UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study is aimed to synthesize carbon nanotubes (CNTs) for the large scale
production (in term of high volume production around 500 mg per day) by utilizing the novel waste
cooking palm oil (WCPO) as carbon feedstock. The method used were modified thermal chemical vapor
deposition (TCVD) that equipped with a peristaltic sprayer in order to continuously supply
the precursor and catalyst into the system. Various synthesis parameters, such as effect of
vaporization and synthesis temperature, synthesis time interval, precursor flow rate, post
annealing treatment, nozzle diameter, and catalyst concentration were conducted in order to find
out the optimum parameter to produce high quantity and good quality of CNTs. The total
amount of 1000 ml WCPO precursor was sprayed continuously during the experiment with ferrocene
as catalyst via modified TCVD system. The samples were characterized using field emission
scanning electron microscopy, energy dispersive X-ray, high resolution transmission
electron microscopy, micro-Raman spectroscopy and thermogravimetric analysis. The optimum
samples were then used as nanofiller for supercapacitor application and as an adsorbent
material for adsorption heavy metal ions application. The findings showed that the total of
~433 g CNTs were produced with high carbon conversion rate of 56 %. Growth of dense CNTs
with a high purity of ~90 % and good crystallinity (ID/IG ratio ~0.43) occurred
at combination temperature of 500 and 800 °C of vaporization and synthesis temperature,
respectively, time interval between spraying process of 15 min, precursor flow rate of 30 mLmin?¹,
annealing treatment at 500 °C for 4 h, nozzle diameter of 0.25 mm and catalyst
concentration of 5.33 wt% using modified TCVD system. The CNTs/natural rubber-latex
(NRL) nanocomposite exhibited a good capacitance performance with a specific capacitance of
81.82 F/g. Meanwhile, CNTs from WCPO shows an excellent ability in order to remove heavy metal ion
from aqueous solutions which match well with the Langmuir isotherm model with higher correlation
coefficient and maximum adsorption capacity metal ions of 0.9894 and 31.25 mg/g,
respectively. In conclusion, this study determined that a high production of WCPO based-CNTs using
modified TCVD method provided benefits for its utilization as composite and adsorbent materials
especially for supercapacitor and adsorption of heavy metal ions application. The implication
of this study is used a simple method, economical and green approach in order to produces
higher production
and good quality of CNTs.
|
References |
A. A. Azira, D. Habibah, A. B. Suriani, M. Rusop, Effect of multi-wall carbon nanotubes on the properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014) 338-343.
A. A. Azira, H. Dayang, A. B. Suriani, M. Rusop, Effect of multi-walled carbon nanotubes on the properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014) 338-343.
A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, Y.Y. Chii, B.N. Siddique, Desalination (2009) 636-646.
A. Ahmadpour, N. Efekhari, A. Ayati, J. Nanostruct. Chem. (2014) 171-178.
A. B. Suriani, A. A. Azira, A. F. Nik, R. M. Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as precursor, Mater. Lett. 63 (2009) 2704-2706.
A. B. Suriani, A. A. Azira, S. F. Nik, Roslan Md Nor and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.
A. B. Suriani, A. R. Dalila, A. Mohamed, M. H. Mamat, M. Salina, M. S. Rosmi, J. Rosly, M. N. Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013) 61-64.
A. B. Suriani, M. N. Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.
A. B. Suriani, R. M. Nor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.
A. Gadhave, J. Waghmare, Inter. J. Chem. Sci. Appl. 2 (2014) 56-67.
A. Kamari et al., J. Environ. Chem. Eng. 2 (2014) 1912-1919.
A. Kamari, W.S. Wan Ngah, Sep. Sci. Technol. 45 (2010) 486-496.
A. Korkin, P. S. Krstic, J. C. Wells, Nanotechnology for Electronics, Photonics and Renewable Energy, Springer, London, 2010.
A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, Diamond Relat. Mater. 15 (2006) 385-388.
A. Mohamed, A.K. Anas, A.B. Suriani, T. Ardyani, W.M.W. Zin, et al., J. Colloid Inter. Sci. 455, 178 (2015)
A. Mohamed, K.A. Argo, A.B. Suriani, A.A. Aziz, M. Sagisaka, et al., Colloid. Polym. Sci. 292, 3013 (2014)
A. N. Falina, A. B. Suriani, M. S. Azmina, M.S. Salina, A. R. Dalila, M. N. Roslan, M. Rusop, Structural characteristics and field electron emission properties of carbon nanotubes synthesized from waste cooking palm oil, J. Sci. Technol. 59 (2012) 93-97.
A. Peigney, C. Laurent, E. Flahaut, R.R. Basca, A. Rousset, Carbon 39 (2001) 507- 514.
A. R. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil, Chem. Phys. Lett. 414 (2005) 6-10.
A. Roy, J. Bhattacharya, Chem. Eng. J. 211-212 (2012) 493-500.
A. Siddiqa, A. Shahid, R. Gill, J. Environ. Chem. Eng. (2015) 1-6 Article in Press.
A.B. Suriani, A.A. Azira, S.F. Nik, R. Md Nor, M. Rusop, Mater. Lett. 63, 2704 (2009)
A.B. Suriani, A.A. Azira, S.F. Nik, R.Md Nor, M. Rusop, Mater. Lett. 63 (2009) 2704-2706.
A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, et al., Mater. Lett 101, 61 (2013)
A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina, M.S. Rosmi J. Rosly, R. Md Nor, M. Rusop, Mater. Lett. 101 (2013) 61-64.
A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.F. Malek, et al., Mater. Design 90, 185 (2016)
A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.F. Malek, T. soga, M. Tanemura, Mater. Design (2015), In Press, Accepted Manuscript.
A.B. Suriani, A.R. Dalila, A. Mohamed, T. Soga, M. Tanemura, Mater. Chem. Phys. 165, 1 (2015)
A.B. Suriani, A.R. Dalila, A. Mohamed, T. Soga, M. Tanemura, Mater. Chem. Phys. 165 (2015) 1-7.
A.B. Suriani, J. Norhafizah, A. Mohammed, M.H. Mamat, M.F. Malek, M.K. Ahmad, J. Mater. Sci. Mater. Electron. (2016) 1-8.
A.B. Suriani, R. Md Nor, M. Rusop, J. Ceram. Soc. Jpn. 118 (2010) 963-968.
A.B. Suriani, R. Md Nor, M. Rusop, J. Ceram. Soc. Jpn. 118, 963 (2010)
A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa, A. Kamari, N. Hashim, M.K. Ahmad, M.F. MAlek, M. Rusop, Mater. Lett. 149 (2015) 66-69.
A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa, et al., Mater. Lett. 149, 66 (2015)
A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, M.F. Malek, et al., J. Alloy Cmpd. 656, 368 (2016)
A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, M.F. Malek, M.H. Mamat, M.K. Ahmad, J. Alloys Compd. (2015), In Press, Accepted Manuscript.
A.B. Suriani, S. Alfarisa, A. Mohamed, I.M. Isa, A. Kamari, et al., Mater. Lett. 139, 220 (2015)
A.B. Suriani, S. Alfarisa, A. Mohamed, I.M. Isa, A. Kamari. N. Hashim, M.H. Mamat, A.R. Mohamed, M. Rusop, Mater. Lett. 139 (2015) 220-223.
A.C. Wright, M.K. Faulkner, R.C. Harris, A. Goddard, A.P. Abbot, J. Magn. Magn. Mater. 324 (2012) 4170-4174.
A.K. Meena, G.K. Mishra, P. K. Rai, C. Rajagopal, P.N. Nagar, J. Hazard Mater. 122 (2005) 161-170.
C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, Growth mechanism for single- wall carbon nanotubes in a laser ablation process, Appl. Phys., A 72 (2001) 573- 580.
C. Lei, L. Constantina, Activated carbon-carbon nanotube nanocomposite coatings for supercapacitor application, Surf. Coat. Technol. 232 (2013) 326-330.
C. Lu, H. Chiu, Chem. Eng. Sci. 61 (2006) 1138-1145.
C. Lu, Y-L.Chung, K-F. Chang, J. Hazard. Mater. B 138 (2006) 304-310.
C. Zheng, W. Qian, C. Cui, G. Xu, M. Zhao, G. Tian, F. Wei, Carbon nanotubes for supercapacitors: consideration of cost and chemical vapor deposition techniques, J. Nat. Gas Chem. 21 (2012) 233-240.
C.Liu, H-M. Cheng, J. Phys. D 38 (2005) 231-252.
D. Bitko, T. F. Rosenbaum, Quantum critical behaviour for a model magnet, Phys. Rev. Lett. 77 (1996) 940-943.
D. Bo?i?, V. Stankovi?, M. Gorgievski, G. Bogdanovi?, R. Kova?evi?, J. Hazard. Mater. 171 (200) 684-692.
D. Fu, Q. Ma, X. Zeng, J. Chen, W. Zhang, D. Li, Physica E 54 (2013) 185-190.
D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76 (2000) 2868-2870.
D. Zhang, D. Wei, Q. Li, X. Ge, X. Guo, Z. Xie, W. Ding, High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel, Sci. Rep. (2014) 1-5. E. Bernard, A. Jimoh, Inter. J. Eng. Appl. Sci. 4 (2013) 95-103.
E. So?o, J. Kalembkiewicz, Croat. Chem. Acta 88 (2015) 267-279. E.R. Edwards, E.F. Antunes, E.C. Botelho, M.R. Baldan, E.J. Corat, App. Surf. Sci. 258 (2011) 641-648.
F. Fernández-Luqueño et al., African J. Environ. Sci. Technol. 7 (2013) 567-584. F.M. Machado, S.B. Fagan, I.Z. da Silva, M.J. de Andrade, Springer Inter. Publishing Switzerland (2015) Chapter in book pp. 11-32.
G.D. Vukovi?, A.D. Marinkovi?, M. ?oli?, M.D. Risti?, R. Aleksi?, A.P-Gruji?, P.S. Ukokovi?, Chem. Eng. J. 157 (2010) 238-248.
G.P Rao, C. Lu, F. Su, Sep. Purif. Technol. 58 (2007) 224-231.
H. Hu, D. Zhang, Y. Liu, W. Yu, T. Guo, Vacuum 115, 70 (2015)
H. Karami, Chem. Eng. J. 219 (2013) 209-216.
H. Li, D. Xiao, H. He, R. Lin, P. Zuo, Trans. Nonferrous Met. Soc. China 23 (2013) 2657-2665.
H. Wang, N. Yan, Y. Li, X. Zhou, J. Chen, B. Yu, M. Gong, Q. Chen, J. Mater. Chem. 22 (2012) 9230-9236.
H. Yong-Mei, C. Man, H. Zhong-Bo, J. Hazard. Mater. 184 (2010) 392-399.
H. Zhidong, F. Alberto, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A Review, Prog. Polym. Sci. 36 (2010) 914-944.
I. Mobasherpour, E. Salahi, M. Ebrahimi, J. Saudi Chem. Soc. 18 (2014) 792-801.
J. Chen, C. Jia, Z. Wan, Novel hybrid nanocomposite based on poly(3,4- ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor, Synth. Met. 189 (2014) 69-76.
J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Howthorne, Sci. 319, 1235 (2008)
J. Kong, A. C. Alan, H. Dai, Chemical vapor deposition of methane for single walled carbon nanotubes, Chem. Phys. Lett. 292 (1998) 567-574.
J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Chem. Mater. 19 (2007) 6240-6246.
J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Chem. Mater. 19, 6240 (2007)
J. M. Boyea, R. E. Camacho. S. P. Turano, W. J.Ready, Carbon nanotube-based Supercapacitor: Technologies and Markets, Nanotechnol. Law Bus. 4 (2007) 585- 593.
J. Ma, Y. Zhang, F. Yu, New J. Chem. 39 (2015) 9299-9305.
J. Wang, Z. Li, S. Li, W. Qi, P. Liu, F. Liu, Y. Ye, L. Wu, L. Wang, W. Wu, Plos One 8 (2013) 1-11.
K. Aswati, R. Kumar, R. S. Tiwari, O. N. Srivastava, Large scale synthesis of bundles of aligned carbon nanotubes using natural precursor: turpentine oil, J. Exp. Nanosci. 5 (2010) 498-508.
K. Kudelska, A. Malolepszy, M. Mazurkiewicz, L. Stobinski, W. Dobrowolski, Acta Phys. Pol., A 119 (2011) 597-599.
K. Mukul, Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739- 3758.
K. Pyrzy?ska, M. Bystrzejewski, Colloid Surf. A 362 (2010) 102-109.
K. S. Dhilip, P. K. Ayer, P. K. Giri, Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies, Diamond Relat. Mater. 19 (2010) 1281-1288.
L. C. Stephanie, Nanostructured carbon for energy storage and conversion, Nano Energy 1 (2012) 195-200.
L. M. Manocha, V. Jignesh, S. Manocha, Role of metal catalyst and substrate site for the growth of carbon nanomaterials, Carbon 6 (2005) 79-85.
L. Ning, l. Xiaojie, W. Xiaohong, Y. Honghao, Z. Chengjiao, W. Haitao, Carbon 48 (2010) 3858-3863.
L. Wei, M. L. Charles, Nanoelectronics from the bottom up, Nat. Mater. 6 (2007) 841-850.
L. Yu, Y. Lv, Y. Zhao, Z. Chen, Scalable preparation of carbon nanotubes by thermal decomposition of phenol with high carbon utilizing rate, Mater. Lett. 64 (2010) 2145-2147. M. Adeli, Y. Yamini, M. Faraji, Arabic J. Chem. (2012) 1-8.
M. Arshadi, M.J. Amiri, S. Mousavi, Water Res. Industry 6 (2014) 1-17.
M. Balintova, M. Holub, E. Singovszka, Chem. Eng. Trans. 28 (2012) 175-180.
M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Appl. Phys. Lett. 81 (2002) 5123-5125.
M. Franus, L. Bandura, Fresenius Environ. Bull. 23 (2014) 825-839.
M. Kumar, Y. Ando, Carbon nanotubes from camphor: an environment-friendly nanotechnology, J. Phys. 61 (2007) 643-646.
M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010)
M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor-a botanical hydrocarbon, Diamond Relat. Mater. 12 (2003) 1845-1850.
M. Neeraj et al, Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes, J. Anal. Appl. Pyrolysis 94 (2012) 91-98.
M. Rafatullah, O. Sulaiman, R. hashim, A. Ahmad, J. Hazard. Mater. 170 (2009) 969-977.
M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, J. Rosly, M. Rusop, Preparation of palm oil based carbon nanotubes at various ferrocene concentration, Adv. Mater. Res. 364 (2012) 408-411.
M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, M. Rusop, Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapour deposition method, Adv. Mater. Res. 364 (2012) 359-362.
M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. Asli, J. Rosly, M. N. Roslan, M. Rusop, Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hyb. 2 (2012) 43-63.
M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. asli et al., Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hyb. 2 (2012) 43-63.
M. S. Senthil Saravanan, Techno-economics of carbon nanotubes produced by open air arc discharge method, Int. J. Eng. Sci. Technol. 2 (2010) 100-108.
M.A. Tofighy, T. Mohammadi, J. Hazard. Mater. 185 (2011) 140-147.
M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, S.W.C. Chien, J. Hazard. Mater. 166 (2009) 1006-1013.
M.S. Azmina, A.B. Suriani, A.N. Falina, M. Salina, M. Rusop, Adv. Mater. Res. 364, 359 (2012) M.S. Azmina, A.B. Suriani, M. Salina, A.A. Azira, A.R. Dalila, et al., Nano Hybrids 2, 43 (2012)
M.S. Rahman, M.R. Islam, Chem. Eng. J. 149 (2009) 273-280.
M.S. Shamsudin, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, J. Spectroscopy 2013, 167357 (2013)
M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, et al., J. Nanomater. 2012, 972126 (2012)
M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, J. Nanomater. 2012 (2012) Art. ID. 972126.
N. A. Asli, M. S. Shamsudin, A. N. Falina, M. S. Azmina, A. B. Suriani, M. Rusop, S. Abdullah, Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio, Microelectron. Eng. 108 (2013) 86-92.
N. Das, A. Dalai, J.S.S. Mohammadzadeh, J. Adjaye, Carbon 44, 2236 (2006)
N.A. Asli, M.S. Shamsudin, A.B. Suriani, M. Rusop, A. Saifollah, Inter. J. Industrial Chem. 4, 1 (2013)
N.D. Tumin, A.L. Chuah, Z. Zawani, S.A. Rashid, J. Eng. Sci. Technol. 2 (2008) 180-189.
N.K.E.M. Yahaya, M.F.P.M. Latif, I. Abustan, O.S. Bello, M.A. Ahmad, Inter. J. Eng. Technol. 11 (2011) 207-211.
N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, J. Taiwan Ins. Chem. Eng. 53 (2015) 140-152.
N.M.M. Fourier, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, J. Environ. Sci. (2016) article in press.
O. Rashidi, H.N. Azlen, R. Razanah, M.H. Farah Ayuni et al., Inter. J. Sustain. Energy Environ. Res.3 (2014) 185-192.
O. Renata, O. Andrej, Recent applications of carbon nanotubes in hydrogen production and storage, Fuel 90 (2011) 3123-3140. O.F. Gonzalez, M.R.M. Virgen, V.H. Montoya, R.T. Gomez, J.L.A. Flores et al., Ind. Eng. Chem. Res. 55 (34) 9323-9331.
P. Bollen, N. Quievy, C. Detrembleur, J.M. Thomassin, L. Monnereau, C. Baily, I. Huynen, T. Pardoen, Mater. Design 89 (2016) 323-334.
P. Eklund, P. Ajayan, R. Blackmon, A.J. Hart, J. Kong, et al., World Technology Evaluation Center Inc., USA (2007)
P. M. Ajayan, O. Z. Zhou, Application of carbon nanotubes topics, Appl. Phys. 80 (2001) 391-425.
P. Mahalingam, T. Malyalagan, E. Manikandan, P.S. Syed Shabudeen, S. Karthikeyan, J. Environ. Nanotechnol. 2 (2013) 43-62.
Q. Zhang, M.Q. Zhao, J.Q. Huang, J.Q. Nie, W. Fei, Carbon 48, 1196 (2010)
R. Ansari, S. Malakpour, M. Faghihnasiri, S. Ajori, Structural and elastic properties of carbon nanotubes containing fe atoms using first principles, Superlattices Microstruct. 6 (2013) 220-226.
R. B. Prabhakar, Electrical properties and applications of carbon nanotubes structure, Journal of Nanoscience and Nanotechnology, 7 (2007) 1-29.
R. B. Prabhakar, Electrical properties and applications of carbon nanotube structure, J. Nanosci. Nanotechnol. 7 (2007) 1-29.
R. Das, S.B. Abd. Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Desalination 354 (2014) 160-179.
R. Khandanlou, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri, K. Kalantari, PLOS ONE (2015) 1-19.
R. Kumar, R.S. Tiwari, O. Srivastava, Nanoscale Res. Let. 6 (2011) 92-97.
R. Kumar, R.S. Tiwari, O. Srivastava, Nanoscale Res. Lett. 6, 92 (2011)
R. Markovi?, J. Stevanovi?, Z. J. Stevanovi?, M. Bugarin, D. Nedeljkovi?, A. Gruji?, J. S-Trosi?, Mater. Trans. 52 (2011) 1849-1852.
S. B. Martin et al., Carbon nanotubes by plasma-enhance chemical vapor deposition, Pure Appl. Chem. 78 (2006) 1117-1125.
S. Iijima, Helical microtubulus of graphitic carbon, Nature 354 (1991) 56-58.
S. Ilani, P. L. McEuen, Electron transport in carbon nanotubes, Annu. Rev. Condens. Matter Phys. 1 (2010) 1-25.
S. Kumari, A. Kumar, P. R. Sengupta, P. K. Dutta, R. B. Mathur, Improving the mechanical and thermal properties of semi-coke base carbon/copper composites reinforced using carbon nanotubes, Submitted to Adv. Mater. Lett.
S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu, Chem. Eng. J. 260 (2015) 231-239.
S. Liu, Q. Shen, Y. Cao, L. Gan, Z. Wang, M.L. Steigerwald, X. Guo, Coord. Chem. Rev. 254 (2010) 1101-1116.
S. Niraj, M. Jiazhi, T. W. Yeow, Carbon nanotube-based sensors, J. Nanosci. Nanotechnol. 6 (2006) 573-590.
S. P. Chai, K. Y. Lee, S. Ichikawa, A. R. Mohamed, Synthesis of carbon nanotubes by methane decomposition over Co-Mo/Al2O3: process study and optimization using response surface methodology, Appl. Catal., A 396 (2011) 52-58.
S. Paul, S.K. Samdarshi, New Carbon Mater. 26, 85 (2011)
S. Qu, F. Huang, S. Yu, G. Chen, j. Kong, J. Hazard. Mater. 160 (2008) 643-647.
S. Srivasta, Adv. Mat. Lett. 4 (2013) 2-8.
S. Swati et al., Synthesis of carbon nanotubes using olive oil and its application in dye sensitized solar cell, Int. J. Renew. Energy Res. 2 (2012) 274-279.
S. Trasatti, P. Kurzweil, Electrochemical supercapacitor as versatile energy stores, Platinum Met. Rev. 38 (1994) 46-56.
S. Yellampalli, Carbon Nanotubes-Polymer Nanocomposites, Intech, Croatia, 2011.
S.A. Kosa, G. Al-Zhrani, M.A. Salam, Chem. Eng. J. 181 (2012) 159-168.
S.A.M. Zobir, A.B. Suriani, S. Abdullah, Z. Zainal, S.H. Sarijo, M. Rusop, J. Nanomater. 2012, 11 (2012)
S.N.M Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed, N. Hashim, I.M. Isa, J. Environ. Protect. 5 (2014) 289-300.
S.S. Bayazit, ?. Kerkez, Chem. Eng. Res. Design 92 (2014) 2725-2733.
S.S. Madani, K. Zare, M. Ghoranneviss, A.S. Elahi, J. Alloys Compd. 648, 1104 (2015)
Transportation Cost and Benefit Analysis II-Water Pollution, Victoria transport Policy institute (www.vtpi.org.).
U. Kouakou, A.S. Ello, J.A. Yapo, A. Trokourey, J. Environ. Chem. Ecotox. 5 (2013) 168-171.
V.K. Gupta, A. Mittal, V. Gajbe, J. Colloid Inter. Sci. 284 (2005) 89-98.
V.S. Munagapati, V. Yarramuthi, S.K. Nadavala, S.R. Alla, K. Abburi, Chem. Eng. J. 157 (2010) 357-365.
W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Effective synthesis of carbon nanotubes via catalytic decomposition of methane: influence of calcination temperature on metal-support interaction of Co-Mo/Mgo catalyst, J. Phys. Chem. Solids 74 (2013) 1553-1559.
W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Synthesis of high purity multi-walled carbon nanotubes over Co-Mo/Mgo catalyst by catalytic chemical vapor deposition of methane, New Carbon Mater. 24 (2009) 119-123.
W. W. Liu, A. Azizan, S. P. Chai, A. Rahman, C. T. Tye, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesized by chemical vapor deposition, Physica E 43 (2011) 1535-1542.
W.N.N. Wan Ali, S. Sufian, M.Z. Abdullah, Procedia Eng. 148 (2016) 795-805.
W-L. Sun, J. Xia, Y-C. Shan, Chem. Eng. J. 250 (2014) 119-127.
W-W. Tang, G-M. Zeng, J-L. Gong, Y. Liu, X-Y. Wang, Y-Y. Liu, Z-F. Liu, L. Chen, X-R. Zhang, D-Z. Tu, Chem. Eng. J. 211-212 (2012) 470-478.
X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Hazard. Mater. 209-210 (2012) 467-477.
X. Peng, Z. Luan, Z. Di, Z. Zhang, C. Zhu, Lett. to the Editor, Carbon 43 (2005) 855-894.
X. Ren, C. Chen, M. Nagatsu, X. Wang, Chem. Eng. J. 170 (2011) 395—410.
X. Zhang, Q. Li, Y. Tu, Y. Li, J. Y. Coulter, L. Zheng et al., Strong carbon- nanotube fibers spun from long carbon nanotube arrays, Wiley, Weinheim, 2007, pp. 244-248.
Y. Jiang, A. Kazinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes, Sens. Actuators, A 195 (2013) 224-230.
Y. Song, G. Ye, J. Chen, LV. Dachao, J. Wang, Appl. Surf. Sci. 357 (2015) 1578- 1586.
Y-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Carbon 41 (2003) 2787-2792.
Y-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Carbon 41 (2003) 1057-1062.
Z. Huang, X. Wang, D. Yang, Water Sci. Eng. 8 (2015) 226-232.
Z. Visnjic-Jeftic et al., Microchem. J. 95 (2010) 341-344.
Z. Yang, X. Chen, H. Nie, K. Zhang, W. Li, et al., Nanotechnol. 19, 1 (2008)
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |