UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :TA Engineering (General). Civil engineering (General)
Main Author :Nur Jannah Idris
Title :Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This   study   aimed   to   fabricate   sand/zinc   oxide   (ZnO)   nanorods   (NRs)-based nanocomposite  via  sol-gel  immersion  method  with  titanium  dioxide  (TiO2)  and graphene oxide  (GO)-based materials for methylene blue (MB) dye degradation.The nanocomposite  photocatalyst  was   initially  fabricated  by  growing  ZnO  via  sol-gel immersion followed by synthesizing TiO2   using hydrothermal method on the sand as a substrate. Different concentration and synthesis time  were used as parameters for the fabrication.  These  nanocomposites  were  then  hybridized  with   GO  and  GO_multi- walled carbon nanotubes (MWCNTs) hybrid solution via immersion method. Prior to  hybridization, the initial GO was synthesized using electrochemical exfoliation method assisted by  commercially available single-tail sodium dodecyl sulphate surfactant and was further mixed with  MWCNTs to form GO_MWCNTs hybridsolution. The sand/ZnO, sand/ZnO/TiO2      nanocomposites,     and      sand/ZnO/TiO2/GO-based     photocatalyst materials  were  then  characterized  by  using   ultraviolet  (UV)-light  irradiation  within three-days   interval   for   MB   dye   degradation,    field   emission   scanning   electron microscopy     (FESEM),     micro-Raman     spectroscopy      and     ultraviolet-visible specstroscopy  (UV-vis).  The  finding,  sand/ZnO  NRs  (4h)   presented  the  highest photocatalysis performance (92.64%) as compared to sand/ZnO/TiO2  nanocomposite and and/ZnO/TiO2/GO-based photocatalyst materials. This was due to high density and  actives sites presented by sand/ZnO NRs (4h) which lead to higher adsorption of MB molecules on its  surfaces. As for the conclusion, sand/ZnO NRs (4h) demonstrated a potential ability to be applied  as a photocatalyst material to degrade MB solution. The implication  of  this  study  is  a  novel,   simpler,  low-cost  and  green  approach  for  the production  of  sand/ZnO,  sand/ZnO/TiO2   nanocomposites,  and  sand/ZnO/TiO2/GO-based photocatalyst materials for photocatalysis application.  

References

Abdel-Maksoud, Y. K., Imam, E., & Ramadan, A. R. (2018). Sand supported TiO2 photocatalyst in a 

tray photo-reactor for the removal of emerging contaminants in

wastewater. Catalysis Today, 313, 55-62.

 

Abdulrahman, A. F., Ahmed, S. M., & Almessiere, M. A. (2017). Effect of the growth time on the 

optical properties of ZnO nanorods grown by low temperature method. 12(4), 1001-1009.

 

Abdulrazzak,  F.  H.  (2016).  Enhance  photocatalytic  activity  of  TiO2    by  carbon nanotubes. 

International Journal of ChemTech Research, 9(3), 431-443.

 

Adhikari,  S.,  Sarkar,  D.,  &  Madras,  G.  (2015). Highly  efficient  WO3–ZnO  mixed oxides for 

photocatalysis. RSC Advances, 5(16), 11895-11904.

 

Adnan M. A. M., Julkapli, N. M., & Hamid, S. B. A. (2016). Review on ZnO hybrid photocatalyst: 

Impact on photocatalytic activities of water pollutant degradation. Inorganic Chemistry, 36(2), 

1-28.

 

Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A.B., Mohamed, A., et al (2016). 

Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with  various  reaction  times  

using  one  step  hydrothermal  method.  Journal  of Materials Science: Materials in Electronics, 

27(8), 7920-7926.

 

Ahn, K., Lee, H. U., Jeong, Y. M., Kim, J. P., Jeong, S. Y., & Cho, C. R. (2011). Effects of  TiO2  

nanorod  length  and  post-annealing on  the  electrical  properties  of  TiO2 nanobarbed fiber 

structures. Journal of nanoscience and nanotechnology, 11(8), 7155-7158.

 

Albert, E. L., Azurahanim, Che Abdullah, C. A., & Shiroshaki, Y. (2018). Synthesis and 

characterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsion 

method. Results in Physics, 11, 944-950.

 

Alcántara, R., Navas, J., Fernández-Lorenzo, C., Martín, J., Guillén, E., & Anta, J. A. (2011). 

Synthesis and Raman spectroscopy study of TiO2  nanoparticles. Physica Status Solidi (c), 8(6), 

1970-1973.

 

Alhomoudi, I. A., & Newaz, G. (2009). Residual stresses and Raman shift relation in anatase TiO2  

thin film. Thin Solid Films, 517(15), 4372-4378.

 

Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A.

J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency of

different  catalysts  on  removal  of  methylene  blue.  Asian  Journal  of  Chemistry,

26(24), 8445-8448.

 

Al-lami, S., & Jaber, H. (2014). Controlling ZnO nanostructure morphology on seedless

substrate  by  tuning  process  parameters  and  additives.  Chemistry  and  Material Research, 

6(4), 1-9.

 

Alwash, A., Adil, H., Hussain, Z., & Yousif, E. (2018). Potential of carbon nanotubes in enhance of 

photocatalyst activity. L Upine Publishers 1(3), 65–70.

 

Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In advanced   

oxidation   processes   for   wastewater   treatment.   Emerging   Green Chemical Technology, 

135-175.

 

Anjum,  M.,  Miandad,  R.,  Waqas,  M.,  Gehany,  F.,  &  Barakat,  M.  A.  (2016). Remediation  of 

 wastewater  using  various  nano-materials.  Arabian  Journal  of Chemistry, 1-23.

 

Amin,  G.,  Asif,  M.  H.,  Zainelabdin,  A.,  Zaman,  S.,  Nur,  O.,  &  Willander,  M. (2011). 

Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO 

Nanostructures Grown by the Hydrothermal Method. Journal of Nanomaterials, 2011, 1-9.

 

Araújo, E. S., da Costa, B. P., Oliveira, R. A., Libardi, J., Faia, P. M., & de Oliveira, H.

P.      (2016).      TiO2/ZnO      hierarchical      heteronanostructures:      Synthesis, 

characterization  and  application  as  photocatalysts.  Journal  of  environmental chemical 

engineering, 4(3), 2820-2829.

 

Arthi.   G   (2016).   Investigation   of   Growth   and   Functional   Properties   of   TiO2 

Nanostructures    for    Dye    Sensitized    Solar    Cell    Applications.    (Doctoral 

dissertation). SRM University, India

 

Ashrafi, A., & Jagadish, C. (2007). Review of zinc blende ZnO: Stability of metastable ZnO phases. 

Journal of Applied Physics, 102(7), 1-13.

 

Asmatulu,  R.  (2012).  Nanocoatings  for  corrosion  protection  of  aerospace  alloys.

Corrosion Protection and Control Using Nanomaterials, 357-374.

 

Awalludin, M., Mamat, M. H., Sahdan, M. Z., Mohamad, Z., & Rusop, M. (2013). Zinc oxide nanorods 

characteristics prepared by sol-gel immersion method immersed

at different times. In Advanced Materials Research, 667, 375-379.

 

Azam, A., & Babkair, S. S. (2014). Low-temperature growth of well-aligned zinc oxide

nanorod   arrays   on   silicon   substrate   and   their   photocatalytic   application.

International Journal of Nanomedicine, 2109-2115.

 

Azmina, M. S., Md Nor, R., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman,

Z. (2017). Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica 

microparticles. Applied Nanoscience, 7(8), 885–892.

 

Ba-abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013). 

Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via 

sol - gel technique. Journal of Industrial and Engineering Chemistry, 19(1), 99-105.

 

Bagheri, M., Najafabadi, N. R., & Borna, E. (2019). Removal of reactive blue 203 dye photocatalytic 

using ZnO nanoparticles stabilized on functionalized MWCNTs. Journal of King Saud 

University-Science, 1-6.

 

Bai, L. J., Kou, G., Gong, Z. Y., & Zhao, Z. M. (2013). Effect of Zn and Ti mole ratio on 

microstructure and photocatalytic properties of magnetron sputtered TiO2-ZnO heterogeneous  

composite  film.  Transactions  of  Nonferrous  Metals  Society  of China (English Edition), 

23(12), 3643-3649.

 

Balachandran, U. G. E. N., & Eror, N. G. (1982). Raman spectra of titanium dioxide.

Journal of Solid State Chemistry, 42(3), 276-282.

 

Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide  

(TiO2/Fe3O4)  based  nanocomposites  for  the  removal  of  methylene  blue. Applied Surface 

Science, 439, 560-568.

 

Baneto, M., Enesca, A., Lare, Y., Jondo, K., Napo, K., & Duta, A. (2014). Effect of precursor 

concentration on structural, morphological and opto-electric properties of  ZnO  thin  films  

prepared  by  spray  pyrolysis.  Ceramics  International,  40(6), 8397-8404.

 

Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M., & Dutta, J. (2010). Photocatalytic paper using 

zinc oxide nanorods. Science and Technology of Advance Materials, 11, 1-8.

 

Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye Reactive Blue 181 solution by 

UV/H2O2  process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.

 

Batakliev, T., Petrova-doycheva, I., Angelov, V., Georgiev, V., Ivanov, E., Kotsilkova,

R., et al (2019). Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of poly (actic acid) composites. Applied

sciences, 1-15.

 

Benkara,   S.,   &   Ghamri,   H.   Preparation   and   characterization   of   ZnO/TiO2 

nanocomposite by anodization and hydrothermal synthesis. International Letters

of Chemistry, Physics and Astronomy, 55, 27-33.

 

Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile   dye  

 removal   from   wastewater:   A   review.    Critical   Reviews   in Environmental Science and 

Technology, 47(19), 1836-1876.

 

Bhunia, A. K., Jha, P. K., Rout, D., & Saha, S. (2016). Morphological properties and raman 

spectroscopy of ZnO nanorods. Journal of Physical Sciences, 21, 111-118.

 

Bîru,  E.  I.,  &  Iovu,  H.  (2018).  Graphene  Nanocomposites  Studied  by  Raman Spectroscopy. 

In G. M. D. Nascimento (Ed.), Raman Spectroscopy (pp. 179-201).

 

Bitenc,  M.,  &  Orel,  Z.  C.  (2009).  Synthesis  and  characterization  of  crystalline 

hexagonal bipods of zinc oxide. Materials Research Bulletin, 44(2), 381-387.

 

Boberg,  J.  (2005).  Freswater availability.  In  A  J.  Boberg  (Ed),  Changes  and  Water 

Management Policies Affect Freshwater Resource (pp. 15-28).

 

Bodson, C. J., Lambert, S. D., Alié, C., Cattoën, X., Pirard, J. P., Bied, C., et al (2010). 

Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-doped 

TiO2  materials. Microporous and Mesoporous Materials, 134(1-3), 157-164.

 

Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.L., & El Bounia, N.E. (2008). Blends of  carbon  

blacks  and  multiwall  carbon  nanotubes  as  reinforcing  fillers  for hydrocarbon  rubbers.  

Journal  of  Polymer  Science  Part  B:  Polymer  Physics, 46(18), 1939-1951.

 

Brodie, B. C. (1859). On the atomic weight of graphite. Journal Storage, 247-259.

 

Butburee, T., Kotchasarn, P., Hirunsit, P., Zhuxing, S., Qijun, T., Khemthong, P.,et al (2019).  

New  understanding  of  crystal  control  and  facet  selectivity  of  titanium dioxide ruling 

photocatalytic. Journal of Materials Chemistry A, 1-11.

 

Byrappa, K., Dayananda, A. S., Sajan, C. P., Basavalingu, B., Shayan, M. B., Soga, K.,   et   al   

(2008).   Hydrothermal   preparation   of   ZnO:CNT   and   TiO2:CNT composites  and  their  

photocatalytic  applications.  Journal  of  Materials Science,

43(7), 2348-2355.

 

Carp,  O.,  Huisman,  C. L.,  & Reller,  A.  (2004).  Photoinduced  reactivity of  titanium

dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177.

 

Chaudhary,  D.,  Singh,  S.,  Vankar,  V.  D.,  &  Khare,  N.  (2018).  ZnO  nanoparticles 

decorated   multi-walled   carbon   nanotubes   for   enhanced   photocatalytic   and 

photoelectrochemical    water    splitting.    Journal    of    Photochemistry    and Photobiology 

A: Chemistry, 351, 154-161.

 

Chen, J., Yao, B., Li, C., & Shi G. (2013). An improved Hummers method for eco- friendly synthesis 

of graphene oxide. Carbon, 64(1), 225-229.

 

Chen, J. D., Liao, W. S., Jiang, Y., Yu, D. N., Zou, M. L., Zhu, H., et al (2016). Facile 

fabrication  of  ZnO/TiO2  heterogeneous  nanofibres  and  their  photocatalytic behaviour    and   

 mechanism    towards    Rhodamine    B.    Nanomaterials    and Nanotechnology, 6, 9-16.

 

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and 

rapid photocatalytic degradation of azo dyes. Nanoscale Reasearch Letters,4-13.

 

Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisted 

dispersion of multi-walled carbon nanotubes in biodegradable Poly (ε-caprolactone)   for   

mechanical   and   electrically   conductive   enhancement. Polymer Testing, 65, 387-397.

 

Cheng,  C.,  Amini,  A.,  Zhu,  C.,  Xu,  Z.,  Song,  H.,  &  Wang,  N.  (2014).  Enhanced 

photocatalytic  performance  of  TiO2-ZnO  hybrid  nanostructures.  Sciencetific Reports, 4(1),  

1-5.

 

Cheng, P., Wang, Y., Xu, L., Su, Z., Jin, F., Liu, F., et al (2016). High specific surface area 

urchin-like hierarchical ZnO-TiO2 architectures: Hydrothermal synthesis and photocatalytic 

properties. Materials Letters, 175, 52-55.

 

Cirak, B.B., Caglar, B., Kilinc, T., Karadeniz, M. S., Erdogan, Y., Kilic, S., et al (2018). 

Synthesis  and  characterization  of  ZnO  nanorice  decorated  TiO2  nanotubes  for enhanced 

photocatalytic activity. Materials Research Bulletin, 1-32.

 

Dalt, S. D., Alves, A. K., & Bergmann, C. P. (2016). Preparation and performance of TiO2-ZnO/CNT 

hetero-nanostructures applied to photodegradation of organic dye. Materials Research. 19(6), 

1372–1375.

 

Danish, R., Ahmed, F., Arshi, N., Anwar, M. S., & Koo, B. H. (2014). Facile synthesis of  

single-crystalline  rutile  TiO2  nano-rods  by solution  method. Transactions  of

Nonferrous Metals Society of China, 24, 152-156.

 

Devaraj, R., Karthikeyan, K., & Jeyasubramanian, K. (2013). Synthesis and properties

of ZnO nanorods by modified Pechini Process, Applied Nanoscience, 3(1), 37-40.

 

Duan, Q., Lee, J., Liu, Y., & Qi, H. (2016). Preparation and photocatalytic performance of 

MWCNTs/TiO2 nanocomposites for degradation of aqueous substrate.  Journal of Chemistry, 2016, 1-8.

 

Durmus,  Z.,  Kurt,  Z.  K.,  &  Durmus,  A.  (2019).  Synthesis  and  characterization  of 

graphene  oxide/zinc  oxide  (GO/ZnO)  nanocomposite  and  its  utilization  for photocatalytic   

degradation   of   basic   fuchsin   dye.   Materials   Science   inc Nanomaterials & Polymers, 

271-278.

 

Eddy,  D.  R.,  Puri,  F.  N.,  &  Noviyanti,  A.  R.  (2015).  Synthesis  and  photocatalytic 

activity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chemistry, 17, 

55-58.

 

Ehrampoush, M. H., Moussavi, G. R., Ghaneian, M. T., Rahimi, S., & Ahmadian, M. (2011).  Removal  

of  methylene  blue  dye  from  textile  simulated  sample  using tubular   reactor   and   

TiO2/UV-C   photocatalytic   process.   Iranian   Journal   of Enviromental. Health Science & 

Engineering, 8(1), 35-40.

 

Ekthammathat,   N.,   Thongtem,   T.,   Phuruangrat,   A.,   &   Thongtem,   S.   (2013). 

Photoluminescence of hexagonal ZnO nanorods hydrothermally grown on Zn foils in  KOH  solutions  

with  different  values  of  basicity.  Journal  of  Nanomaterials, 2013, 1-4.

 

Etcheverry, L. P., Flores, W. H., Silva, D. L. da, & Moreira, E. C. (2018). Annealing Effects on 

the Structural and Optical Properties of ZnO Nanostructures. Materials Research, 21(2),1-7.

 

Fatiatun,  2018.  Fabrication  of  graphene  oxide/zinc  oxide  nanocomposite  through spraying   

method   for   solar   cell   application.   (Master's   Thesis).   Universiti Pendidikan Sultan 

Idris, Malaysia.

 

Fei, B. L., Zhong, J. K., Deng, N. P., Wang, J. H., Liu, Q. B., Li, Y. G., & Mei, X.

(2018). A novel 3D heteropoly blue type photo-Fenton-like catalyst and its ability to remove dye 

pollution. Chemosphere, 197, 241-250.

 

Fudzi, L. M., Zainal, Z., Lim, H. N., Chang, S. K., & Holi, A. M. (2018). Effect of temperature and 

growth time on vertically aligned ZnO nanorods by simplified hydrothermal  technique  for  

photoelectrochemical  cells. Materials, 11(5),  704- 717.

 

Fosso-kankeu, E., Waanders, F., & Geldenhuys, M. (2015). Photocatalytic degradation of  dyes   using   TiO2     nanoparticles   of   different   shapes.   Engineering   &

Technology,1-6.

 

Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide ion  in  

aqueous  solutions  at  titanium  dioxide  powder.  Journal  of  the  American Chemical Society, 

99(1), 303-304.

 

Fujishima, A., & Honda, K. (1972a). TiO2  photoelectrochemistry and photocatalysis.

Nature, 238(5358), 37-38.

 

Fujishima,  A.,  &  Honda,  K.  (1972b).  Electrochemical  Photolysis  of  Water  at  a 

Seminconductor Electrode. Nature, 238(5358), 38-40.

 

Gan,   W.   Y.,   Lee,   M.   W.,   Amal,   R.,   Zhao,   H.,   &   Chiang,   K.   (2008). 

Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol-gel method with 

tri-block copolymer as structure directing agent. Journal of Applied Electrochemistry, 38(5), 

703-712.

 

Gangu,  K.  K.,  Maddila,  S.,  &  Jonnalagadda,  S.  B.  (2019).  A  review  on  novel composites 

of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Science of the 

Total Environment, 646, 1398-1412.

 

Gaya,  U.  I.  (2013).  Heterogeneous  photocatalysis  using  inorganic  semiconductor solids.

 

Ge, J., Zhang, Y., & Park, S. J. (2019). Recent advances in carbonaceous photocatalysts with  

enhanced  photocatalytic  performances:  A  mini  review.  Materials,  12(12), 1916-1941.

 

Ghaderi,  A.,  Abbasi,  S.,  &  Farahbod,  F  (2015).  Synthesis  of  SnO2  and  ZnO Nanoparticles 

and SnO2-ZnO Hybrid for the Photocatalytic Oxidation of Methyl Orange. Iranian Journal of Chemical 

Engineering, 12(3), 96-105.

 

Gita,  S.,  Hussan,  A.,  &  Choudhury,  T.  G.  (2017).  Impact  of  textile  dyes  waste  on 

aquatic  environments  and  its  treatment.  Environment  &  Ecology,  35(3),  2349- 2353.

 

Goak,  J.  C.,  Lee,  S.  H.,  Han,  J.  H.,  Jang,  S.  H.,  Kim,  K.  B.,  Seo,  Y.,  et  al  

(2011). Spectroscopic  studies  and  electrical  properties  of  transparent  conductive  films fabricated  

  by    using    surfactant-stabilized    single-walled    carbon    nanotube suspensions. Carbon, 

49(13), 4301-4313.

 

Greenwood, N., N., & Earnshaw, A. (1997). Chemistry of Elements (2?? ed.).

 

Gupta, S. M., & Tripathi, M. (2011). A review of TiO2  nanoparticles. Chinese Science

Bulletin, 56(16), 1639-1657.

 

Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M. I., & Mahmood, A. J. (2013).  

Synthesis  and  characterization  of  ZnO-TiO2   nanocomposites  and  their application as 

photocatalysts. International Nano Letters, 3(5), 1-8.

 

Hadjltaief, H. B., Zina, M. B., Galvez, M. E., & Costa, P. D. (2016). Photocatalytic degradation of 

methyl green dye in aqueous solution over natural clay-supported ZnO-TiO2  catalysts. Journal of 

Photochemistry and Photobiology A: Chemistry, 315, 25-33.

 

Hakki,  H.  K.,  Allahyari,  S.,  Rahemi,  N.,  &  Tasbihi,  M.  (2019).  Surface  properties, 

adherence, and photocatalytic activity of sol–gel dip-coated TiO2–ZnO films on glass plates. 

Comptes Rendus Chimie, 22(5), 393-405.

 

Hanaor,  D.  A.  H.,  &  Sorrell,  C.  C.  (2014).  Sand  supported  mixed-phase  TiO2 

photocatalysts  for  water  decontamination  applications.  Advanced  Engineering Materilas, 16(2), 

248–254.

 

Hardcastle,  F.  D.  (2011).  Raman  spectroscopy  of  titania  (TiO2)  nanotubular  water- 

splitting catalysts. Journal of the Arkansas academy of science, 65(1), 43-48.

 

Hariharan, C. (2006). Photocatalytic degradation of organic contaminants in water by ZnO 

nanoparticles: Revisited. Applied Catalysis A: General, 304, 55-61.

 

Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and 

future prospects. Japanese journal of applied physics, 44(12),8269- 8285

 

Hassaan, M. A., & Nemr, A. El. (2017). Health and environmental impacts of dyes: Mini review. 

American Journal of Environmental Science and Engineering, 1(3), 64-67.

 

Heinonen,  S.,  Nikkanen,  J.-P.,  Hakola,  H.,  Huttunen-Saarivirta,  E.,  Kannisto,  M., 

Hyvärinen, L., et al (2016). Effect of temperature and concentration of precursors on morphology 

and photocatalytic activity of zinc oxide thin films prepared by hydrothermal route. IOP Conference 

Series: Materials Science and Engineering, 123, 12030-12035

 

Hezam, A., Namratha, K., Drmosh, Q. A., Chandrashekar, B. N., Sadasivuni, K. K., Yamani,   Z.   H., 

  et   al   (2017).   Heterogeneous   growth   mechanism   of   ZnO nanostructures and the effects 

of their morphology on optical and photocatalytic properties. CrystEngComm, 19(24), 3299-3312.

 

Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S., Hashim, U.,et

al (2017). Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and 

characterization. AIP Conference Proceedings, 1892, 1-8.

 

Hodkiewicz.  J.  (2010).  Characterizing  Carbon  Materials  with  Raman  Spectroscopy.

Thermo Fisher Scientific, 51946-51950.

 

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical 

review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 

182, 351–366.

 

Hong, M., Dai, L., Li, H., Hu, H., Liu, K., Yang, L., & Pu, C. (2019). Structural Phase Transition  

and  Metallization  of  Nanocrystalline  Rutile  Investigated  by  High- Pressure Raman 

Spectroscopy and Electrical Conductivity. Minerals, 9(7), 441- 452.

 

Hosseini, F., Kasaeian, A., Pourfayaz, F., Sheikhpour, M., & Wen, D. (2018). Novel ZnO-Ag/MWCNT 

nanocomposite for the photocatalytic degradation of phenol. Materials Science in Semiconductor 

Processing, 83, 175-185.

 

Huang,  N.,  Shu,  J.,  Wang,  Z.,  Chen,  M.,  Ren,  C.,  &  Zhang,  W.  (2015).  One-step 

pyrolytic synthesis of  ZnO nanorods with enhanced photocatalytic  activity and high photostability 

under visible light and UV light irradiation. Journal of Alloys and Compounds, 648, 919-929.

 

Huang, Y., Chen, D., Hu, X., Qian, Y., & Li, D. (2018). Preparation of TiO2/carbon 

nanotubes/reduced  graphene  oxide  composites  with  enhanced  photocatalytic activity for the 

degradation of Rhodamine B. Nanomaterials, 8(6), 1-9.

 

Hummers, W.S., & Offeman, R. E. (1957). Preparation of Graphitic Oxide. Journal of American 

Chemical Society, 80(6), 1339.

 

Huyen,  T.  T.  T.,  Chi,  T.  T.  K.,  Dung,  N.  D.,  Kosslick,  H.,  &  Liem,  N.  Q.  (2018). 

Enhanced  photocatalytic  activity  of  {110}-faceted  TiO2   rutile  nanorods  in  the 

photodegradation of hazardous pharmaceuticals. Nanomaterials, 8(5), 276-287.

 

Ibhadon,  A.  O.,  &  Fitzpatrick,  P.  (2013).  Heterogeneous  photocatalysis:  recent advances 

and applications. Catalysts, 3(1), 189-218.

 

Inagaki,  M.,  Kang,  F.,  Toyoda,  M.,  &  Konno,  H.  (2014).  Graphene:  Synthesis  and 

peparation. Advanced Materials Science and Engineering of Carbon, 2, 41–65.

 

Idiawati, R., Mufti, N., Taufiq, A., Wisodo, H., Laila,  I. K. R., & Fuad,  A. (2017).

Effect of Growth Time on the Characteristics of ZnO Nanorods. Materials Science

and Engineering, 202(1), 12050-12059.

 

Ivanova,  M.V.,  Lamprecht,  C.,  Huzil, J.  T.,  & Foldvari,  M.  (2012).  Pharmaceutical

characterization  of  solid  and  dispersed  carbon  nanotubes  as  nanoexcipients.

International Journal of Nanomedicine, 7, 403-415.

 

Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., & Yin, H. (2013). Carbon nanotubes/TiO2  

nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology, 

11(6), 737-742.

 

Johar, M. A., Afzal, R. A., Alazba, A. A., & Manzoor, U. (2015). Photocatalysis and bandgap 

engineering using ZnO nanocomposites. Advances in Materials Science and Engineering, 1-12.

 

Kakaei,  K.,  &  Hasanpour,  K.  (2014).  Synthesis  of  graphene  oxide  nanosheets  by 

electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its  application  for 

 oxygen  reduction.  Journal  of  Materials  Chemistry  A,  2(37), 15428–15436.

 

Kalpana, V. N., & Rajeswari, V. D. (2018). A review on green synthesis , biomedical applications,  

and  toxicity  studies  of  ZnO  NPs.  Bioinorganic  Chemistry  and Applications, 2018, 1-12.

 

Kandiel, T. A., Robben,  L., Alkaim, A., & Bahnemann, D. (2012).  Brookite versus anatase TiO2  

photocatalysts: Phase transformations and photocatalytic activities Photochemical & Photobiological 

Sciences, 12(4), 602-609.

 

Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al (2016). Hidden second 

oxidation step of Hummers method. Chemistry of Materials, 28(3),756- 764.

 

Kant, R. (2011). Textile dyeing industry an  environmental hazard.  Natural Science, 4(1),1-5.

 

Karnati, P., Haque, A., Taufique, M. F. N., & Ghosh, K. (2018). A systematic study on the  

structural  and  optical  properties  of  vertically  aligned  zinc  oxide  nanorods grown by high 

pressure assisted pulsed laser deposition technique. Nanomaterials, 8(2), 62-74.

 

Karthik,  V.,  Saravanan,  K.,  Bharathi,  P.,  Dharanya,  V.,  &  Meiaraj,  C.  (2014).  An 

overview of treatments for the removal of textile dyes. Journal of Chemical and

Pharmaceutical Sciences, 7(4), 301-307.

 

Kashif, M., Al-Douri, Y., Hashim, U., Ali, M. E., Ali, S. M. U., & Willander, M. (2012).

Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. 

Micro & Nano Letters, 7(2), 163-167.

 

Katheresan,  V.,  Kansedo,  J.,  &  Lau,  S.  Y.  (2018).  Efficiency  of  various  recent 

wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 

4676-4697.

 

Kazuhito,  H.,  Hiroshi,  I.,  &  Akira,  F.  (2005).  TiO2   Photocatalysis :  A  historical 

overview  and  future  prospects.  Japanese  Journal  of  Applied  Physics,  44(12), 8269-8285.

 

Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). Evaluating the 

efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journal 

of Molecular Liquids, 258, 354-365.

 

Khalil, I., Julkapli, N., Yehye, W., Basirun, W., & Bhargava, S. (2016). Graphene-gold 

nanoparticles    hybrid-synthesis,    functionalization,    and    application    in    a 

electrochemical and surface-enhanced raman scattering biosensor. Materials, 9(6), 406-443.

 

Khan, M. M., Adil, S. F., & Al-Mayouf, A. (2015). Metal oxides as photocatalysts.

Journal of Saudi Chemical Society, 19(5), 462–464.

 

Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the  presence 

 of  nanostructured  titanium  dioxide:  Influence  of  the  chemical structure of dyes. Journal of 

Molecular Catalysis A: Chemical, 328(1-2), 8-26.

 

Khojasteh,  H.,  Salavati-Niasari,  M.,  &  Sangsefidi,  F.  S.  (2018).  Photocatalytic evaluation 

of rGO/TiO2  NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. Journal 

of Alloys and Compounds, 746, 611-618.

 

Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., & Tony, V.

C.  S.,  et  al  (2016).  Surface  morphology  of  reduced  graphene  oxide-carbon nanotubes hybrid 

film for bio-sensing applications. IEEE Internatinal Conference on Semiconductors Electronics, 

320-323.

 

Ko?odziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc Oxide - From synthesis to application: 

A review. Materials, 7(4), 2833-2881.

 

Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes 

in aqueous solution: kinetic and mechanistic investigations: A review.

Applied Catalysis B: Environmental, 49(1), 1-14.

 

Kumar, A., Madaria, A, R., & Zhou, C. (2010). Growth of aligned single-crystalline

rutile  TiO2    nanowires  on  arbitrary  substrates  and  their  application  in  dye- sensitized 

solar cells. Journal of Physical Chemistry C, 114, 7787-7792.

 

Lacombe, S., & Keller, N. (2012). Photocatalysis: Fundamentals and applications in JEP 2011. 

Environmental Science and Pollution Research, 19(9), 3651-3654.

 

Latthe, S. S., Gurav, A. B., Maruti, C. S., & Vhatkar, R. S. (2012). Recent progress in preparation 

  of   superhydrophobic   surfaces :   A   review.   Journal   of   Surface Engineered Materials 

and Advanced Technology, 2, 76-94.

 

Lee, K., Saipolbahri, Z. A.,  Beh Hoe Guan, B. H., &  Soleimani, H (2014). Organic sol-gel  method  

in  the  synthesis  and  characterization  of  ZnO  nanoparticles. American Journal of Applied 

Sciences, 11(6), 959-962.

 

Li,  X.,  Yu,  J.,  Wageh,  S.,  Al-Ghamdi,  A.  A.,  &  Xie,  J.  (2016).  Graphene  in 

photocatalysis: A review. Small, 12(48), 6640-6696.

 

Lim, C. S. (2010). Synthesis and characterisation of TiO2-ZnO nanocomposite by a two-step chemical 

method. Journal of Ceramic Processing Research, 11(5), 631- 635.

 

Liu,  B.,  &  Aydil,  E.  S.  (2009).  Growth  of  oriented  single-crystalline  rutile  TiO2 

nanorods  on  transparent  conducting  substrates  for  dye-sensitized  solar  cells. Journal of 

the American Chemical Society, 131(11), 3985-3990.

 

Liu, P., Cai, W., Fang, M., Li,Z.,  Zeng, H., Hu, J., et al (2009).  Room temperature synthesized 

rutile TiO2  nanoparticles induced by laser ablation in liquid and their photocatalytic activity. 

Nanotechnology, 20(28), 285707-285713.

 

Liu, X., Cao, J., Yang, L., Wei, M., Li, X., Lang, J., et al (2015). Growth mechanism, optical  and 

 photocatalytic  properties  of  ZnO  nanorods@nanoflowers  (quantum dots) hybrid nanostructures. 

Ceramics International, 41(9), 12258-12266.

 

Liu,  Y.  (2017).  Application  of  graphene  oxide  in  water  treatment  Application  of graphene 

oxide in water treatment. Earth and Environmental Science, 94, 1-7.

 

Ma, H. L., Yang, J. Y., Dai, Y., Zhang, Y. B., Lu, B., & Ma, G. H. (2007). Raman study of  phase  

transformation  of  TiO2   rutile  single  crystal  irradiated  by  infrared femtosecond laser. 

Applied Surface Science, 253(18), 7497-7500.

 

Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotube

and titania nanoparticle. Water, air, & Soil Pollution, 224(7), 1612-1619.

 

Malek, M. F., Mamat, M. H., Soga, T., Rahman, S. A., Abu Bakar, S., Ismail, A. S., et

al  (2015). Thickness-controlled synthesis of vertically alignedc-axis oriented ZnO nanorod arrays: 

Effect of growth time via novel dual sonication sol–gel process. Japanese Journal of Applied 

Physics, 55(1), 15-21.

 

Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Lee, W. J., & Patil, P. S. (2011). 

Nanocoral   architecture   of   TiO2     by   hydrothermal   process:   Synthesis   and 

characterization  Applied  Surface  Science  Nanocoral  architecture  of  TiO2   by hydrothermal 

process: Synthesis and characterization.  Applied Surface Science, 257(23), 9737-9746.

 

Mallakpour, S., & Rashidimoghadam, S. (2019). Carbon Nanotubes for Dyes Removal.

Composite Nanoadsorbents, 211-243.

 

Marco, D. M., Menzel, R., Bawaked, S. M., Mokhtar, M., Obaid, A. Y., Basahel, N. S., et al (2017). 

Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: Enhancing the 

CO2 sorption properties. Carbon, 123, 616-627.

 

Martins, P. M., Ferreira, C. G., Silva, A. R., Magalhães, B., Alves, M. M., Pereira, L., et   al   

(2018).   TiO2/graphene   and   TiO2/graphene   oxide   nanocomposites   for photocatalytic   

applications:   A   computer   modeling   and   experimental   study. Composites Part B: 

Engineering, 145, 39-46.

 

Mau?ec,  D.,  Šuligoj,  A.,  Risti?,  A.,  Dra?i?,  G.,  Pintar,  A.,  &  Tušar,  N.  N.  (2018). 

Titania   versus   zinc   oxide   nanoparticles   on   mesoporous   silica   supports   as 

photocatalysts  for  removal  of  dyes  from  wastewater  at  neutral  pH.  Catalysis Today, 310, 

32-41.

 

Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., et al (2015). The 

synthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials Research, 

1109, 55-59.

 

Mekasuwandumrong,  O.,  Pawinrat,  P.,  Praserthdam,  P.  and  Panpranot,  J.  (2010). Effects of 

synthesis conditions and annealing post-treatment on the photocatalytic activities  of  ZnO  

nanoparticles  in  the  degradation  of  methylene  blue  dye. Chemical Engineering Journal, 164, 

77-84.

 

Meng, X. Q., Shen, D. Z., Zhang, J. Y., Zhao, D. X., Lu, Y. M., Dong. L., et al (2005). The   

structural   and   optical   properties   of   ZnO   nanorod   arrays. Solid   State 

Communications, 135(3), 179-182.

 

Mojsov, K. D., Andronikov, D., Janevski, A., Kuzelov, A., & Gaber, S. (2016). The

application of enzymes for the removal of dyes from textile effluents. Advanced Technologies, 5(1), 81–86.

 

Mokhtar, S. M., Ahmad, M. K., Soon, S.F., Narafizal, N., Faridah, A. B., Suriani, A.B.,

et  al  (2018).  Fabrication  and  characterization  of  rutile-phased  titanium  dioxide (TiO2) 

nanorods array with various reaction times using one step hydrothermal method. Optik, 154, 510-515.

 

Montenegro,D.  N.,  Hortelano,  V.,   Martinez,O., Martinez-Tomas,  M.  C., Sallet,  V., 

Munoz-Sanjose, V., et al (2013). Non-radiative recombination centres in catalyst- free   ZnO   

nanorods   grown   by   atmospheric-metal   organic   chemical   vapour deposition. Journal of 

Physics D: Applied Physics,46(23), 235302-235305.

 

Morales-torres, S.,  & Martinez-Pastrana,  L.  M. (2014).  Nanostructured  carbon-TiO2 

photocatalysts for water purification: An overview. Boletín del Grupo Español del Carbón, 32, 9-14.

 

Moura, K. F., Maul, J., Albuquerque, A. R., Casali, G. P., Longo, E., Keyson, D., et al (2014). 

TiO2  synthesized by microwave assisted solvothermal method: Experimental and theoretical 

evaluation. Journal of Solid State Chemistry, 210(1), 171-177.

 

Mousavi, S. F., Davar, F., & Loghman-Estarki, M. R. (2016). Controllable synthesis of ZnO 

nanoflowers by the modified sol–gel method. Journal of Materials Science: Materials in Electronics, 

27(12), 12985–12995.

 

Muda, M. R., Ramli, M. M., Mat Isa, S. S., Halin, D. S. C., Talip, L. F. A., Mazelan,

N. S., et al 2017). Structural and Morphological investigation for water-processed graphene 

oxide/single-walled carbon nanotubes  hybrids. Materials Science and Engineering, 209(1), 

12030-12039.

 

Mulmi, D. D., Thapa, D., Dahal, B., Baral, D., & Solanki, P. R. (2016). Spectroscopic studies of 

boron doped titanium dioxide nanoparticles. International Journal of Materials Science and 

Engineering, 4, 172-178.

 

Muqoyyanah, 2018. Fabrication of graphene oxide/titanium dioxide hybrid material for  solar  cell  

and  membrane  application.  (Doctoral  Dissertation).Universiti Pendidikan Sultan Idris, Malaysia

 

Mustafa, M. K., Iqbal, Y., Majeed, U., & Sahdan, M. Z. (2017). Effect of precursor’s concentration 

on structure and morphology of ZnO nanorods synthesized through hydrothermal  method  on  gold  

surface.  AIP  Conference  Proceedings,  1788(1), 30120-30128.

 

Nalumaga, H. (2017). A Study on the Properties of ZnO/TiO2 Nanocomposite Prepared

via the Sol- gel Technique. (Master's Dissertation). Kangwon National University, Korea.

 

Neelgund,  G.  M.,  &  Oki,  A.  (2016).  Influence  of  carbon  nanotubes  and  graphene

nanosheets  on  photothermal  effect  of  hydroxyapatite.  Journal  of  Colloid  and Interface 

Science, 484, 135-145.

 

Nenavathu, B. P., Kandula, S., & Verma, S. (2018). Visible-light-driven photocatalytic degradation  

 of   safranin-T   dye   using   functionalized   graphene   oxide.   RSC Advances, 8(35), 

19659–19667.

 

Neppolian,  B., Choi,  H.  C., Sakthivel, S., Arabindoo, B.,  & Murugesan,  V.  (2002). 

Solar/UV-induced  photocatalytic  degradation  of  three  commercial  textile  dyes. Journal of 

Hazardous Materials, 89(2–3), 303-317.

 

Nguyen-Phan, T. D., Pham, V. H., Shin, W. E., Pham, H. D., Kim ,S., Chung, J. S., et al  (2011).  

The  role  of  graphene  oxide  content  on  the  adsorption-enhanced photocatalysis   of   

titanium   dioxide/graphene   oxide   composites.   Chemical Engineering Journal, 170(1), 226-232.

 

Nidheesh,   P.   V.,   Olvera-Vargas,   H.,   Oturan,   N.,   &   Oturan,   M.   A.   (2017). 

Heterogeneous  Electro-Fenton  Process:  Principles  and  Applications.  Electro- Fenton Process, 

85-110.

 

Nikoofar,  K.,  Haghighi,  M.,  Lashanizadegan,  M.,  &  Ahmadvand,  Z.  (2014).  ZnO nanorodes:   

Efficient   and   reusable   catalyst   for   the   synthesis   of   substituted imidazoles in 

water media. Journal of Taibah University of Science, 9(4), 570- 578.

 

Noroozi,  M.,  Zakaria,  A.,  Radiman,  S.,  &  Wahab,  Z.  A.  (2016).  Environmental synthesis of 

few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal 

properties. PLOS ONE, 11(4), 1-17.

 

Ola,  O.,  &  Maroto-Valer,  M.  M.  (2015).  Review  of  material  design  and  reactor 

engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: 

Photochemistry Reviews, 24, 16-42.

 

Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar  

photocatalysts:  Synthesis,  mechanisms  and  applications.  Renewable  and Sustainable Energy 

Reviews, 81, 536-551.

 

Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., et al (2017). Removal of azo dye in an 

up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 326, 454-461.

 

Parihar, V., Raja, M., & Paulose, R. (2018). A brief review of structural, electrical and

electrochemical  properties  of  zinc  oxide  nanoparticles.  Reviews  on  Advanced Materials 

Science, 53(2), 119-130.

 

Park, J. S., Mahmud, I., Shin, H. J., Park, M. K., Ranjkesh, A., Lee, D. K., & Kim, H.

R. (2016). Effect of surface energy and seed layer annealing temperature on ZnO seed layer 

formation and ZnO nanowire growth. Applied Surface Science, 362, 132-139.

 

Parsa, B. J., Rezaei, M., & Soleymani, A.R (2009). Electrochemical oxidation of an azo dye  in  

aqueous  media  investigation  of  operational  parameters  and  kinetics. Journal of Hazardous 

Materials, 168(2-3), 997-1003

 

Parvez,  K.,  Wu,  Z.  S.,  Li,  R.,  Liu,  X.,  Graf,  R.,  Feng,  X.,  &  Müllen,  K.  (2014). 

Exfoliation  of  graphite  into  graphene  in  aqueous  solutions  of  inorganic  salts. Journal of 

the American Chemical Society, 136(16), 6083-6091.

 

Paul, S. S. P., Radhika, N., Borang, O., Lydia, I. S., & Merlin, J. P. (2017). Visible light driven 

  photodegradation   of   Rhodamine   B   using   cysteine   capped   ZnO/GO nanocomposite  as  

photocatalyst.  Journal  of  Materials  Science:  Materials  in Electronics, 28(9), 6722-6730.

 

Pawar, R. C., Shaikh, J. S., Suryavanshi, S. S., & Patil, P. S. (2012). Growth of ZnO nanodisk, 

nanospindles and nanoflowers for gas sensor: pH dependency. Current Applied Physics, 12(3), 

778-783.

 

Pei, S., Wei, Q., Huang, K., Cheng, H.  M., &  Ren, W. (2018). Green  synthesis of graphene   oxide 

  by   seconds   timescale   water   electrolytic   oxidation.   Nature Communications, 9(1), 1-9.

 

Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., et al. (2012). A 

review on the visible light active titanium dioxide photocatalysts for environmental applications. 

Applied Catalysis B: Environmental, 125, 331-349.

 

Pérez-ramírez,  E.  E.,  Luz-asunción,  M.  D.,  Martínez-hernández,  A.  L.,  &  Velasco- santos,  

C.  (2016).  Graphene  materials  to  remove  organic  pollutants  and  heavy metals  from  water:  

Photocatalysis  and  Adsorption-Materials,  Mechanism  and Applications, 491-522.

 

Peter, I. J., Praveen, E., Vignesh, G., & Nithiananth, P. (2017). ZnO nanostructures with   

different   morphology   for   enhanced   photocatalytic   activity.   Materials Research Express, 

4(12), 1-18.

 

Piaskowski,  K.,  ?widerska-D?browska,  R.,  &  Zarzycki,  P.  K.  (2018).  Dye  removal from  water  and  wastewater  using  various  physical,  chemical,  and  biological

processes. Journal of AOAC International, 101(5), 1371–1384.

 

Poorebrahimi, S., & Norouzbeigi, R. (2015). A facile solution-immersion process for the  

fabrication  of  superhydrophobic  gibbsite  films  with  a  binary  micro-nano structure:  

Effective  factors  optimization  via  Taguchi  method.  Applied  Surface Science, 356, 157-166.

 

Prasannalakshmi,    P.,    &    Shanmugam,    N.    (2017).    Fabrication    of    TiO2/ZnO 

nanocomposites  for  solar  energy  driven  photocatalysis.  Materials  Science  in Semiconductor 

Processing, 61, 114-124.

 

Prathan, A., Sanglao, J., Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A., & 

Wongratanaphisan,  D.  (2020).  Controlled  Structure  and  Growth  Mechanism behind Hydrothermal 

Growth of TiO2  Nanorods. Scientific Reports, 10(1), 1-11.

 

Pudukudy,  M.,  &  Yaakob,  Z.  (2015).  Facile  synthesis  of  quasi  spherical  ZnO nanoparticles 

with excellent photocatalytic activity. Journal of Cluster Science, 26(4), 1187-1201.

 

Purwaningsih, S. Y., Pratapa, S., Triwikantoro, & Darminto. (2016). Nano-sized ZnO powders prepared 

by co-precipitation method with various pH. AIP Conference Proceedings, 1725(1), 20063-20069.

 

Qin,  D.,  Bi,  Y.,  Feng,  X.,  Wang,  W.,  Barber,  G.  D.,  Wang,  T.,  et  al  (2015). 

Hydrothermal  growth  and  photoelectrochemistry of  highly oriented,  crystalline anatase  TiO2    

nanorods   on  transparent  conducting  electrodes.   Chemistry  of Materials, 27(12), 4180-4183.

 

Rajendar, V., Raghu, Y., Rajitha, B., Chakra, C. S., Rao, K. V., & Park, S. H. (2017). Synthesis, 

characterization, and photocatalytic behaviour of nanocrystalline ZnO, TiO2 and ZnO/TiO2 

nanocomposites. Journal of Ovonic Research, 13(3), 101-111.

 

Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M.

V.   B.,   Kajitvichyanukul,   P.,   &   Krishnan-Ayer,   R.   (2008).   Heterogeneous 

photocatalytic  treatment  of  organic  dyes  in  air  and  aqueous  media.  Journal  of 

Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171–192.

 

Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methyl 

orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures  and  their  

composites  under  visible  light  irradiation.  Applied Nanoscience, 7(5), 253–259.

 

Ray, S. C. (2015). Application and Uses of Graphene Oxide and Reduced Graphene Oxide. Applications of Graphene and Graphene-Oxide Based Nanomaterials, 39-

55.

 

Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnO 

visible light active. Journal of Hazardous Materials, 170(2–3), 560–569.

 

Reyes-Coronado,  D.,  Rodr?guez-Gattorno,  G.,  Espinosa-Pesqueira,  M.E.,  Cab,  C., Coss, R., & 

Oskam, O. (2008). Phase-pure TiO2  nanoparticles: anatase, brookite and rutile. Nanotechnology, 19, 

1-11.

 

Ridhuan, N. S., Fong, Y. P., Lockman, Z., & Razak, K. A. (2011) Formation of ZnO nanorods  via  

seeded  growth  hydrothermal  reaction.  Applied  Mechanics  and Materials 83, 116-122.

 

Ridhuan,  N.  S.,  Razak,  K.  A.,  Lockman,  Z.,  &  Aziz,  A.  A.  (2012).  Structural  and 

morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its 

properties as UV sensing. PloS one, 7(11), 50405-50419.

 

Rihtnesberg, D. B., Almqvist, S., Wang, Q., Sugunan, A., Yang, X., Toprak, M. S., et al  (2011).  

ZnO  nanorods/nanoflowers  and  their  applications.  The  4th  IEEE International NanoElectronics, 

1-2.

 

Rosnan,   N.   A.,   Haan,   T.   Y.,   &   Mohammad,   A.   W.   (2018).   Synthesis   and 

characterization of ZnO-decorated GO nanocomposite material with different ZnO loading through 

sol-gel method. Jurnal Kejuruteraan, 30(2), 249-255.

 

Saleh, T. A. (2013). The role of carbon nanotubes in enhancement of photocatalysis.

Syntheses and Applications of Carbon Nanotubes and Their Composites.

 

Saner,  B.,  Gürsel,  S.  A.,  &  Yürüm,  Y.  (2013).  Layer-by-layer  polypyrrole  coated graphite 

oxide and graphene nanosheets as catalyst support materials for fuel cells. Fullerenes, Nanotubes 

and Carbon Nanostructure, 21(3), 233-247.

 

Sanchez, L., Guz, L., García, P., Ponce, S., Goyanes, S., Marchi, M. C., et al (2014). Influence  

of  pyrolytic  seeds  on  ZnO  nanorod  growth  onto  rigid  substrates  for photocatalytic  

abatement  of  Escherichia  coli  in  water.   Water  Science  and Technology: Water Supply, 14(6), 

1087–1094.

 

Saravanan, R., Gracia, F., and Stephen, A. (2017). Basic, Principles, Mechanism,and Challenges   of 

  Photocatalysis.   Springer   Series   on   Polymer   and   Composite Materials, 19-40.

 

Schlur, L., Calado, J. R., & Spitzer, D. (2018).  Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. Royal Society Open Science, 5(8), 1-

11.

 

Seema, S. (2015). Development of novel polystyrene supported TiO2 photocatalysis for dye   

wastewater   treatment.   (Doctoral   dissertation).   Jaypee   University   of

Engineering and Technology, Guna, India.

 

Shaban,  M.,  Ashraf,  A.  M.,  &  Abukhadra,  M.  R.  (2018).  TiO2  nanoribbons/carbon nanotubes  

 composite   with   enhanced   photocatalytic   activity;   Fabrication, characterization , and 

application. Scientific Reports, 8(1), 1-17.

 

Shahriary,  L.,  Ghourchian,  H.,  &  Athawale,  A.  A.  (2014).  Graphene-multiwalled carbon  

nanotube  hybrids  synthesized  by  gamma  radiations:  Application  as  a glucose sensor. Journal 

of Nanotechnology, 2014, 1-10.

 

Shan, A. Y., Ghazi, T. I. M., & Rashid, S. A. (2010). Immobilisation of titanium dioxide onto  

supporting  materials  in  heterogeneous  photocatalysis:  A  review.  Applied Catalysis A: 

General, 389(1-2), 1-8.

 

Sharma, M., Behl, K.,  Nigam, S.,  & Joshi, M. (2018). TiO2-GO nanocomposite for energy and 

environmental applications: A green synthesis approach. Vacuum, 156, 434-439.

 

Sharma,  S.  K.,  Misra,  A.  K.,  Ismail,  S.,  &  Singh,  U.  N.  (2006).  Remote  Raman 

spectroscopy of various MIXED and composite mineral phases at 7.2 m distance. NASA Technical Report 

Server, 1-2.

 

Singh, N., Pandey, P., & Haque, F. Z. (2012). Effect of heat and time-period on the growth of ZnO 

nanorods by sol–gel technique. International Journal for Light and Electron Optics, 123(15), 

1340-1342.

 

Singh,  R.  K.,  Kumar,  R.,  &  Singh,  D.  P.  (2016).  Graphene  oxide:  Strategies  for 

synthesis,  reduction  and  frontier  applications.  RSC  Advances,  6(69),  64993– 65011.

 

Singh,  R.  L.,  Singh,  P.  K.,  &  Singh,  R.  P.  (2015).  Enzymatic  decolorization  and 

degradation    of    azo    dyes-A    review.    International    Biodeterioration    and 

Biodegradation, 104, 21-31.

 

Singh, S., Mahalingam, H., & Singh, P. K. (2013). Polymer-supported titanium dioxide photocatalysts 

 for  environmental  remediation:  A  review.  Applied  Catalysis  A: General, 462, 178-195.

 

Siwi?ska-Stefa?ska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga,

S., & Jesionowski, T. (2018). TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials, 11(5), 841-859.

 

Siwi?ska-Stefa?ska,  K.,  Kubiak,  A.,  Piasecki,  A.,  Dobrowolska,  A.,  Czaczyk,  K.,

Motylenko, M., et al (2019). Hydrothermal synthesis of multifunctional TiO2-ZnO oxide  systems  

with  desired  antibacterial  and  photocatalytic  properties.  Applied Surface Science, 463, 

791-801.

 

Sohail, M., Saleem, M., Ullah, S., Saeed, N., Afridi, A., Khan, M., & Arif, M. (2017). Modified  

and  improved  Hummer’s  synthesis  of  graphene  oxide  for  capacitors applications. Modern 

Electronic Materials, 3(3), 110-116.

 

Song, J., & Lim, S. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods.

Journal of Physical Chemistry C, 111(2), 596-600.

 

Srivastava,  R.  K.,  Xingjue,  W.,  Kumar,  V.,  Srivastava,  A.,  &  Singh,  V.  (2014). 

Synthesis    of    benzimidazole-grafted    graphene    oxide/multi-walled    carbon nanotubes  

composite  for  supercapacitance  application.  Journal  Of  Alloys  And Compounds, 612, 343-348.

 

Sui, Z., Meng, Q., Zhang, X., Ma, R., & Cao, B. (2012). Green synthesis of carbon nanotube–graphene 

 hybrid  aerogels  and  their  use  as  versatile  agents  for  water purification. Journal of 

Materials Chemistry, 22(18), 8767-8771.

 

Sun, L. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 

1-10.

 

Sun, N., Ma, J., Wang, C., Xue, J., Qiang, L., & Tang, J. (2018). A facile and efficient method    

to    directly    synthesize    TiO2/rGO    with    enhanced    photocatalytic performance. 

Superlattices and Microstructures, 121, 1–8.

 

Sunyani, M. (2013). Synthesis and characterization of zinc oxide nanoparticles. Journal of Thermal 

Analysis and Calorimetry, 111(2), 1107-1119.

 

Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., et al (2018). 

Reduced graphene oxide-multiwalled carbon nanotubes hybrid film   with   low   Pt   loading   as   

counter   electrode   for   improved   photovoltaic performance of dye-sensitised solar cells. 

Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743.

 

Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Rohani, R., Yusoff, I. I., et al (2019). 

Incorporation of electrochemically exfoliated graphene oxide and TiO2    into   polyvinylidene   

fluoride-based   nanofiltration   membrane   for   dye

rejection. Water, Air, & Soil Pollution, 230(8), 176.

 

Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Applied surface

science growth of rutile TiO2  nanorods on TiO2  seed layer deposited by electron beam evaporation. 

Applied Surface Science, 258(10), 4283-4287.

 

Taziwa,  R.,  Meyer,  E.,  &  Takata,  N.  (2017).  Structural  and  Raman  spectroscopic 

characterization of C-TiO2 nanotubes synthesized by a template-assisted sol-gel technique. Journal 

of Nanoscience & Nanotechnology Research, 1, 1-11.

 

Tokarský,  J.,  Mat?jka,  V.,  Neuwirthová,   L.,   Vontorová,  J.,  Kutláková,  K.  M., 

Kukutschová., et al (2013). A low-cost photoactive composite quartz sand/TiO2. Chemical Engineering 

Journal, 222, 488-497.

 

Topkaya, E., Konyar, M., Yatmaz, H. C., & Öztürk, K. (2014). Pure ZnO and composite ZnO/TiO 2 

catalyst plates: A comparative study for the degradation of azo dye, pesticide and antibiotic in 

aqueous solutions.  Journal Of Colloid And Interface Science, 430, 6-11.

 

Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., & Shrivastav,

B.   R.   (2014).   ZnO   nanoflowers:   Novel   biogenic   synthesis   and   enhanced 

photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 141, 288-295.

 

Uribe  López,  M.  C.,  Alvarez  Lemus,  M.  A.,  Hidalgo,  M.  C.,  López  González,  R., Quintana 

Owen, P., Oros-Ruiz, S., et al (2019). Synthesis and characterization of ZnO-ZrO2  nanocomposites 

for photocatalytic degradation and mineralization of phenol. Journal of Nanomaterials, 2019, 1-12.

 

Vallejo,   W.,   Rueda,   A.,   Díaz-Uribe,   C.,   Grande,   C.,   &   Quintana,   P.   (2019). 

Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from 

Bactris guineensis. Royal Society open science, 6(3), 181824- 181841.

 

Vaseem, M., Umar, A.,  & Hahn, Y.B. (2010). ZnO nanoparticles: Growth, properties, and 

applications. American Sciencetific, 5, 1-36.

 

Vasudevan, A., Jung, S., & Ji, T. (2011). Synthesis and characterization of hydrolysis grown zinc 

oxide nanorods. ISRN Nanotechnology, 2011, 1-7.

 

Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007).  Low 

 temperature  solution  synthesis  and  characterization  of  ZnO  nano- flowers. Materials 

Research Bulletin, 42(9), 1640–1648.

 

Wahyuono, R. A., Schmidt, C., Dellith, A., Dellith, J., Schulz, M., Seyring, M., et al

(2016).   ZnO   nanoflowers-based   photoanodes:   aqueous   chemical   synthesis, microstructure and optical properties. Open Chemistry, 14(1), 1-12.

 

Wang, B., Wan, J., Liu, Q., Zhang, J., & Wang, H. (2015). Optimizing the prepared condition of TiO2 

1D/3D network structure films to enhance the efficiency of dye- sensitized solar cells. RSC 

Advances, 5(101), 82968-82976.

 

Wang,  J.,  Tsuzuki,  T.,  Tang,  B.,  Hou,  X.,  Sun,  L.,  &  Wang,  X.  (2012).  Reduced 

graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. Applied Materials and 

Interfaces. 4(6), 3084-3090.

 

Wang,  X.,  Ahmad,  M.,  &  Sun,  H.  (2017). Three-Dimensional  ZnO  Hierarchical Nanostructures:  

Solution  Phase  Synthesis  and  Applications.  Materials,  10(11), 1304-1057

 

Wang, Y., Zhang, L., Deng, K., Chen, X., & Zou, Z. (2007). Low temperature synthesis and  

photocatalytic  activity  of  rutile  TiO2   nanorod  superstructures.  Journal  of Physical 

Chemistry, 111(6), 2709-2714.

 

Wang, Y., Zhang, H., Qu, S., & Su, C. (2016). Controllable synthesis and photocatalytic activity of 

ZnO nanorods. Ferroelectrics, 504(1), 46-52.

 

Wang,  Z.,  Xue,  M.,  Huang,  K.,  &  Liu,  Z.  (2010).  Textile  Dyeing  Wastewater Treatment. 

Advance in Treating Textile Effluent, 92-116

 

Wetchakun,   K.,   Wetchakun,   N.,   &   Sakulsermsuk,   S.   (2019).   An   overview   of 

solar/visible  light-driven  heterogeneous  photocatalysis  for  water  purification: TiO2- and 

ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering 

Chemistry, 71, 19-49.

 

Woo, H., Sung, H., Gil, H., Chan, J., & Young, D. (2010). Growth, structural, Raman , and  

photoluminescence  properties  of  rutile  TiO2  nanowires  synthesized  by  the simple thermal 

treatment. Journal of Alloys and Compounds, 504(1), 217-223.

 

Wu,  K.,  Wu,  B.,  Li,  C.,  &  Hu,  X.  (2018).  Gradation,  Dispersion,  and  Tribological 

Behaviors  of  Nanometric  Diamond  Particles  in  Lubricating  Oils.  Mechanical 

Engineering,113-133.

 

Xie,  J.,  Li,  Y.,  Zhao,  W.,  Bian,  L.,  &  Wei,  Y.  (2011). Simple  fabrication  and 

photocatalytic  activity  of  ZnO  particles  with  different  morphologies.  Powder Technology, 

207, 140-144.

 

Xie, Q., Dai, Z., Liang, J., Xu, L., Yu, W., & Qian, Y. (2005). Synthesis of ZnO three- dimensional 

    architectures     and     their     optical     properties.  Solid   State   Communications, 136(5), 304-307.

 

Yahia, S. B., Znaidi, L., Kanaev, A., & Petitet, J. P. (2008). Raman study of oriented

ZnO  thin  films  deposited  by  sol–gel  method.  Spectrochimica  Acta  Part  A: Molecular and 

Biomolecular Spectroscopy, 71(4), 1234-1238.

 

Yahya, N., Aziz, F., Jamaludin, N. A., Mutalib, M. A., Ismail, A. F., Salleh, W. N., et al  (2018). 

 A  review  of  integrated  photocatalyst  adsorbents  for  wastewater treatment. Journal of 

Environmental Chemical Engineering, 6(6), 7411-7425.

 

Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect of 

surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Physical 

Chemistry Chemical Physics, 15(26), 10978-10988.

 

Yan, E. Y. C., Zakaria, S., & Chia, C. H. (2014, September). One-step synthesis of titanium  oxide  

nanocrystal-rutile  by  hydrothermal  method.  AIP  Conference Proceedings, 1614(1), 122-128.

 

Yang, Z., Wang, B., Cui, H., An, H., Pan, Y., & Zhai, J. (2015). Hydrothermal synthesis of   

crystal-controlled   TiO2    nanorods:   Rutile   and   brookite   as   highly   active 

Photocatalysts. The Journal of Physical Chemistry C, 119(29), 16905-16912.

 

Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avc?, A., Kam??, H., & Achour, S. (2017). 

Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC 

advances, 7(47), 29806-29814.

 

Yin, T., Chen, N., Zhang, Y., Cai, X., & Wang, Y. (2014). Structure, morphologies and dye removal 

efficiency of ZnO nanorods grown on polycrystalline Zn substrate. Superlattices And 

Microstructures, 74, 279-293.

 

Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent Advances and 

Applications of Semiconductor Photocatalytic Technology. Applied Sciences, 9(12), 2489.

 

Zhang,  Y.,  Ram,  M.  K.,  Stefanakos,  E.  K.,  &  Goswami,  D.  Y.  (2012).  Synthesis, 

characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 1-22.

 

Zhao,  X.  S.,  Bao,  X.  Y.,  Guo,  W.,  &  Lee,  F.  Y.  (2006).  Immobilizing catalysts  on 

porous materilas. Materials Today, 9(3), 32-39.

 

Zhao, Y., Gu, X., & Qiang, Y. (2012). Influence of growth time and annealing on rutile

TiO2  single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films, 520(7), 2814-2818.

 

Zhou, Q., Wen, J., Zhao, P., & Anderson, W. (2017). Synthesis of vertically-aligned

zinc oxide nanowires and their application as a photocatalyst. Nanomaterials, 7(1), 9-21.

 

Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., & Li, Z. (2014). Photocatalytic degradation  

of  methylene  blue  using TiO2  impregnated  diatomite.  Advances  in

Materials Science and Engineering, 2014, 1-7.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.