UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aimed to fabricate sand/zinc oxide (ZnO) nanorods (NRs)-based
nanocomposite via sol-gel immersion method with titanium dioxide (TiO2) and graphene oxide
(GO)-based materials for methylene blue (MB) dye degradation.The nanocomposite photocatalyst was
initially fabricated by growing ZnO via sol-gel immersion followed by synthesizing TiO2
using hydrothermal method on the sand as a substrate. Different concentration and synthesis time
were used as parameters for the fabrication. These nanocomposites were then hybridized with
GO and GO_multi- walled carbon nanotubes (MWCNTs) hybrid solution via immersion method. Prior to
hybridization, the initial GO was synthesized using electrochemical exfoliation method assisted by
commercially available single-tail sodium dodecyl sulphate surfactant and was further mixed with
MWCNTs to form GO_MWCNTs hybridsolution. The sand/ZnO, sand/ZnO/TiO2 nanocomposites, and
sand/ZnO/TiO2/GO-based photocatalyst materials were then characterized by using
ultraviolet (UV)-light irradiation within three-days interval for MB dye degradation,
field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy
and ultraviolet-visible specstroscopy (UV-vis). The finding, sand/ZnO NRs (4h)
presented the highest photocatalysis performance (92.64%) as compared to sand/ZnO/TiO2
nanocomposite and and/ZnO/TiO2/GO-based photocatalyst materials. This was due to high density and
actives sites presented by sand/ZnO NRs (4h) which lead to higher adsorption of MB molecules on its
surfaces. As for the conclusion, sand/ZnO NRs (4h) demonstrated a potential ability to be applied
as a photocatalyst material to degrade MB solution. The implication of this study is a novel,
simpler, low-cost and green approach for the production of sand/ZnO, sand/ZnO/TiO2
nanocomposites, and sand/ZnO/TiO2/GO-based photocatalyst materials for photocatalysis application.
|
References |
Abdel-Maksoud, Y. K., Imam, E., & Ramadan, A. R. (2018). Sand supported TiO2 photocatalyst in a tray photo-reactor for the removal of emerging contaminants in wastewater. Catalysis Today, 313, 55-62.
Abdulrahman, A. F., Ahmed, S. M., & Almessiere, M. A. (2017). Effect of the growth time on the optical properties of ZnO nanorods grown by low temperature method. 12(4), 1001-1009.
Abdulrazzak, F. H. (2016). Enhance photocatalytic activity of TiO2 by carbon nanotubes. International Journal of ChemTech Research, 9(3), 431-443.
Adhikari, S., Sarkar, D., & Madras, G. (2015). Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Advances, 5(16), 11895-11904.
Adnan M. A. M., Julkapli, N. M., & Hamid, S. B. A. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Inorganic Chemistry, 36(2), 1-28.
Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A.B., Mohamed, A., et al (2016). Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. Journal of Materials Science: Materials in Electronics, 27(8), 7920-7926.
Ahn, K., Lee, H. U., Jeong, Y. M., Kim, J. P., Jeong, S. Y., & Cho, C. R. (2011). Effects of TiO2 nanorod length and post-annealing on the electrical properties of TiO2 nanobarbed fiber structures. Journal of nanoscience and nanotechnology, 11(8), 7155-7158.
Albert, E. L., Azurahanim, Che Abdullah, C. A., & Shiroshaki, Y. (2018). Synthesis and characterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsion method. Results in Physics, 11, 944-950.
Alcántara, R., Navas, J., Fernández-Lorenzo, C., Martín, J., Guillén, E., & Anta, J. A. (2011). Synthesis and Raman spectroscopy study of TiO2 nanoparticles. Physica Status Solidi (c), 8(6), 1970-1973.
Alhomoudi, I. A., & Newaz, G. (2009). Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films, 517(15), 4372-4378.
Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A. J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 26(24), 8445-8448.
Al-lami, S., & Jaber, H. (2014). Controlling ZnO nanostructure morphology on seedless substrate by tuning process parameters and additives. Chemistry and Material Research, 6(4), 1-9.
Alwash, A., Adil, H., Hussain, Z., & Yousif, E. (2018). Potential of carbon nanotubes in enhance of photocatalyst activity. L Upine Publishers 1(3), 65–70.
Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In advanced oxidation processes for wastewater treatment. Emerging Green Chemical Technology, 135-175.
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 1-23.
Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. Journal of Nanomaterials, 2011, 1-9.
Araújo, E. S., da Costa, B. P., Oliveira, R. A., Libardi, J., Faia, P. M., & de Oliveira, H. P. (2016). TiO2/ZnO hierarchical heteronanostructures: Synthesis, characterization and application as photocatalysts. Journal of environmental chemical engineering, 4(3), 2820-2829.
Arthi. G (2016). Investigation of Growth and Functional Properties of TiO2 Nanostructures for Dye Sensitized Solar Cell Applications. (Doctoral dissertation). SRM University, India
Ashrafi, A., & Jagadish, C. (2007). Review of zinc blende ZnO: Stability of metastable ZnO phases. Journal of Applied Physics, 102(7), 1-13.
Asmatulu, R. (2012). Nanocoatings for corrosion protection of aerospace alloys. Corrosion Protection and Control Using Nanomaterials, 357-374.
Awalludin, M., Mamat, M. H., Sahdan, M. Z., Mohamad, Z., & Rusop, M. (2013). Zinc oxide nanorods characteristics prepared by sol-gel immersion method immersed at different times. In Advanced Materials Research, 667, 375-379.
Azam, A., & Babkair, S. S. (2014). Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application. International Journal of Nanomedicine, 2109-2115.
Azmina, M. S., Md Nor, R., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman, Z. (2017). Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Applied Nanoscience, 7(8), 885–892.
Ba-abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013). Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol - gel technique. Journal of Industrial and Engineering Chemistry, 19(1), 99-105.
Bagheri, M., Najafabadi, N. R., & Borna, E. (2019). Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs. Journal of King Saud University-Science, 1-6.
Bai, L. J., Kou, G., Gong, Z. Y., & Zhao, Z. M. (2013). Effect of Zn and Ti mole ratio on microstructure and photocatalytic properties of magnetron sputtered TiO2-ZnO heterogeneous composite film. Transactions of Nonferrous Metals Society of China (English Edition), 23(12), 3643-3649.
Balachandran, U. G. E. N., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid State Chemistry, 42(3), 276-282.
Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560-568.
Baneto, M., Enesca, A., Lare, Y., Jondo, K., Napo, K., & Duta, A. (2014). Effect of precursor concentration on structural, morphological and opto-electric properties of ZnO thin films prepared by spray pyrolysis. Ceramics International, 40(6), 8397-8404.
Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M., & Dutta, J. (2010). Photocatalytic paper using zinc oxide nanorods. Science and Technology of Advance Materials, 11, 1-8.
Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.
Batakliev, T., Petrova-doycheva, I., Angelov, V., Georgiev, V., Ivanov, E., Kotsilkova, R., et al (2019). Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of poly (actic acid) composites. Applied sciences, 1-15.
Benkara, S., & Ghamri, H. Preparation and characterization of ZnO/TiO2 nanocomposite by anodization and hydrothermal synthesis. International Letters of Chemistry, Physics and Astronomy, 55, 27-33.
Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836-1876.
Bhunia, A. K., Jha, P. K., Rout, D., & Saha, S. (2016). Morphological properties and raman spectroscopy of ZnO nanorods. Journal of Physical Sciences, 21, 111-118.
Bîru, E. I., & Iovu, H. (2018). Graphene Nanocomposites Studied by Raman Spectroscopy. In G. M. D. Nascimento (Ed.), Raman Spectroscopy (pp. 179-201).
Bitenc, M., & Orel, Z. C. (2009). Synthesis and characterization of crystalline hexagonal bipods of zinc oxide. Materials Research Bulletin, 44(2), 381-387.
Boberg, J. (2005). Freswater availability. In A J. Boberg (Ed), Changes and Water Management Policies Affect Freshwater Resource (pp. 15-28).
Bodson, C. J., Lambert, S. D., Alié, C., Cattoën, X., Pirard, J. P., Bied, C., et al (2010). Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-doped TiO2 materials. Microporous and Mesoporous Materials, 134(1-3), 157-164.
Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.L., & El Bounia, N.E. (2008). Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. Journal of Polymer Science Part B: Polymer Physics, 46(18), 1939-1951.
Brodie, B. C. (1859). On the atomic weight of graphite. Journal Storage, 247-259.
Butburee, T., Kotchasarn, P., Hirunsit, P., Zhuxing, S., Qijun, T., Khemthong, P.,et al (2019). New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic. Journal of Materials Chemistry A, 1-11.
Byrappa, K., Dayananda, A. S., Sajan, C. P., Basavalingu, B., Shayan, M. B., Soga, K., et al (2008). Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journal of Materials Science, 43(7), 2348-2355.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177.
Chaudhary, D., Singh, S., Vankar, V. D., & Khare, N. (2018). ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 351, 154-161.
Chen, J., Yao, B., Li, C., & Shi G. (2013). An improved Hummers method for eco- friendly synthesis of graphene oxide. Carbon, 64(1), 225-229.
Chen, J. D., Liao, W. S., Jiang, Y., Yu, D. N., Zou, M. L., Zhu, H., et al (2016). Facile fabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B. Nanomaterials and Nanotechnology, 6, 9-16.
Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Reasearch Letters,4-13.
Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly (ε-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65, 387-397.
Cheng, C., Amini, A., Zhu, C., Xu, Z., Song, H., & Wang, N. (2014). Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sciencetific Reports, 4(1), 1-5.
Cheng, P., Wang, Y., Xu, L., Su, Z., Jin, F., Liu, F., et al (2016). High specific surface area urchin-like hierarchical ZnO-TiO2 architectures: Hydrothermal synthesis and photocatalytic properties. Materials Letters, 175, 52-55.
Cirak, B.B., Caglar, B., Kilinc, T., Karadeniz, M. S., Erdogan, Y., Kilic, S., et al (2018). Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity. Materials Research Bulletin, 1-32.
Dalt, S. D., Alves, A. K., & Bergmann, C. P. (2016). Preparation and performance of TiO2-ZnO/CNT hetero-nanostructures applied to photodegradation of organic dye. Materials Research. 19(6), 1372–1375.
Danish, R., Ahmed, F., Arshi, N., Anwar, M. S., & Koo, B. H. (2014). Facile synthesis of single-crystalline rutile TiO2 nano-rods by solution method. Transactions of Nonferrous Metals Society of China, 24, 152-156.
Devaraj, R., Karthikeyan, K., & Jeyasubramanian, K. (2013). Synthesis and properties of ZnO nanorods by modified Pechini Process, Applied Nanoscience, 3(1), 37-40.
Duan, Q., Lee, J., Liu, Y., & Qi, H. (2016). Preparation and photocatalytic performance of MWCNTs/TiO2 nanocomposites for degradation of aqueous substrate. Journal of Chemistry, 2016, 1-8.
Durmus, Z., Kurt, Z. K., & Durmus, A. (2019). Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. Materials Science inc Nanomaterials & Polymers, 271-278.
Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chemistry, 17, 55-58.
Ehrampoush, M. H., Moussavi, G. R., Ghaneian, M. T., Rahimi, S., & Ahmadian, M. (2011). Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Iranian Journal of Enviromental. Health Science & Engineering, 8(1), 35-40.
Ekthammathat, N., Thongtem, T., Phuruangrat, A., & Thongtem, S. (2013). Photoluminescence of hexagonal ZnO nanorods hydrothermally grown on Zn foils in KOH solutions with different values of basicity. Journal of Nanomaterials, 2013, 1-4.
Etcheverry, L. P., Flores, W. H., Silva, D. L. da, & Moreira, E. C. (2018). Annealing Effects on the Structural and Optical Properties of ZnO Nanostructures. Materials Research, 21(2),1-7.
Fatiatun, 2018. Fabrication of graphene oxide/zinc oxide nanocomposite through spraying method for solar cell application. (Master's Thesis). Universiti Pendidikan Sultan Idris, Malaysia.
Fei, B. L., Zhong, J. K., Deng, N. P., Wang, J. H., Liu, Q. B., Li, Y. G., & Mei, X. (2018). A novel 3D heteropoly blue type photo-Fenton-like catalyst and its ability to remove dye pollution. Chemosphere, 197, 241-250.
Fudzi, L. M., Zainal, Z., Lim, H. N., Chang, S. K., & Holi, A. M. (2018). Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials, 11(5), 704- 717.
Fosso-kankeu, E., Waanders, F., & Geldenhuys, M. (2015). Photocatalytic degradation of dyes using TiO2 nanoparticles of different shapes. Engineering & Technology,1-6.
Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 99(1), 303-304.
Fujishima, A., & Honda, K. (1972a). TiO2 photoelectrochemistry and photocatalysis. Nature, 238(5358), 37-38.
Fujishima, A., & Honda, K. (1972b). Electrochemical Photolysis of Water at a Seminconductor Electrode. Nature, 238(5358), 38-40.
Gan, W. Y., Lee, M. W., Amal, R., Zhao, H., & Chiang, K. (2008). Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol-gel method with tri-block copolymer as structure directing agent. Journal of Applied Electrochemistry, 38(5), 703-712.
Gangu, K. K., Maddila, S., & Jonnalagadda, S. B. (2019). A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Science of the Total Environment, 646, 1398-1412.
Gaya, U. I. (2013). Heterogeneous photocatalysis using inorganic semiconductor solids.
Ge, J., Zhang, Y., & Park, S. J. (2019). Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review. Materials, 12(12), 1916-1941.
Ghaderi, A., Abbasi, S., & Farahbod, F (2015). Synthesis of SnO2 and ZnO Nanoparticles and SnO2-ZnO Hybrid for the Photocatalytic Oxidation of Methyl Orange. Iranian Journal of Chemical Engineering, 12(3), 96-105.
Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment & Ecology, 35(3), 2349- 2353.
Goak, J. C., Lee, S. H., Han, J. H., Jang, S. H., Kim, K. B., Seo, Y., et al (2011). Spectroscopic studies and electrical properties of transparent conductive films fabricated by using surfactant-stabilized single-walled carbon nanotube suspensions. Carbon, 49(13), 4301-4313.
Greenwood, N., N., & Earnshaw, A. (1997). Chemistry of Elements (2?? ed.).
Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657.
Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M. I., & Mahmood, A. J. (2013). Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. International Nano Letters, 3(5), 1-8.
Hadjltaief, H. B., Zina, M. B., Galvez, M. E., & Costa, P. D. (2016). Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO-TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 315, 25-33.
Hakki, H. K., Allahyari, S., Rahemi, N., & Tasbihi, M. (2019). Surface properties, adherence, and photocatalytic activity of sol–gel dip-coated TiO2–ZnO films on glass plates. Comptes Rendus Chimie, 22(5), 393-405.
Hanaor, D. A. H., & Sorrell, C. C. (2014). Sand supported mixed-phase TiO2 photocatalysts for water decontamination applications. Advanced Engineering Materilas, 16(2), 248–254.
Hardcastle, F. D. (2011). Raman spectroscopy of titania (TiO2) nanotubular water- splitting catalysts. Journal of the Arkansas academy of science, 65(1), 43-48.
Hariharan, C. (2006). Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General, 304, 55-61.
Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese journal of applied physics, 44(12),8269- 8285
Hassaan, M. A., & Nemr, A. El. (2017). Health and environmental impacts of dyes: Mini review. American Journal of Environmental Science and Engineering, 1(3), 64-67.
Heinonen, S., Nikkanen, J.-P., Hakola, H., Huttunen-Saarivirta, E., Kannisto, M., Hyvärinen, L., et al (2016). Effect of temperature and concentration of precursors on morphology and photocatalytic activity of zinc oxide thin films prepared by hydrothermal route. IOP Conference Series: Materials Science and Engineering, 123, 12030-12035
Hezam, A., Namratha, K., Drmosh, Q. A., Chandrashekar, B. N., Sadasivuni, K. K., Yamani, Z. H., et al (2017). Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties. CrystEngComm, 19(24), 3299-3312.
Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S., Hashim, U.,et al (2017). Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings, 1892, 1-8.
Hodkiewicz. J. (2010). Characterizing Carbon Materials with Raman Spectroscopy. Thermo Fisher Scientific, 51946-51950.
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366.
Hong, M., Dai, L., Li, H., Hu, H., Liu, K., Yang, L., & Pu, C. (2019). Structural Phase Transition and Metallization of Nanocrystalline Rutile Investigated by High- Pressure Raman Spectroscopy and Electrical Conductivity. Minerals, 9(7), 441- 452.
Hosseini, F., Kasaeian, A., Pourfayaz, F., Sheikhpour, M., & Wen, D. (2018). Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. Materials Science in Semiconductor Processing, 83, 175-185.
Huang, N., Shu, J., Wang, Z., Chen, M., Ren, C., & Zhang, W. (2015). One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. Journal of Alloys and Compounds, 648, 919-929.
Huang, Y., Chen, D., Hu, X., Qian, Y., & Li, D. (2018). Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of Rhodamine B. Nanomaterials, 8(6), 1-9.
Hummers, W.S., & Offeman, R. E. (1957). Preparation of Graphitic Oxide. Journal of American Chemical Society, 80(6), 1339.
Huyen, T. T. T., Chi, T. T. K., Dung, N. D., Kosslick, H., & Liem, N. Q. (2018). Enhanced photocatalytic activity of {110}-faceted TiO2 rutile nanorods in the photodegradation of hazardous pharmaceuticals. Nanomaterials, 8(5), 276-287.
Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3(1), 189-218.
Inagaki, M., Kang, F., Toyoda, M., & Konno, H. (2014). Graphene: Synthesis and peparation. Advanced Materials Science and Engineering of Carbon, 2, 41–65.
Idiawati, R., Mufti, N., Taufiq, A., Wisodo, H., Laila, I. K. R., & Fuad, A. (2017). Effect of Growth Time on the Characteristics of ZnO Nanorods. Materials Science and Engineering, 202(1), 12050-12059.
Ivanova, M.V., Lamprecht, C., Huzil, J. T., & Foldvari, M. (2012). Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. International Journal of Nanomedicine, 7, 403-415.
Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., & Yin, H. (2013). Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology, 11(6), 737-742.
Johar, M. A., Afzal, R. A., Alazba, A. A., & Manzoor, U. (2015). Photocatalysis and bandgap engineering using ZnO nanocomposites. Advances in Materials Science and Engineering, 1-12.
Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. Journal of Materials Chemistry A, 2(37), 15428–15436.
Kalpana, V. N., & Rajeswari, V. D. (2018). A review on green synthesis , biomedical applications, and toxicity studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018, 1-12.
Kandiel, T. A., Robben, L., Alkaim, A., & Bahnemann, D. (2012). Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities Photochemical & Photobiological Sciences, 12(4), 602-609.
Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al (2016). Hidden second oxidation step of Hummers method. Chemistry of Materials, 28(3),756- 764.
Kant, R. (2011). Textile dyeing industry an environmental hazard. Natural Science, 4(1),1-5.
Karnati, P., Haque, A., Taufique, M. F. N., & Ghosh, K. (2018). A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique. Nanomaterials, 8(2), 62-74.
Karthik, V., Saravanan, K., Bharathi, P., Dharanya, V., & Meiaraj, C. (2014). An overview of treatments for the removal of textile dyes. Journal of Chemical and Pharmaceutical Sciences, 7(4), 301-307.
Kashif, M., Al-Douri, Y., Hashim, U., Ali, M. E., Ali, S. M. U., & Willander, M. (2012). Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. Micro & Nano Letters, 7(2), 163-167.
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697.
Kazuhito, H., Hiroshi, I., & Akira, F. (2005). TiO2 Photocatalysis : A historical overview and future prospects. Japanese Journal of Applied Physics, 44(12), 8269-8285.
Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journal of Molecular Liquids, 258, 354-365.
Khalil, I., Julkapli, N., Yehye, W., Basirun, W., & Bhargava, S. (2016). Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials, 9(6), 406-443.
Khan, M. M., Adil, S. F., & Al-Mayouf, A. (2015). Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 19(5), 462–464.
Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 328(1-2), 8-26.
Khojasteh, H., Salavati-Niasari, M., & Sangsefidi, F. S. (2018). Photocatalytic evaluation of rGO/TiO2 NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. Journal of Alloys and Compounds, 746, 611-618.
Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., & Tony, V. C. S., et al (2016). Surface morphology of reduced graphene oxide-carbon nanotubes hybrid film for bio-sensing applications. IEEE Internatinal Conference on Semiconductors Electronics, 320-323.
Ko?odziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc Oxide - From synthesis to application: A review. Materials, 7(4), 2833-2881.
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1-14.
Kumar, A., Madaria, A, R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye- sensitized solar cells. Journal of Physical Chemistry C, 114, 7787-7792.
Lacombe, S., & Keller, N. (2012). Photocatalysis: Fundamentals and applications in JEP 2011. Environmental Science and Pollution Research, 19(9), 3651-3654.
Latthe, S. S., Gurav, A. B., Maruti, C. S., & Vhatkar, R. S. (2012). Recent progress in preparation of superhydrophobic surfaces : A review. Journal of Surface Engineered Materials and Advanced Technology, 2, 76-94.
Lee, K., Saipolbahri, Z. A., Beh Hoe Guan, B. H., & Soleimani, H (2014). Organic sol-gel method in the synthesis and characterization of ZnO nanoparticles. American Journal of Applied Sciences, 11(6), 959-962.
Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in photocatalysis: A review. Small, 12(48), 6640-6696.
Lim, C. S. (2010). Synthesis and characterisation of TiO2-ZnO nanocomposite by a two-step chemical method. Journal of Ceramic Processing Research, 11(5), 631- 635.
Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 131(11), 3985-3990.
Liu, P., Cai, W., Fang, M., Li,Z., Zeng, H., Hu, J., et al (2009). Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology, 20(28), 285707-285713.
Liu, X., Cao, J., Yang, L., Wei, M., Li, X., Lang, J., et al (2015). Growth mechanism, optical and photocatalytic properties of ZnO nanorods@nanoflowers (quantum dots) hybrid nanostructures. Ceramics International, 41(9), 12258-12266.
Liu, Y. (2017). Application of graphene oxide in water treatment Application of graphene oxide in water treatment. Earth and Environmental Science, 94, 1-7.
Ma, H. L., Yang, J. Y., Dai, Y., Zhang, Y. B., Lu, B., & Ma, G. H. (2007). Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Applied Surface Science, 253(18), 7497-7500.
Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water, air, & Soil Pollution, 224(7), 1612-1619.
Malek, M. F., Mamat, M. H., Soga, T., Rahman, S. A., Abu Bakar, S., Ismail, A. S., et al (2015). Thickness-controlled synthesis of vertically alignedc-axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol–gel process. Japanese Journal of Applied Physics, 55(1), 15-21.
Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Lee, W. J., & Patil, P. S. (2011). Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization Applied Surface Science Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Applied Surface Science, 257(23), 9737-9746.
Mallakpour, S., & Rashidimoghadam, S. (2019). Carbon Nanotubes for Dyes Removal. Composite Nanoadsorbents, 211-243.
Marco, D. M., Menzel, R., Bawaked, S. M., Mokhtar, M., Obaid, A. Y., Basahel, N. S., et al (2017). Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: Enhancing the CO2 sorption properties. Carbon, 123, 616-627.
Martins, P. M., Ferreira, C. G., Silva, A. R., Magalhães, B., Alves, M. M., Pereira, L., et al (2018). TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B: Engineering, 145, 39-46.
Mau?ec, D., Šuligoj, A., Risti?, A., Dra?i?, G., Pintar, A., & Tušar, N. N. (2018). Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310, 32-41.
Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., et al (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials Research, 1109, 55-59.
Mekasuwandumrong, O., Pawinrat, P., Praserthdam, P. and Panpranot, J. (2010). Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chemical Engineering Journal, 164, 77-84.
Meng, X. Q., Shen, D. Z., Zhang, J. Y., Zhao, D. X., Lu, Y. M., Dong. L., et al (2005). The structural and optical properties of ZnO nanorod arrays. Solid State Communications, 135(3), 179-182.
Mojsov, K. D., Andronikov, D., Janevski, A., Kuzelov, A., & Gaber, S. (2016). The application of enzymes for the removal of dyes from textile effluents. Advanced Technologies, 5(1), 81–86.
Mokhtar, S. M., Ahmad, M. K., Soon, S.F., Narafizal, N., Faridah, A. B., Suriani, A.B., et al (2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik, 154, 510-515.
Montenegro,D. N., Hortelano, V., Martinez,O., Martinez-Tomas, M. C., Sallet, V., Munoz-Sanjose, V., et al (2013). Non-radiative recombination centres in catalyst- free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. Journal of Physics D: Applied Physics,46(23), 235302-235305.
Morales-torres, S., & Martinez-Pastrana, L. M. (2014). Nanostructured carbon-TiO2 photocatalysts for water purification: An overview. Boletín del Grupo Español del Carbón, 32, 9-14.
Moura, K. F., Maul, J., Albuquerque, A. R., Casali, G. P., Longo, E., Keyson, D., et al (2014). TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation. Journal of Solid State Chemistry, 210(1), 171-177.
Mousavi, S. F., Davar, F., & Loghman-Estarki, M. R. (2016). Controllable synthesis of ZnO nanoflowers by the modified sol–gel method. Journal of Materials Science: Materials in Electronics, 27(12), 12985–12995.
Muda, M. R., Ramli, M. M., Mat Isa, S. S., Halin, D. S. C., Talip, L. F. A., Mazelan, N. S., et al 2017). Structural and Morphological investigation for water-processed graphene oxide/single-walled carbon nanotubes hybrids. Materials Science and Engineering, 209(1), 12030-12039.
Mulmi, D. D., Thapa, D., Dahal, B., Baral, D., & Solanki, P. R. (2016). Spectroscopic studies of boron doped titanium dioxide nanoparticles. International Journal of Materials Science and Engineering, 4, 172-178.
Muqoyyanah, 2018. Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application. (Doctoral Dissertation).Universiti Pendidikan Sultan Idris, Malaysia
Mustafa, M. K., Iqbal, Y., Majeed, U., & Sahdan, M. Z. (2017). Effect of precursor’s concentration on structure and morphology of ZnO nanorods synthesized through hydrothermal method on gold surface. AIP Conference Proceedings, 1788(1), 30120-30128.
Nalumaga, H. (2017). A Study on the Properties of ZnO/TiO2 Nanocomposite Prepared via the Sol- gel Technique. (Master's Dissertation). Kangwon National University, Korea.
Neelgund, G. M., & Oki, A. (2016). Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. Journal of Colloid and Interface Science, 484, 135-145.
Nenavathu, B. P., Kandula, S., & Verma, S. (2018). Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide. RSC Advances, 8(35), 19659–19667.
Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Materials, 89(2–3), 303-317.
Nguyen-Phan, T. D., Pham, V. H., Shin, W. E., Pham, H. D., Kim ,S., Chung, J. S., et al (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226-232.
Nidheesh, P. V., Olvera-Vargas, H., Oturan, N., & Oturan, M. A. (2017). Heterogeneous Electro-Fenton Process: Principles and Applications. Electro- Fenton Process, 85-110.
Nikoofar, K., Haghighi, M., Lashanizadegan, M., & Ahmadvand, Z. (2014). ZnO nanorodes: Efficient and reusable catalyst for the synthesis of substituted imidazoles in water media. Journal of Taibah University of Science, 9(4), 570- 578.
Noroozi, M., Zakaria, A., Radiman, S., & Wahab, Z. A. (2016). Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties. PLOS ONE, 11(4), 1-17.
Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42.
Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.
Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., et al (2017). Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 326, 454-461.
Parihar, V., Raja, M., & Paulose, R. (2018). A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Reviews on Advanced Materials Science, 53(2), 119-130.
Park, J. S., Mahmud, I., Shin, H. J., Park, M. K., Ranjkesh, A., Lee, D. K., & Kim, H. R. (2016). Effect of surface energy and seed layer annealing temperature on ZnO seed layer formation and ZnO nanowire growth. Applied Surface Science, 362, 132-139.
Parsa, B. J., Rezaei, M., & Soleymani, A.R (2009). Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. Journal of Hazardous Materials, 168(2-3), 997-1003
Parvez, K., Wu, Z. S., Li, R., Liu, X., Graf, R., Feng, X., & Müllen, K. (2014). Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 136(16), 6083-6091.
Paul, S. S. P., Radhika, N., Borang, O., Lydia, I. S., & Merlin, J. P. (2017). Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst. Journal of Materials Science: Materials in Electronics, 28(9), 6722-6730.
Pawar, R. C., Shaikh, J. S., Suryavanshi, S. S., & Patil, P. S. (2012). Growth of ZnO nanodisk, nanospindles and nanoflowers for gas sensor: pH dependency. Current Applied Physics, 12(3), 778-783.
Pei, S., Wei, Q., Huang, K., Cheng, H. M., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), 1-9.
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., et al. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331-349.
Pérez-ramírez, E. E., Luz-asunción, M. D., Martínez-hernández, A. L., & Velasco- santos, C. (2016). Graphene materials to remove organic pollutants and heavy metals from water: Photocatalysis and Adsorption-Materials, Mechanism and Applications, 491-522.
Peter, I. J., Praveen, E., Vignesh, G., & Nithiananth, P. (2017). ZnO nanostructures with different morphology for enhanced photocatalytic activity. Materials Research Express, 4(12), 1-18.
Piaskowski, K., ?widerska-D?browska, R., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371–1384.
Poorebrahimi, S., & Norouzbeigi, R. (2015). A facile solution-immersion process for the fabrication of superhydrophobic gibbsite films with a binary micro-nano structure: Effective factors optimization via Taguchi method. Applied Surface Science, 356, 157-166.
Prasannalakshmi, P., & Shanmugam, N. (2017). Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Materials Science in Semiconductor Processing, 61, 114-124.
Prathan, A., Sanglao, J., Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A., & Wongratanaphisan, D. (2020). Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO2 Nanorods. Scientific Reports, 10(1), 1-11.
Pudukudy, M., & Yaakob, Z. (2015). Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. Journal of Cluster Science, 26(4), 1187-1201.
Purwaningsih, S. Y., Pratapa, S., Triwikantoro, & Darminto. (2016). Nano-sized ZnO powders prepared by co-precipitation method with various pH. AIP Conference Proceedings, 1725(1), 20063-20069.
Qin, D., Bi, Y., Feng, X., Wang, W., Barber, G. D., Wang, T., et al (2015). Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chemistry of Materials, 27(12), 4180-4183.
Rajendar, V., Raghu, Y., Rajitha, B., Chakra, C. S., Rao, K. V., & Park, S. H. (2017). Synthesis, characterization, and photocatalytic behaviour of nanocrystalline ZnO, TiO2 and ZnO/TiO2 nanocomposites. Journal of Ovonic Research, 13(3), 101-111.
Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171–192.
Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Applied Nanoscience, 7(5), 253–259.
Ray, S. C. (2015). Application and Uses of Graphene Oxide and Reduced Graphene Oxide. Applications of Graphene and Graphene-Oxide Based Nanomaterials, 39- 55.
Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 170(2–3), 560–569.
Reyes-Coronado, D., Rodr?guez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., Coss, R., & Oskam, O. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19, 1-11.
Ridhuan, N. S., Fong, Y. P., Lockman, Z., & Razak, K. A. (2011) Formation of ZnO nanorods via seeded growth hydrothermal reaction. Applied Mechanics and Materials 83, 116-122.
Ridhuan, N. S., Razak, K. A., Lockman, Z., & Aziz, A. A. (2012). Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PloS one, 7(11), 50405-50419.
Rihtnesberg, D. B., Almqvist, S., Wang, Q., Sugunan, A., Yang, X., Toprak, M. S., et al (2011). ZnO nanorods/nanoflowers and their applications. The 4th IEEE International NanoElectronics, 1-2.
Rosnan, N. A., Haan, T. Y., & Mohammad, A. W. (2018). Synthesis and characterization of ZnO-decorated GO nanocomposite material with different ZnO loading through sol-gel method. Jurnal Kejuruteraan, 30(2), 249-255.
Saleh, T. A. (2013). The role of carbon nanotubes in enhancement of photocatalysis. Syntheses and Applications of Carbon Nanotubes and Their Composites.
Saner, B., Gürsel, S. A., & Yürüm, Y. (2013). Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells. Fullerenes, Nanotubes and Carbon Nanostructure, 21(3), 233-247.
Sanchez, L., Guz, L., García, P., Ponce, S., Goyanes, S., Marchi, M. C., et al (2014). Influence of pyrolytic seeds on ZnO nanorod growth onto rigid substrates for photocatalytic abatement of Escherichia coli in water. Water Science and Technology: Water Supply, 14(6), 1087–1094.
Saravanan, R., Gracia, F., and Stephen, A. (2017). Basic, Principles, Mechanism,and Challenges of Photocatalysis. Springer Series on Polymer and Composite Materials, 19-40.
Schlur, L., Calado, J. R., & Spitzer, D. (2018). Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. Royal Society Open Science, 5(8), 1- 11.
Seema, S. (2015). Development of novel polystyrene supported TiO2 photocatalysis for dye wastewater treatment. (Doctoral dissertation). Jaypee University of Engineering and Technology, Guna, India.
Shaban, M., Ashraf, A. M., & Abukhadra, M. R. (2018). TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; Fabrication, characterization , and application. Scientific Reports, 8(1), 1-17.
Shahriary, L., Ghourchian, H., & Athawale, A. A. (2014). Graphene-multiwalled carbon nanotube hybrids synthesized by gamma radiations: Application as a glucose sensor. Journal of Nanotechnology, 2014, 1-10.
Shan, A. Y., Ghazi, T. I. M., & Rashid, S. A. (2010). Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 389(1-2), 1-8.
Sharma, M., Behl, K., Nigam, S., & Joshi, M. (2018). TiO2-GO nanocomposite for energy and environmental applications: A green synthesis approach. Vacuum, 156, 434-439.
Sharma, S. K., Misra, A. K., Ismail, S., & Singh, U. N. (2006). Remote Raman spectroscopy of various MIXED and composite mineral phases at 7.2 m distance. NASA Technical Report Server, 1-2.
Singh, N., Pandey, P., & Haque, F. Z. (2012). Effect of heat and time-period on the growth of ZnO nanorods by sol–gel technique. International Journal for Light and Electron Optics, 123(15), 1340-1342.
Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993– 65011.
Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes-A review. International Biodeterioration and Biodegradation, 104, 21-31.
Singh, S., Mahalingam, H., & Singh, P. K. (2013). Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Applied Catalysis A: General, 462, 178-195.
Siwi?ska-Stefa?ska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S., & Jesionowski, T. (2018). TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials, 11(5), 841-859.
Siwi?ska-Stefa?ska, K., Kubiak, A., Piasecki, A., Dobrowolska, A., Czaczyk, K., Motylenko, M., et al (2019). Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties. Applied Surface Science, 463, 791-801.
Sohail, M., Saleem, M., Ullah, S., Saeed, N., Afridi, A., Khan, M., & Arif, M. (2017). Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 3(3), 110-116.
Song, J., & Lim, S. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods. Journal of Physical Chemistry C, 111(2), 596-600.
Srivastava, R. K., Xingjue, W., Kumar, V., Srivastava, A., & Singh, V. (2014). Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application. Journal Of Alloys And Compounds, 612, 343-348.
Sui, Z., Meng, Q., Zhang, X., Ma, R., & Cao, B. (2012). Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry, 22(18), 8767-8771.
Sun, L. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 1-10.
Sun, N., Ma, J., Wang, C., Xue, J., Qiang, L., & Tang, J. (2018). A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlattices and Microstructures, 121, 1–8.
Sunyani, M. (2013). Synthesis and characterization of zinc oxide nanoparticles. Journal of Thermal Analysis and Calorimetry, 111(2), 1107-1119.
Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., et al (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743.
Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Rohani, R., Yusoff, I. I., et al (2019). Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoride-based nanofiltration membrane for dye rejection. Water, Air, & Soil Pollution, 230(8), 176.
Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Applied surface science growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation. Applied Surface Science, 258(10), 4283-4287.
Taziwa, R., Meyer, E., & Takata, N. (2017). Structural and Raman spectroscopic characterization of C-TiO2 nanotubes synthesized by a template-assisted sol-gel technique. Journal of Nanoscience & Nanotechnology Research, 1, 1-11.
Tokarský, J., Mat?jka, V., Neuwirthová, L., Vontorová, J., Kutláková, K. M., Kukutschová., et al (2013). A low-cost photoactive composite quartz sand/TiO2. Chemical Engineering Journal, 222, 488-497.
Topkaya, E., Konyar, M., Yatmaz, H. C., & Öztürk, K. (2014). Pure ZnO and composite ZnO/TiO 2 catalyst plates: A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. Journal Of Colloid And Interface Science, 430, 6-11.
Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., & Shrivastav, B. R. (2014). ZnO nanoflowers: Novel biogenic synthesis and enhanced photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 141, 288-295.
Uribe López, M. C., Alvarez Lemus, M. A., Hidalgo, M. C., López González, R., Quintana Owen, P., Oros-Ruiz, S., et al (2019). Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. Journal of Nanomaterials, 2019, 1-12.
Vallejo, W., Rueda, A., Díaz-Uribe, C., Grande, C., & Quintana, P. (2019). Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. Royal Society open science, 6(3), 181824- 181841.
Vaseem, M., Umar, A., & Hahn, Y.B. (2010). ZnO nanoparticles: Growth, properties, and applications. American Sciencetific, 5, 1-36.
Vasudevan, A., Jung, S., & Ji, T. (2011). Synthesis and characterization of hydrolysis grown zinc oxide nanorods. ISRN Nanotechnology, 2011, 1-7.
Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano- flowers. Materials Research Bulletin, 42(9), 1640–1648.
Wahyuono, R. A., Schmidt, C., Dellith, A., Dellith, J., Schulz, M., Seyring, M., et al (2016). ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties. Open Chemistry, 14(1), 1-12.
Wang, B., Wan, J., Liu, Q., Zhang, J., & Wang, H. (2015). Optimizing the prepared condition of TiO2 1D/3D network structure films to enhance the efficiency of dye- sensitized solar cells. RSC Advances, 5(101), 82968-82976.
Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L., & Wang, X. (2012). Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. Applied Materials and Interfaces. 4(6), 3084-3090.
Wang, X., Ahmad, M., & Sun, H. (2017). Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications. Materials, 10(11), 1304-1057
Wang, Y., Zhang, L., Deng, K., Chen, X., & Zou, Z. (2007). Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. Journal of Physical Chemistry, 111(6), 2709-2714.
Wang, Y., Zhang, H., Qu, S., & Su, C. (2016). Controllable synthesis and photocatalytic activity of ZnO nanorods. Ferroelectrics, 504(1), 46-52.
Wang, Z., Xue, M., Huang, K., & Liu, Z. (2010). Textile Dyeing Wastewater Treatment. Advance in Treating Textile Effluent, 92-116
Wetchakun, K., Wetchakun, N., & Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19-49.
Woo, H., Sung, H., Gil, H., Chan, J., & Young, D. (2010). Growth, structural, Raman , and photoluminescence properties of rutile TiO2 nanowires synthesized by the simple thermal treatment. Journal of Alloys and Compounds, 504(1), 217-223.
Wu, K., Wu, B., Li, C., & Hu, X. (2018). Gradation, Dispersion, and Tribological Behaviors of Nanometric Diamond Particles in Lubricating Oils. Mechanical Engineering,113-133.
Xie, J., Li, Y., Zhao, W., Bian, L., & Wei, Y. (2011). Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technology, 207, 140-144.
Xie, Q., Dai, Z., Liang, J., Xu, L., Yu, W., & Qian, Y. (2005). Synthesis of ZnO three- dimensional architectures and their optical properties. Solid State Communications, 136(5), 304-307.
Yahia, S. B., Znaidi, L., Kanaev, A., & Petitet, J. P. (2008). Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(4), 1234-1238.
Yahya, N., Aziz, F., Jamaludin, N. A., Mutalib, M. A., Ismail, A. F., Salleh, W. N., et al (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering, 6(6), 7411-7425.
Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978-10988.
Yan, E. Y. C., Zakaria, S., & Chia, C. H. (2014, September). One-step synthesis of titanium oxide nanocrystal-rutile by hydrothermal method. AIP Conference Proceedings, 1614(1), 122-128.
Yang, Z., Wang, B., Cui, H., An, H., Pan, Y., & Zhai, J. (2015). Hydrothermal synthesis of crystal-controlled TiO2 nanorods: Rutile and brookite as highly active Photocatalysts. The Journal of Physical Chemistry C, 119(29), 16905-16912.
Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avc?, A., Kam??, H., & Achour, S. (2017). Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC advances, 7(47), 29806-29814.
Yin, T., Chen, N., Zhang, Y., Cai, X., & Wang, Y. (2014). Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate. Superlattices And Microstructures, 74, 279-293.
Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent Advances and Applications of Semiconductor Photocatalytic Technology. Applied Sciences, 9(12), 2489.
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 1-22.
Zhao, X. S., Bao, X. Y., Guo, W., & Lee, F. Y. (2006). Immobilizing catalysts on porous materilas. Materials Today, 9(3), 32-39.
Zhao, Y., Gu, X., & Qiang, Y. (2012). Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films, 520(7), 2814-2818.
Zhou, Q., Wen, J., Zhao, P., & Anderson, W. (2017). Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials, 7(1), 9-21.
Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., & Li, Z. (2014). Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Advances in Materials Science and Engineering, 2014, 1-7.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |