016). Recent Trends in Electrochemical Sensors for Multianalyte Detection. Talanta.
Jiang, X., Ding, W., Luan, C., Ma, Q., & Guo, Z. (2013). Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes. Microchimica Acta, 180, 1021–1028.
Jin, D., Seo, M. H., Huy, B. T., Pham, Q. T., Conte, M. L., Thangadurai, D., & Lee, Y. I. (2016). Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosensors and Bioelectronics, 77, 359–365.
Jin, M., Yang, F., Yang, I., Yin, Y., Jun Luo, J., Wang, H., & Yang, X.-F. (2012). Uric acid, hyperuricemia and vascular diseases. Frontiers in Bioscience, 17, 656.
Jing, P., Zhang, X., Wu, Z., Bao, L., Xu, Y., Liang, C., & Cao, W. (2015). Electrochemical sensing of bisphenol A by graphene-1-butyl-3- methylimidazolium hexafluorophosphate modified electrode. Talanta, 141, 41– 46.
Johnson, S., Saxena, P., & Sahu, R. (2015). Leaching of Bisphenol A from Baby Bottles. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85, 131–135.
Kalcher, J.?M., K., J., W., I., Š., K., V., C., N., & Z., Y. (1995). Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990–1993. Electroanalysis, 7, 5.
Kalcher, K. (1990). Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis, 2, 419–433.
Kalousek, M. (1946). A Study of Reversibility of Processes at The Dropping Mercury Electrode by Changing Discontinually The Polarising Voltage, 40, 149–157.
Kamil Reza, K., Singh, N., Yadav, S. K., Singh, M. K., & Biradar, A. M. (2014). Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications. Biosensors and Bioelectronics, 62, 47–51.
Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A. A., Moradi, R., Mallakpour, S., & Beitollahi, H. (2014). A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics, 60, 1–7.
Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60, 702.
Koirala, K., Santos, J. H., Tan, A. L., Ali, M. A., & Mirza, A. H. (2016). Chemically modified carbon paste electrode for the detection of lead, cadmium and zinc ions. Sensor Review, 36.
Kong, X., Shi, S., Han, J., Zhu, F., Wei, M., & Duan, X. (2010). Preparation of Glycy-l-Tyrosine intercalated layered double hydroxide film and its in vitro release behavior. Chemical Engineering Journal, 157, 598–604.
Kounaves, S. P. (1997). Voltammetric techniques: Handbook of Instrumental Techniques for Analytical Chemistry.
Krishnan, A.V, Permuth, S.F, Stathis, P, Feldman, D and Tokes, L. (1993). Bisphenol- Polycarbonate.
L.Yajing, F.Lizheng, A.H.S. Muhammad, Z. Liu, W. Shi, S. C. (2013). Development and comparison of two competitive ELISAs for detection of bisphenol A in human urine. Analytical Methods, 5, 6106–6113.
Laborda, E., González, J., & Molina, Á. (2014). Recent advances on the theory of pulse techniques: A mini review. Electrochemistry Communications, 43, 25–30.
Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, P. S., & Prasad, B. B. (2011). Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review. Electroanalysis, 23, 305–320.
Li, D., Ma, X., Wang, R., & Yu, Y. (2017). Determination of trace bisphenol A in environmental water by high-performance liquid chromatography using magnetic reduced graphene oxide based solid-phase extraction coupled with dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 409, 1165–1172.
Li, G., & Miao, P. (2013). Electrochemical Analysis of Proteins and Cells. Springer. Li, H., Wang, W., Lv, Q., Xi, G., Bai, H., & Zhang, Q. (2016). Disposable paper- based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochemistry Communications, 68, 104–107.
Li, J., Kuang, D., Feng, Y., Zhang, F., & Liu, M. (2011). Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchimica Acta, 17, 379–386.
Li, X. L., Li, G., Jiang, Y. Z., Kang, D., Jin, C. H., Shi, Q., Min, J. Z. (2015). Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV- detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1002, 394–398.
Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., & Wang, H. (2016). Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano- carbon ionic liquid paste electrode. Talanta, 148, 362–369.
Lin, Y., Liu, K., Liu, C., Yin, L., Kang, Q., Li, L., & Li, B. (2014). Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochimica Acta, 133, 492–500.
Lindquist, J. (1973). Carbon Paste Electrode with a Wide Anodic Potential Range. Analytical Chemistry, 45, 1006–1008.
Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 391, 1555–1567.
Liu, Y., Liu, J., Tang, H., Liu, J., Xu, B., Yu, F., & Li, Y. (2015). Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors and Actuators, B: Chemical, 206, 647–652.
Lu, C., Li, J., Yang, Y., & Lin, J. M. (2010). Determination of bisphenol A based on chemiluminescence from gold(III)-peroxymonocarbonate. Talanta, 82, 1576– 1580.
Lu, Z., Wang, H., Naqvi, S. R., Fu, H., Zhao, Y., Song, H., & Christen, J. B. (2015). A point of care electrochemical impedance spectroscopy device. 2015 28th IEEE International System-on-Chip Conference (SOCC), (5 mV), 240–244.
Magadi Puttaswamy Deepak, Magadi Puttaswamy Rajeeva, G. P. M. (2016). The Simultaneous Electrochemical Determination of Dopamine and Uric acid at Ni0.02Sn0.98O2Nanoparticles Modified Carbon Paste Electrode by Cyclic Voltammetric Technique. Analytical Bioanalytical Electrochemistry, 10, 281– 291.
Maiolini, E., Ferri, E., Pitasi, A. L., Montoya, A., Di Giovanni, M., Errani, E., & Girotti, S. (2014). Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst, 139, 318–324.
Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. (2016). Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213, 8–14.
Mamat, M., Kusrini, E., Yahaya, A. H., Hussein, M. Z., & Zainal, Z. (2013). Intercalation of anthranilate ion into zinc-aluminium-layered double hydroxide. International Journal of Technology, 4, 73–80.
Manjunatha, J. G., Deraman, M., Basri, N. H., & Talib, I. A. (2018). Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid. Arabian Journal of Chemistry, 11, 149–158.
Marchand, P., Bichon, E., Deceuninck, Y., Boscher, C., Boquien, C.-Y., Le Bizec, B., … Antignac, J. P. (2015). Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 407, 2485–2497.
Maxwell, S. R. J., Thomason, H., Sandler, D., Leguen, C., Baxter, M. A., Thorpe, G. H. G., … Barnett, A. H. (1997). Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. European Journal of Clinical Investigation, 27, 484–490.
Mazloum, M., Sabaghian, F., Khoshroo, A., & Naeimi, H. (2014). Simultaneous determination of the concentrations of isoproterenol , uric acid , and folic acid in solution using a novel nanostructure ? based electrochemical sensor. Chinese Journal of Catalysis, 35, 565–572.
Merriman, T. R., Choi, H. K., & Dalbeth, N. (2014). The genetic basis of gout. Rheumatic Disease Clinics of North America, 40, 279–290.
Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., Kappl, R., & Hoth, M. (2013). Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis, 25, 2411–2422.
Mobin, S. M., Sanghavi, B. J., Srivastava, A. K., Mathur, P., & Lahiri, G. K. (2010). Biomimetic sensor for certain phenols employing a copper(II) complex. Analytical Chemistry, 82, 5983–5992.
Mousty, C., & Prévot, V. (2013). Hybrid and biohybrid layered double hydroxides for electrochemical analysis. Analytical and Bioanalytical Chemistry, 405, 3513– 3523.
Murray, R.A., Ewing, A.G., Durst, R. A. (1987). Chemically Modified Electrodes: Molecular Design for Electroanalysis. EAnalytical Chemistry, 58, 379–390.
N. Navid, S. Zahra, T. Masoumeh, G. M. (2015). Simultaneous Determination of Ascorbic Acid, L-Dopa, Uric Acid, Insulin, and Acetylsalicylic Acid on Reactive Blue 19 and Multi-Wall Carbon Nanotube Modified Glassy Carbon Electrode, 26, 713–722.
Nagles, E., Ibarra, L., Llanos, J. P., Hurtado, J., & Garcia-Beltrán, O. (2017). Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. Journal of Electroanalytical Chemistry, 788, 38–43.
Nakashima, N., & Shiraki, T. (2016). Specific Molecular Interaction and Recognition at Single-Walled Carbon Nanotube Surfaces. Langmuir, 32, 12323–12331.
Naveen, M. H., Gurudatt, N. G., & Shim, Y. B. (2017). Applications of conducting polymer composites to electrochemical sensors: A review. Applied Materials Today. Elsevier Ltd.
Ndamanisha, J. C., & Guo, L. (2008). Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid- modified electrode. Biosensors and Bioelectronics, 23, 1680–1685.
Ni, F., Wang, Y., Zhang, D., Gao, F., & Li, M. (2010). Electrochemical oxidation of epinephrine and uric acid at a layered double hydroxide film modified glassy carbon electrode and its application. Electroanalysis, 22, 1130–1135.
Nkosi, D., Pillay, J., Ozoemena, K. I., Nouneh, K., & Oyama, M. (2010). Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Physical Chemistry Chemical Physics, 12, 604–613.
Ntsendwana, B., Mamba, B. B., Sampath, S., & Arotiba, O. A. (2012). Electrochemical Detection of Bisphenol A Using Graphene- Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 7, 3501– 3512. Retrieved from www.electrochemsci.org
Nyhan, W. L. (1997). The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. Journal of Inherited Metabolic Disease, 20, 171–178.
O’Dea, J. J., Osteryoung, J., & Osteryoung, R. A. (1981). Theory of Square Wave Voltammetry for Kinetic Systems. Analytical Chemistry, 53, 695–701.
Olson, C., Adams, R. N. (1963). Carbon paste electrodes application to cathodic reductions and anodic stripping voltammetry. Analytica Chimica Acta, 29, 358– 363.
Olson, C., & Adams, R. N. (1960). Carbon paste electrodes application to anodic voltammetry. Analytica Chimica Acta, 22, 582–589.
Osteryoung, J. G., & Osteryoung, R. A. (1985). Square Wave Voltammetry. Analytical Chemistry, 57, 101–110.
Pan, D., Gu, Y., Lan, H., Sun, Y., & Gao, H. (2015). Functional graphene-gold nano- composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Analytica Chimica Acta, 853, 297–302.
Pandey, P., & Dahiya, M. (2016). Carbon nanotubes : Types , methods of preparation and applications. International Journal of Pharmaceutical Science and Research, 1, 15–21.
Park, S.-M., & Yoo, J.-S. (2003). Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Analytical Chemistry, 75, 455A - 461A.
Peng, J., Feng, Y., Han, X. X., & Gao, Z. N. (2016). Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchimica Acta, 183, 2289–2296.
Philippa D. Darbre. (2015). Endocrine Disruption and Human Health (1st ed.). Academic press.
Poorahong, S., Thammakhet, C., Thavarungkul, P., Limbut, W., Numnuam, A., & Kanatharana, P. (2012). Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchimica Acta, 176, 91–99.
Princeton. (1957). Square wave voltammetry Application Note S-7. In Princeton Applied Research, 1–5.
Qureshi, A., Kang, W. P., Davidson, J. L., & Gurbuz, Y. (2009). Review on carbon- derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond and Related Materials, 18, 1401–1420.
Ragavan, K. V., Rastogi, N. K., & Thakur, M. S. (2013). Sensors and biosensors for analysis of bisphenol-A. TrAC - Trends in Analytical Chemistry, 52, 248–260.
Randles, J. E. . (1947). Kinetic of rapid electrode reactions. Discussions of the Faraday Society, 1, 11–19.
Raoof, J. B., Ojani, R., Baghayeri, M., & Ahmadi, F. (2012). Fabrication of a fast, simple and sensitive voltammetric sensor for the simultaneous determination of 4-aminohippuric acid and uric acid using a functionalized multi-walled carbon nanotube modified glassy carbon electrode. Analytical Methods, 4, 1825–183
Ribeiro, B., Botelho, E. C., Costa, M. L., & Bandeira, C. F. (2017). Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros, 27, 247–255.
Rivas, G. A., Rubianes, M. D., Pedano, M. L., Ferreyra, N. F., Luque, G. L., Rodríguez, M. C., & Miscoria, S. A. (2007). Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis, 19, 823–831.
Roberts, S. W. (1890). On the History of Uric Acid in the Urine, with Reference to the Formation of Uric Acid Concretions and Deposits. Medico-Chirurgical Transactions.
Ruiz, G. A., & Felice, C. J. (2015). Electrochemical-fractal model versus randles model: A discussion about diffusion process. International Journal of Electrochemical Science, 10, 8484–8496.
Rusling, J. F., & Suib, S. L. (1994). Characterizing Materials with Cyclic Voltammetry. Advanced Materials, 6, 922–930.
Sabatani, E., & Rubinstein, I. (1987). Organized self-assembling. 2. Monolayers - based ultramicroelectrodes for the study of very rapid electrode kinetics. Journal of Physical Chemistry, 91, 6663–6669.
Saidin, M. I., Isa, I. M., Ahmad, M., Hashim, N., & Ab Ghani, S. (2017). Analysis of trace nickel by square wave stripping voltammetry using chloropalladium(II) complex-modified MWCNTs paste electrode. Sensors and Actuators, B: Chemical, 240, 848–856.
Saito, Y., & Takumi Kikuchi. (2013). Voltammetry: Theory, Types and Applications. Nova Science Publishers, Inc.
Sajid, M., Nazal, M. K., Mansha, M., Alsharaa, A., Jillani, S. M. S., & Basheer, C. (2016). Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. TrAC - Trends in Analytical Chemistry. Elsevier B.V, 76.
Salian, S., Doshi, T., & Vanage, G. (2011). Perinatal exposure of rats to Bisphenol A affects fertility of male offspring-An overview. Reproductive Toxicology, 31, 359–362.
Santana, E. R., de Lima, C. A., Piovesan, J. V., & Spinelli, A. (2017). An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sensors and Actuators, B: Chemical, 240, 487– 496.
Sarijo, S. H., Hussein, M. Z., Yahaya, A. H. J., & Zainal, Z. (2010). Effect of incoming and outgoing exchangeable anions on the release kinetics of phenoxyherbicides nanohybrids. Journal of Hazardous Materials, 182, 563–569.
Scholz, F. (2015). Voltammetric techniques of analysis: the essentials. ChemTexts, 1, 17.
Shah, B. A., Christy, F. A., Shrivastav, P. S., & Sanyal, M. (2014). Characterization and controlled release formulation of agrochemical herbicides based on zinc- layered hydroxide-3-(4-Methoxyphenyl) Propionate Nanocomposite. Journal of Physical and Chemical Sciences, 6, 1–5.
Shahrokhian, S., Hamzehloei, A., Thaghani, A., & Mousavi, S. R. (2004). Electrocatalytic oxidation of 2-thiouracil and 2-thiobarbituric acid at a carbon- paste electrode modified with cobalt phthalocyanine. Electroanalysis, 16, 915– 921.
Shahrokhian, S., & Rastgar, S. (2012). Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst, 137, 2706–2715.
Sheng, Z., Zheng, X., Xu, J., Bao, W., Wang, F., & Xia, X. (2012). Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 125– 131.
Shi, R., Liang, J., Zhao, Z., Liu, A., & Tian, Y. (2017a). An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode. Talanta, 169, 37–43.
Shi, R., Liang, J., Zhao, Z., Liu, A., & Tian, Y. (2017b). An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode. Talanta, 169, 37–43.
Shin, H. S., Park, C. H., Park, S. J., & Pyo, H. (2001). Sensitive determination of bisphenol A in environmental water by gas chromatography with nitrogen- phosphorus detection after cyanomethylation. Journal of Chromatography. A, 912, 119–125.
Silion, M., Hritcu, D., Lisa, G., & Popa, M. I. (2012). New hybrid materials based on layered double hydroxides and antioxidant compounds. Preparation, characterization and release kinetic studies. Journal of Porous Materials, 19, 267–276.
Singh, N., Reza, K. K., Ali, M. A., Agrawal, V. V., & Biradar, A. M. (2015). Self assembled DC sputtered nanostructured rutile TiO2platform for bisphenol A detection. Biosensors and Bioelectronics, 68, 633–641.
Song, H., Xue, G., Zhang, J., Wang, G., Ye, B. C., Sun, S., … Li, Y. (2017). Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide. Microchimica Acta, 184, 843–853.
Soto, A. M., & Sonnenschein, C. (2010). Environmental causes of cancer: Endocrine disruptors as carcinogens. Nature Reviews Endocrinology, 6, 363–370.
Srivastav, S., & Kant, R. (2015). Influence of Uncompensated Solution Resistance on Diffusion Limited Chronocoulometric Response at Rough Electrode. Electrochimica Acta, 180, 208–217.
Švancara, I., Vyt?as, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 21, 7–28.
ter Halle, A., Claparols, C., Garrigues, J. C., Franceschi-Messant, S., & Perez, E. (2015). Development of an extraction method based on new porous organogel materials coupled with liquid chromatography-mass spectrometry for the rapid quantification of bisphenol A in urine. Journal of Chromatography A, 1414, 1–9.
Tsierkezos, N. G., & Ritter, U. (2012). Influence of concentration of supporting electrolyte on electrochemistry of redox systems on multi-walled carbon nanotubes. Physics and Chemistry of Liquids, 50.
Tsierkezos, N. G., Ritter, U., Thaha, Y. N., Downing, C., Szroeder, P., & Scharff, P. (2016). Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid. Microchimica Acta, 183, 35–47.
Tsirlina, G. A. (2017). The role of supporting electrolyte in heterogeneous electron transfer, 1833–1845.
Van Den Brink, F. T. G. (2016). Microreactor for electrochemical conversion in drug screening and proteomics. Enschede.
vom Saal, F. S., & Hughes, C. (2005). An extensive new literature concerning low- dose effects of bisphenol A shows the need for a new risk assessment. Environmental Health Perspectives, 113, 926–933.
Vytras, K., Švancara, I., & Metelka, R. (2009). Carbon paste electrodes in electroanalytical chemistry. Journal of the Serbian Chemical Society, 74, 1021– 1153. Wang. (2000). Analytical Electrochemistry, (2nd ed.). Wiley-VCH.
Wang, C., Li, J., Shi, K., Wang, Q., Zhao, X., Xiong, Z., Wang, Y. (2016). Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 770, 56–61.
Wang, J. (2006). Analytical Electrochemistry. Analytical Electrochemistry, (3rd ed.). Wiley-VCH.
Wang, Y., Zhang, Y., Hou, C., & Liu, M. (2016). Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p- toluenesulfonate-doped polypyrrole/Fe3O4nanospheres. Microchimica Acta, 183, 1145–1152.
Warburg, E. (1899). Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom. Annalen Der Physik, 303, 493–499.
Wardani, N. I., Isa, I. M., Hashim, N., & Ghani, S. A. (2014). Zinc layered hydroxide- 2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste electrode for the determination of nano-molar levels copper(II). Sensors and Actuators, B: Chemical, 198, 243–248.
Wen, Y., Zhou, B. S., Xu, Y., Jin, S. W., & Feng, Y. Q. (2006). Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. Journal of Chromatography A, 1133, 21–28.
Wong, A., Razzino, C. A., Silva, T. A., & Fatibello-Filho, O. (2016). Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a crosslinked chitosan film. Sensors and Actuators, B: Chemical, 231, 183–193.
Wu, W., Min, H., Wu, H., Ding, Y., & Yang, S. (2017). Electrochemical Determination of Uric Acid Using a Multiwalled Carbon Nanotube Platinum– Nickel Alloy Glassy Carbon Electrode. Analytical Letters, 50, 91–104.
Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Electrochemical bisphenol A sensor based on core-shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors and Actuators, B: Chemical, 209, 275–280.
Yang, S. A., Jiang, X., Dong, Y. J., Zhu, N. N., & Wang, Y. F. (2013). Ferroferric Oxide Magnetic Nanoparticles Carbon Nanotubes Nanocomposite-Based Electrochemical Sensor Applied for Detection of Bisphenol A. Advanced Materials Research, 663, 297–302.
Yang, Y., Zhang, H., Huang, C., & Jia, N. (2016). MWCNTs-PEI composites-based electrochemical sensor for sensitive detection of bisphenol A. Sensors and Actuators, B: Chemical, 235, 408–413.
Yazid, S. N. A. M., Isa, I. M., Bakar, S. A., & Hashim, N. (2015). Facile, cost effective and green synthesis of graphene in alkaline aqueous solution. International Journal of Electrochemical Science, 10, 7977–7984.
Yin, Huan shun, Zhou, Y. lei, & Ai, S. yun. (2009). Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. Journal of Electroanalytical Chemistry, 626, 80–88.
Yin, Huanshun, Cui, L., Ai, S., Fan, H., & Zhu, L. (2010). Electrochemical determination of bisphenol A at Mg–Al–CO? layered double hydroxide modified glassy carbon electrode, 55, 603–610.
Yin, Huanshun, Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination. Journal of Solid State Electrochemistry, 15, 167–173.
Yu, C., Gou, L., Zhou, X., Bao, N., & Gu, H. (2011). Chitosan-Fe?O? nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochimica Acta, 56, 9056–9063.
Yu, H., Feng, X., Chen, X. X., Qiao, J. L., Gao, X. L., Xu, N., & Gao, L. J. (2017). Electrochemical Determination of Bisphenol A on a Glassy Carbon Electrode Modified with Gold Nanoparticles Loaded on Reduced Graphene Oxide-multi Walled Carbon Nanotubes Composite. Chinese Journal of Analytical Chemistry, 45, 713–720.
Zare, H. R., Nasirizadeh, N., Golabi, S., & Namazian, M. (2006). Electrochemical evaluation of coumestan modified carbon paste electrode : Study on its application as a NADH biosensor in presence of uric acid, 114, 610–617.
Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Materials Science and Engineering C, 64, 354–361.
Zhan, T., Song, Y., Tan, Z., & Hou, W. (2017). Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sensors and Actuators, B: Chemical, 238, 962–971.
Zhang, X., Zhang, Y. C., & Ma, L. X. (2016). One-pot facile fabrication of graphene- zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 227, 488–496.
Zhang, Y., Cheng, Y., Zhou, Y., Li, B., Gu, W., Shi, X., & Xian, Y. (2013). Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta, 107, 211–218.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |