UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This research aimed to synthesise iridium(III) complexes with N-heterocyclic carbene (NHC)
ligands and investigate their photophysical properties. Complexes of
chlorobis(2,4-difluorophenylpyridine)(pyridyltriazole)iridium(III)
(C1), bis(2,4-difluorophenylpyridine)(4-methylbenzylpyridyltriazole)iridium(III) ion (C2),
bis(2,4-difluorophenylpyridine)(hexylpyridyltriazole)iridium(III) ion (C3) and
bis(2,4-difluorophenylpyridine)(2,6-difluorobenzylpyridyltriazole)iridium(III) ion (C4) were
synthesised by reaction between dichloro-bridged iridium(III) dimer,
[Ir(2,4-F2ppy)2(μ-Cl)]2 and corresponding triazolium salts. Iridium(III) complexes were
characterised by Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) elemental analyser and
spectroscopic techniques: ¹H and ¹³C Nuclear Magnetic Resonance (NMR), Fourier
Transform-Infrared (FTIR) and Liquid Chromatography-Mass Spectrometry (LCMS). The molecular
structure of C1 was determined by single crystal X-Ray Diffraction (XRD) technique.
The photophysical study was performed using spectroscopic techniques: Ultraviolet-Visible
(UV-Vis) and fluorescence. The results of the IR spectra showed strong frequency bands in the at
1595–1400 cm?¹ were due to
ν(C=N) and ν(C=C). The ¹H NMR spectra displayed the proton
signals of phenylpyridine and pyridinetriazole in the aromatic region between δ 5.00 and
10.00 ppm. The ¹³C NMR spectra showed aromatic carbon signals in the range δ 80–150 ppm
and δ 0−50 ppm for aliphatic carbon that matches with the corresponding number of
carbon atoms in C1−C4. Complexes of C1, C2, C3 and C4 exhibited ESI spectra at m/z 754.22,
823.17, 803.11 and 847.15, respectively. X-Ray crystallographic study confirmed iridium(III)
ion in C1 was coordinated to one pyridine-triazole, one chloro and two difluorophenylpyridine
ligands in a distorted octahedral geometry. Steady- state emission spectroscopy demonstrated
C1, C2, C3 and C4 emitted blue-green light in dichloromethane solution with an emission maximum at
472 nm, 452 nm, 471 nm and 470 nm, respectively. In conclusion, electronic properties of
iridium(III) complexes with NHC ligands have tuned the lowest-unoccupied molecular orbital (LUMO)
energy to the blue region. The implication of this study is these iridium(III) complexes can be
studied as an alternative material to enhance luminescence efficiency of organic light-
emitting diode (OLED).
|
References |
Adachi, C., Baldo, M. A., Forrest, S. R., Lamansky, S., Thompson, M. E., & Kwong, R. High-Efficiency Red Electrophosphorescence Devices. Applied Physics Letters, 78(11), 1622–1624. https://doi.org/10.1063/1.1355007
Ahn, S. Y., Lee, H. S., & Ha, Y. (2011). New Blue Phosphorescent Iridium Complexes Containing Phenylpyridine And Triazole Ligands: Synthesis And Luminescence Studies. Journal of Nanoscience and Nanotechnology, 11(5), 4414–4418. https://doi.org/10.1166/jnn.2011.3656
Ali, N. M., Macleod, V. L., Jennison, P., Sazanovich, I. V., Hunter, C., Weinstein, J. A., & Ward, M. D. (2012). Luminescent Cyanometallates Based On Phenylpyridine- Ir(III) Units: Solvatochromism, Metallochromism, And Energy-Transfer In Ir/Ln And Ir/Re Complexes. Dalton Transactions, 41, 2408. https://doi.org/10.1039/c1dt11328c
Ali, N. M., Ward, M. D., Hashim, N., Daud, N., Mohd, N., Ward, M. D., … Daud, N. (2017). Synthesis And Photophysical Properties Of Bis(Phenylpyridine ) Iridium(III) Dicyanide Complexes. Materials Research Innovations, 8917(November), 1–6. https://doi.org/10.1080/14328917.2017.1397940
Atkinson, B. M. R., & Polya, J. B. (1954). Triazoles. Part II.* N-Substitution Of Some 1 ; 2 : 4-Triaxoles. RSC Publishing, 3–7. https://doi:10.1039/JR9540000141
Bahron, H., Khaidir, S. S., Tajuddin, A. M., Ramasamy, K., & Yamin, B. M. (2018). Synthesis , Characterization And Anticancer Activity Of Mono- And Binuclear Ni (II) And Co (II) Complexes Of A Schiff Base Derived From O-Vanillin. Polyhedron, (II). https://doi.org/10.1016/j.poly.2018.12.055
Balci, M. (2005). Basic 1H- and 13C-NMR Spectroscopy. Elsevier.
Balzani, V., Juris, A., Venturi, M., Campagna, S., & Serroni, S. (1996). Luminescent And Redox-Active Polynuclear Transition Metal Complexes †. Chemical Reviews, 96(2), 759–834. https://doi.org/10.1021/cr941154y
Baranoff, E., Curchod, B. F. E., & Monti, F. (2012). Influence Of Halogen Atoms On A Homologous Series Of Bis-Cyclometalated Iridium(III) Complexes.
Baranoff, E., Fantacci, S., De Angelis, F., Zhang, X., Scopelliti, R., Grtzel, M., & Nazeeruddin, M. K. (2011). Cyclometalated Iridium(III) Complexes Based On Phenyl-Imidazole Ligand. Inorganic Chemistry, 50(2), 451–462. https://doi.org/10.1021/ic901834v
Barbante, G. J., Doeven, E. H., Francis, P. S., Stringer, B. D., Hogan, C. F., Kheradmand, P. R., Barnard, P. J. (2015). Iridium(III) N-Heterocyclic Carbene Complexes: An Experimental And Theoretical Study Of Structural, Spectroscopic, Electrochemical And Electrogenerated Chemiluminescence Properties. Dalton Transactions, 44, 8564–8576. https://doi.org/10.1039/c4dt03378g
Barbante, G. J., Francis, P. S., Hogan, C. F., Kheradmand, P. R., Wilson, D. J. D., & Barnard, P. J. (2013). Electrochemiluminescent Ruthenium(II) N-Heterocyclic Carbene Complexes: A Combined Experimental And Theoretical Study. Inorganic Chemistry, 52(13), 7448–7459. https://doi.org/10.1021/ic400263r
Barbante GJ, Francis PS, H. C., Kheradmand, P. R., Wilson, D. J. D., Barnard, P. J., Barbante, G. J., Francis, P. S., Barnard, P. J. (2013). Electrochemiluminescent Ruthenium(II) N-Heterocyclic Carbene Complexes: A Combined Experimental And Theoretical Study. Inorganic Chemistry, 52(13), 7448–7459. https://doi.org/10.1021/ic400263r
Chan, K. T., Tong, G. S. M., To, W. P., Yang, C., Du, L., Phillips, D. L., & Che, C. M. (2017). The Interplay Between Fluorescence And Phosphorescence With Luminescent Gold(I) And Gold(III) Complexes Bearing Heterocyclic Arylacetylide Ligands. Chemical Science, 8(3), 2352–2364. https://doi.org/10.1039/c6sc03775e
Che, C. M., Kwok, C. C., Lai, S. W., Rausch, A. F., Finkenzeller, W. J., Zhu, N., & Yersin, H. (2010). Photophysical Properties And OLED Applications Of Phosphorescent Platinum(II) Schiff Base Complexes. Chemistry - A European Journal, 16(1), 233–247. https://doi.org/10.1002/chem.200902183
Congrave, D. G. (2018). Synthesis and Photophysical Properties of New Di- and Mononuclear Phosphorescent Iridium(III) Complexes. Durham E-Theses
Cortés-Arriagada, D., Sanhueza, L., González, I., Dreyse, P., & Toro-Labbé, A. (2015). About The Electronic And Photophysical Properties Of Iridium(III)-Pyrazino[2,3- F][1,10]-Phenanthroline Based Complexes For Use In Electroluminescent Devices. Phys. Chem. Chem. Phys., 15–17. https://doi.org/10.1039/C5CP05328E
Costa, R. D., Orti, E., Bolink, H. J., Monti, F., Accorsi, G., & Armaroli, N. (2012). Luminescent Ionic Transition-Metal Complexes For Light-Emitting Electrochemical Cells. Angewandte Chemie - International Edition, 51(33), 8178– 8211. https://doi.org/10.1002/anie.201201471
Gao, F. G., & Bard, A. J. (2000). Solid-State Organic Light-Emitting Diodes Based On Tris (2,2′-Bipyridine ) Ruthenium (II) Complexes. Journal of the American Chemical Society, 122(Ii), 7426–7427. https://doi.org/10.1021/ja000666t
Goldstein, D. C., Peterson, J. R., Cheng, Y. Y., Clady, R. G. C., Schmidt, T. W., & Thordarson, P. (2013). Synthesis And Luminescence Properties Of Iridium(III) Azide- And Triazole-Bisterpyridine Complexes, 8959–8975. https://doi.org/10.3390/molecules18088959
Henwood, A. F., Bansal, A. K., Cordes, D. B., Slawin, A. M. Z., Samuel, I. D. W., & Zysman-Colman, E. (2016). Solubilised Bright Blue-Emitting Iridium Complexes For Solution Processed OLEDs. J. Mater. Chem. C, 4, 3726–3737. https://doi.org/10.1039/C6TC00151C
Henwood, A. F., & Zysman-Colman, E. (2016). Luminescent Iridium Complexes Used In Light-Emitting Electrochemical Cells (LEECs). Current Chemistry, 374(4), 1– 41. https://doi.org/10.1007/s41061-016-0036-0
Herrmann, W. A. (2015). N-Heterocyclic Carbenes: A New Concept In Organometallic Catalysis. Angewandte Chemie International Edition, 41(8), 1290–1309. https://doi.org/10.1002/1521-3773(20020415)41:8<1290::AID- ANIE1290>3.0.CO;2-Y
Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An Overview Of N- Heterocyclic Carbenes. Nature, 510(7506), 485–496. https://doi.org/10.1038/nature13384
Huo, S., Deaton, J. C., Rajeswaran, M., & Lenhart, W. C. (2006). Highly Efficient, Selective, And General Method For The Preparation Of Meridional Homo- And Heteroleptic Tris-Cyclometalated Iridium Complexes. Inorganic Chemistry, 45(8), 3155–3157. https://doi.org/10.1021/ic060089v
Idrees, K. B., Astashkin, A. V., & Rajaseelan, E. (2017). [Μ-1,4- Bis(Diphenylphosphanyl)Butane-2]Bis[(4-Benzyl-2-Neopentyl-1,2,4-Triazol-3- Ylidene)[(1,2,5,6-Η)-Cycloocta-1,5-Diene]Iridium(I)],Bis(Tetrafluoroborate) Dichloromethane Disolvate . IUCrData, 2(7). https://doi.org/10.1107/s2414314617010811
Jean, Y. (2005). Molecular Orbital of Transistion Metal Complexes. In Oxford University Press. https://doi.org/10.1192/bjp.112.483.211-a
Jones, P. G., Debeaux, M., Weinkauf, A., & Hopf, H. (2010). Mer-Bis[3,5-Difluoro-2- (2-Pyridyl)Phenyl[3-(4-Vinyl-Benzyloxy)Phenyl]-1,2,4-Triazol-1-Ido]-Iridium(III) Methanol Solvate. metal-organic compounds Experimental. 5368. https://doi.org/10.1107/S1600536809052726
Kalinowski, J., Fattori, V., Cocchi, M., & Williams, J. A. G. (2011). Light-Emitting Devices Based On Organometallic Platinum Complexes As Emitters. Coordination Chemistry Reviews, 255(21–22), 2401–2425. https://doi.org/10.1016/j.ccr.2011.01.049
Kappaun, S., Slugovc, C., & List, E. J. W. (2008). Phosphorescent Organic Light- Emitting Devices: Working Principle And Iridium Based Emitter Materials. International Journal of Molecular Sciences, 9(8), 1527–1547. https://doi.org/10.3390/ijms9081527
Karmis, R. E., Carrara, S., Baxter, A. A., Hogan, C. F., Hulett, M. D., & Barnard, P. J. (2019). Luminescent Iridium(Iii) Complexes Of N-Heterocyclic Carbene Ligands Prepared Using The “Click Reaction.” Dalton Transactions, 48(27), 9998–10010. https://doi.org/10.1039/c9dt01362h
Kim, J.-B., Han, S.-H., Yang, K., Kwon, S.-K., Kim, J., & Kim, Y.-H. (2015). Highly Efficient Deep-Blue Phosphorescence From Heptafluoropropyl-Substituted Iridium Complexes. Royal Society of Chemistry, 51, 58–61. https://doi.org/10.1039/C4CC07768G
Klubek, K. P. (2014a). Investigation of Blue Phosphorescent Organic Light-Emitting Diode
Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C., Thompson, M. E. (2001). Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, And Use In Organic Light Emitting Diodes. Journal of the American Chemical Society, 123(18), 4304–4312. https://doi.org/10.1021/ja003693s
Lee, M. T., Liao, C. H., Tsai, C. H., & Chen, C. H. (2005). Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices. Advanced Materials, 17(20), 2493–2497. https://doi.org/10.1002/adma.200501169
Li, H., Yin, Y. M., Cao, H. T., Sun, H. Z., Wang, L., Shan, G. G., … Xie, W. F. (2014). Efficient Greenish-Blue Phosphorescent Iridium(III) Complexes Containing Carbene And Triazole Chromophores For Organic Light-Emitting Diodes. Journal of Organometallic Chemistry, 753(Iii), 55–62. https://doi.org/10.1016/j.jorganchem.2013.11.036
Li, J., Djurovich, P. I., Alleyne, B. D., Yousufuddin, M., Ho, N. N., Thomas, J. C., Thompson, M. E. (2005). Synthetic Control Of Excited-State Properties In Cyclometalated Ir(III) Complexes Using Ancillary Ligands. Inorganic Chemistry, 44(6), 1713–1727. https://doi.org/10.1021/ic048599h
Li, Y., Liu, Y., & Zhou, M. (2012). Synthesis And Properties Of A Dendritic FRET Donor- Acceptor System With Cationic Iridium(Iii) Complex Core And Carbazolyl Periphery. Dalton Transactions, 41(9), 2582–2591. https://doi.org/10.1039/c1dt11716e
Lo, K. K.-W. (2016). Luminescent Iridium(III) And Rhenium(I) Complexes As Biomolecular Probes And Imaging Reagents. In Insights from Imaging in Bioinorganic Chemistry (1st ed., Vol. 68). https://doi.org/10.1016/bs.adioch.2015.09.006
Lo, S., Shipley, C. P., Bera, R. N., Harding, R. E., Cowley, A. R., Burn, P. L., July, V. (2006). Blue Phosphorescence From Iridium(III) Complexes At Room Temperature. Chemistry Of Materials, 18, 5119–5129. https://doi.org/10.1021/cm061173b
Lo, W., Chung, C. K., Lee, T. K. M., Lui, L. H., Tsang, K. H. K., & Zhu, N. (2013). New Luminescent Cyclometalated Iridium(III) Diimine Complexes As Biological Labeling Reagents. Inorganic Chemistry, 42(21), 6886–6897. https://doi.org/10.1021/ic0346984
Lu, J., Tao, Y., Chi, Y., & Tung, Y. (2005). High-Efficiency Red Electrophosphorescent Devices Based On New Osmium(II) Complexes. Synthetic Metals, 155(1), 56–62. https://doi.org/10.1016/j.synthmet.2005.05.024
Manual, S. R. (1997). Software Reference Manual. (November).
Maro?, A. M., & Ma?ecki, J. G. (2014). Spectroscopic Characterization Of Chloride And Pseudohalide Ruthenium(II) Complexes With 4-(4-Nitrobenzyl)Pyridine. Transition Metal Chemistry, 39(7), 831–841. https://doi.org/10.1007/s11243-014- 9865-2
Meier, S. B., Sarfert, W., Junquera-hernández, J. M. M. D., Enrique Ortí, Henk J. Bolink, Florian Kessler, Etienne, B. (2012). Deep-Blue Emitting Charged Bis- Cyclometallated Iridium(III) Complex For Light-Emitting Electrochemical Cells. Royal Society of Chemistry, (III), 1–7.
Mercs, L., & Albrecht, M. (2010). Beyond Catalysis: N-Heterocyclic Carbene Complexes As Components For Medicinal, Luminescent, And Functional Materials Applications. Chemical Society Reviews, 39(6), 1903–1912. https://doi.org/10.1039/b902238b
Monti, F., Kessler, F., Delgado, M., Frey, J., Bazzanini, F., Accorsi, G., Baranoff, E. (2013). Charged Bis-Cyclometalated Iridium(III) Complexes with Carbene Based Ancillary Ligands. Inorganic Chemistry, 52(III), 10292–10305.
Nazeeruddin, M. K., Humphry-Baker, R., Berner, S., Rivier, S., Zuppiroli, L., & Graetzel, M. (2003). Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices. J. Am. Chem. Soc., 125(29), 8790– 8797. https://doi.org/10.1021/ja021413y
Nelson, D. J., & Nolan, S. P. (2013). Quantifying And Understanding The Electronic Properties Of N-Heterocyclic Carbenes. Chemical Society Reviews, 42(16), 6723–6753. https://doi.org/10.1039/c3cs60146c
Omae, I. (2016). Application Of The Five-Membered Ring Blue Light-Emitting Iridium Products Of Cyclometalation Reactions As OLEDs. Coordination Chemistry Reviews, 310, 154–169. https://doi.org/10.1016/j.ccr.2015.08.009
Orselli, E., Kottas, G. S., Konradsson, A. E., Coppo, P., Fro, R., Cola, L. De, … V, B. U. (2007). Blue-Emitting Iridium Complexes with Substituted 1 , 2 , 4-Triazole Ligands : Synthesis , Photophysics , and Devices. Inorganic Chemistry, 46(26), 1441–1448.
Park, H. R., Yi, Y. Y., & Ha, Y. (2012). The Blue Phosphorescent Iridium Complexes Containing the Pyridyltriazole Derivatives as a Main Ligand The Blue Phosphorescent Iridium Complexes Containing the Pyridyltriazole Derivatives as a Main Ligand. Molecular Crystals and Liquid Crystals, 567, 156–162. https://doi.org/10.1080/15421406.2012.703439
Partl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., & Peringer, P. (2019). Crystal Structures Of Two PCN Pincer Iridium Complexes And One PCP Pincer Carbodiphosphorane Iridium Intermediate : Substitution Of One Phosphine Moiety Of A Carbodiphosphorane By An Organic Azide. research communications. https://doi.org/10.1107/S2056989018017644
Pell, T. P., Wilson, D. J. D., Skelton, B. W., Dutton, J. L., & Barnard, P. J. (2016). Heterobimetallic N-Heterocyclic Carbene Complexes: A Synthetic, Spectroscopic, and Theoretical Study. Inorganic Chemistry, 55(14), 6882–6891. https://doi.org/10.1021/acs.inorgchem.6b00222
Pell TP, Wilsin JD, Skelton BW, et al. (2016). Heterobimetallic N-Heterocyclic Carbene Complexes: A Synthetic, Spectroscopic, And Theoretical Study. Inorganic Chemistry, 55, 6882–6891. https://doi.org/10.1021/acs.inorgchem.6b00222
Pla, P., Junquera-Hernández, J. M., Bolink, H. J., & Ortí, E. (2015). Emission Energy Of Azole-Based Ionic Iridium(III) Complexes: A Theoretical Study. Dalton Transactions, 44(18), 8497–8505. https://doi.org/10.1039/c4dt03046j
Poater, A. (2016). Versatile Deprotonated Nhc: C,N-Bridged Dinuclear Iridium And Rhodium Complexes. Beilstein Journal of Organic Chemistry, 12, 117–124. https://doi.org/10.3762/bjoc.12.13
Poethig, A., & Strassner, T. (2011). Neutral Dinuclear Silver(I) − NHC Complexes : Synthesis and Photophysics. Organometallics, 30,(24) 6674–6684. https:/ /doi/abs/10.1021/om200860y
Robert MS, Francis XW and David JK 2005 Spectrometric Identification Of Organic Compounds, (John Wiley & Sons, Inc) p 107-108
Sajoto, T. (2008). Synthesis And Photophysical Characterization Of Phosphorescent Cyclometalated Iridium(III) Complexes And Their Use In Organic Light Emitting Devices. University of Southern California, (May). https://doi.org/10.1017/CBO9781107415324.004
Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E., … Forrest, S. R. (2005). Blue And Near-UV Phosphorescence From Iridium Complexes With Cyclometalated Pyrazolyl Or N-Heterocyclic Carbene Ligands. Inorganic Chemistry, 44(22), 7992–8003. https://doi.org/10.1021/ic051296i
Sanner, R. D., Cherepy, N. J., & Young, V. G. (2016). Blue Light Emission From Cyclometallated Iridium(III) Cyano Complexes: Syntheses, Crystal Structures, And Photophysical Properties. Inorganica Chimica Acta, 440(III), 165–171. https://doi.org/10.1016/j.ica.2015.10.030
Sarada, G., Maheshwaran, A., Cho, W., Lee, T., Hyun, S., Yeob, J., & Jin, S. (2018). Pure Blue Phosphorescence By New N- Heterocyclic Carbene-Based Ir(Iii) Complexes For Organic Light-Emitting Diode Application. Dyes and Pigments, 150(November 2017), 1–8. https://doi.org/10.1016/j.dyepig.2017.11.011
Schuster, O., Yang, L., Raubenheimer, H. G., & Albrecht, M. (2009). Beyond Conventional N -Heterocyclic Carbenes : Abnormal , Remote , And Other Classes Of NHC Ligands With Reduced Heteroatom Stabilization. American Chemical Society, 109(8). https://doi.org/https://doi.org/10.1021/cr8005087
Shang, C., Jiang, H., Wei, Y., Zhang, L., & Luo, R. (2019). Investigation On The Photophysical Properties Of A Series Of Promising Phosphorescent Iridium(III) Complexes With Modified Cyclometalating Ligands. Polyhedron, 157, 170–176. https://doi.org/10.1016/j.poly.2018.09.071
Sun, R. W. Y., Chow, A. L. F., Li, X. H., Yan, J. J., Chui, S. S. Y., & Che, C. M. (2011). Luminescent Cyclometalated Platinum(II) Complexes Containing N-Heterocyclic Carbene Ligands With Potent In Vitro And In Vivo Anti-Cancer Properties Accumulate In Cytoplasmic Structures Of Cancer Cells. Chemical Science, 2(4), 728–736. https://doi.org/10.1039/c0sc00593b
Suzuri, Y., Oshiyama, T., Ito, H., Hiyama, K., & Kita, H. (2014). Phosphorescent Cyclometalated Complexes For Efficient Blue Organic Light-Emitting Diodes. Science and Technology of Advanced Materials, 15(5). https://doi.org/10.1088/1468-6996/15/5/054202
Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Thompson, M. E. (2013). Synthesis And Characterization Of Facial And Meridional Tris-Cyclometalated Iridium(III) Complexes. Journal of American Chemical Society, (125), 7377–7387.
Tung YL, Wu PC, Liu WCH, et al. (2004). Highly Efficient Red Phosphorescent Osmium(II) Complexes For OLED Applications. Organometallics, 23(15), 3745– 3748. https://doi.org/10.1021/om0498246
Uesugi, H., Tsukuda, T., Takao, K., & Tsubomura, T. (2013). Highly Emissive Platinum(Ii) Complexes Bearing Carbene And Cyclometalated Ligands. Dalton Transactions, 42(20), 7396–7403. https://doi.org/10.1039/c3dt32866j
Visbal, R., & Concepcion Gimeno, M. (2014). N-Heterocyclic Carbene Metal Complexes: Photoluminescence And Applications. Chemical Society Reviews, 43(10), 3551–3574. https://doi.org/10.1039/c3cs60466g
Wang, Z., He, L., Duan, L., Yan, J., Tang, R., Pan, C., & Song, X. (2015). Blue-Green Emitting Cationic Iridium Complexes With 1,3,4-Oxadiazole Cyclometallating Ligands: Synthesis, Photophysical And Electrochemical Properties, Theoretical Investigation And Electroluminescent Devices. Dalton Transactions (Vol. 44). https://doi.org/10.1039/c5dt02083b
Welby, C. E., Gilmartin, L., Marriot, R. R., Zahid, A., Rice, C. R., Gibson, E. A., & Elliott, P. (2013). Luminescent Biscyclometalated Arylpyridine Iridium(III) Complexes With 4,4’-Bi-1,2,3-Triazolyl Ancillary Ligands. Dalton Transactions, 42(207890), 13527–13536. https://doi.org/10.1039/b000000x
Wong, M., Xie, G., Tourbillion, C., Sandroni, M., Cordes, D. B., & Slawin, A. M. Z. (2015). Formylated Chloro-Bridged Iridium(III) Dimers as OLED Materials: Opening Up New Possibilities. Royal Society of Chemistry, 1, 38–42. https://doi.org/10.1039/C4DT03127J
Yang, J., & Gordon, K. C. (2005). Organic Light-Emitting Devices Using Ruthenium(II) (4,7-diphenyl-1,10-phenanthroline)³ as Dopant. Synthetic Metals, 152(1–3), 213– 216. https://doi.org/10.1016/j.synthmet.2005.07.223
Yanling, S., Shuai, Z., Godefroid, G., Jinghai, Y., & Zhijian, W. (2015). Modification Of The Emission Colour And Quantum Efficiency For Oxazoline And Thiazoline Containing Iridium Complexes Via Different N^O. The Royal Society of Chemistry. https://doi.org/10.1039/b000000x
You, Y., & Nam, W. (2012). Photofunctional Triplet Excited States of Cyclometalated Ir(III) Complexes: Beyond Electroluminescence. Chemical Society Reviews, 41(21), 7061–7084. https://doi.org/10.1039/c2cs35171d
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |