UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QD Chemistry
Main Author :Nurul Husna As Saedah Bain
Title :Synthesis and photophysical properties of iridium(III) complexes with n-heterocyclic carbene ligands for light emitting diode application
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :with cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This research aimed to synthesise iridium(III) complexes with N-heterocyclic carbene (NHC)    ligands   and   investigate   their   photophysical   properties.   Complexes   of  chlorobis(2,4-difluorophenylpyridine)(pyridyltriazole)iridium(III)                               (C1), bis(2,4-difluorophenylpyridine)(4-methylbenzylpyridyltriazole)iridium(III)     ion     (C2),  bis(2,4-difluorophenylpyridine)(hexylpyridyltriazole)iridium(III)       ion       (C3)       and  bis(2,4-difluorophenylpyridine)(2,6-difluorobenzylpyridyltriazole)iridium(III)    ion    (C4) were     synthesised    by    reaction    between    dichloro-bridged    iridium(III)    dimer,  [Ir(2,4-F2ppy)2(μ-Cl)]2 and corresponding triazolium salts. Iridium(III) complexes were  characterised by Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) elemental analyser and   spectroscopic  techniques:  ¹H  and  ¹³C  Nuclear  Magnetic  Resonance  (NMR), Fourier   Transform-Infrared  (FTIR)  and  Liquid  Chromatography-Mass  Spectrometry (LCMS).  The  molecular   structure  of  C1  was  determined  by  single  crystal  X-Ray Diffraction   (XRD)   technique.    The   photophysical   study   was   performed   using spectroscopic techniques: Ultraviolet-Visible  (UV-Vis) and fluorescence. The results of the IR spectra showed strong frequency bands in the at  1595–1400 cm?¹ were due to ν(C=N)   and   ν(C=C).   The   ¹H   NMR   spectra   displayed   the   proton    signals   of phenylpyridine and pyridinetriazole in the aromatic region between δ 5.00 and  10.00 ppm. The ¹³C NMR spectra showed aromatic carbon signals in the range δ 80–150 ppm  and δ 0−50 ppm for aliphatic carbon that matches with the corresponding number of  carbon atoms in C1−C4. Complexes of C1, C2, C3 and C4 exhibited ESI spectra at m/z 754.22,   823.17,  803.11  and 847.15, respectively.  X-Ray crystallographic  study confirmed iridium(III)  ion in C1 was coordinated to one pyridine-triazole, one chloro and  two  difluorophenylpyridine   ligands  in  a  distorted  octahedral  geometry.  Steady- state emission spectroscopy demonstrated  C1, C2, C3 and C4 emitted blue-green light in dichloromethane solution with an emission maximum at  472 nm, 452 nm, 471 nm and 470 nm, respectively. In conclusion, electronic properties of  iridium(III) complexes with NHC ligands have tuned the lowest-unoccupied molecular orbital (LUMO)  energy to the blue region. The implication of this study is these iridium(III) complexes can be  studied as an alternative material to enhance luminescence efficiency of organic light- emitting diode (OLED).  

References

Adachi, C., Baldo, M. A., Forrest, S. R., Lamansky, S., Thompson, M. E., & Kwong, R. 

High-Efficiency Red Electrophosphorescence Devices. Applied Physics Letters, 78(11), 1622–1624. 

https://doi.org/10.1063/1.1355007

 

Ahn, S. Y., Lee, H. S., & Ha, Y. (2011). New Blue Phosphorescent Iridium Complexes Containing 

Phenylpyridine And Triazole Ligands: Synthesis And Luminescence Studies.   Journal   of   

Nanoscience   and   Nanotechnology,   11(5),   4414–4418. https://doi.org/10.1166/jnn.2011.3656

 

Ali, N. M., Macleod, V. L., Jennison, P., Sazanovich, I. V., Hunter, C., Weinstein, J. A., & Ward, 

M. D. (2012). Luminescent Cyanometallates Based On Phenylpyridine- Ir(III)  Units:  

Solvatochromism,  Metallochromism,  And  Energy-Transfer  In  Ir/Ln And        Ir/Re        

Complexes.        Dalton        Transactions,        41,        2408.

https://doi.org/10.1039/c1dt11328c

 

Ali, N. M., Ward, M. D., Hashim, N., Daud, N., Mohd, N., Ward, M. D., … Daud, N. (2017).   

Synthesis   And   Photophysical   Properties   Of   Bis(Phenylpyridine   ) Iridium(III)      

Dicyanide      Complexes.      Materials      Research      Innovations, 8917(November), 1–6. 

https://doi.org/10.1080/14328917.2017.1397940

 

Atkinson, B. M. R., & Polya, J. B. (1954). Triazoles. Part II.* N-Substitution Of Some 1 ; 2 : 

4-Triaxoles. RSC Publishing, 3–7. https://doi:10.1039/JR9540000141

 

Bahron, H., Khaidir, S. S., Tajuddin, A. M., Ramasamy, K., & Yamin, B. M. (2018). Synthesis , 

Characterization And Anticancer Activity Of Mono- And Binuclear Ni

(II) And Co (II) Complexes Of A Schiff Base Derived From O-Vanillin. Polyhedron, (II). 

https://doi.org/10.1016/j.poly.2018.12.055

 

Balci, M. (2005). Basic 1H- and 13C-NMR Spectroscopy. Elsevier.

 

Balzani, V., Juris, A., Venturi, M., Campagna, S., & Serroni, S. (1996). Luminescent And 

Redox-Active Polynuclear Transition Metal Complexes †. Chemical Reviews, 96(2), 759–834. 

https://doi.org/10.1021/cr941154y

 

Baranoff, E., Curchod, B. F. E., & Monti, F. (2012). Influence Of Halogen Atoms On A Homologous 

Series Of Bis-Cyclometalated Iridium(III) Complexes.

 

Baranoff,  E.,  Fantacci,  S.,  De  Angelis,  F.,  Zhang,  X.,  Scopelliti,  R.,  Grtzel,  M.,  & 

Nazeeruddin,  M.  K.  (2011).  Cyclometalated  Iridium(III)  Complexes  Based  On Phenyl-Imidazole  

    Ligand.      Inorganic      Chemistry,      50(2),      451–462. 

https://doi.org/10.1021/ic901834v

 

Barbante,  G.  J.,  Doeven,  E.  H.,  Francis,  P.  S.,  Stringer,  B.  D.,  Hogan,  C.  F., 

Kheradmand,  P.  R.,  Barnard,  P.  J.  (2015).  Iridium(III)  N-Heterocyclic  Carbene Complexes: 

An Experimental And Theoretical Study Of Structural, Spectroscopic, Electrochemical  And  

Electrogenerated  Chemiluminescence  Properties.  Dalton Transactions, 44, 8564–8576. 

https://doi.org/10.1039/c4dt03378g

 

Barbante, G. J., Francis, P. S., Hogan, C. F., Kheradmand, P. R., Wilson, D. J. D., & Barnard,  P.  

J.  (2013).  Electrochemiluminescent  Ruthenium(II)  N-Heterocyclic Carbene Complexes: A Combined 

Experimental And Theoretical Study. Inorganic

Chemistry, 52(13), 7448–7459. https://doi.org/10.1021/ic400263r

 

Barbante GJ, Francis PS, H. C., Kheradmand, P. R., Wilson, D. J. D., Barnard, P. J., Barbante, G. 

J., Francis, P. S., Barnard, P. J. (2013). Electrochemiluminescent Ruthenium(II)  N-Heterocyclic  

Carbene  Complexes:  A  Combined  Experimental And     Theoretical     Study.     Inorganic     

Chemistry,     52(13),     7448–7459. https://doi.org/10.1021/ic400263r

 

Chan, K. T., Tong, G. S. M., To, W. P., Yang, C., Du, L., Phillips, D. L., & Che, C. M. (2017).   

The   Interplay   Between   Fluorescence   And   Phosphorescence   With Luminescent Gold(I) And 

Gold(III) Complexes Bearing Heterocyclic Arylacetylide Ligands.               Chemical              

 Science,               8(3),               2352–2364. https://doi.org/10.1039/c6sc03775e

 

Che, C. M., Kwok, C. C., Lai, S. W., Rausch, A. F., Finkenzeller, W. J., Zhu, N., & Yersin,   H.   

(2010).   Photophysical   Properties   And   OLED   Applications   Of Phosphorescent Platinum(II)  

Schiff  Base  Complexes.  Chemistry  -  A  European Journal, 16(1), 233–247. 

https://doi.org/10.1002/chem.200902183

 

Congrave,  D.  G.  (2018).  Synthesis  and  Photophysical  Properties  of  New  Di-  and 

Mononuclear Phosphorescent Iridium(III) Complexes. Durham E-Theses

 

Cortés-Arriagada, D., Sanhueza, L., González, I., Dreyse, P., & Toro-Labbé, A. (2015). About The 

Electronic And Photophysical Properties Of Iridium(III)-Pyrazino[2,3- F][1,10]-Phenanthroline   

Based   Complexes   For   Use   In   Electroluminescent Devices.             Phys.             

Chem.             Chem.             Phys.,             15–17. https://doi.org/10.1039/C5CP05328E

 

Costa,  R.  D.,  Orti,  E.,  Bolink,  H.  J.,  Monti,  F.,  Accorsi,  G.,  &  Armaroli,  N.  

(2012). Luminescent      Ionic      Transition-Metal      Complexes      For      Light-Emitting 

Electrochemical Cells. Angewandte Chemie - International Edition, 51(33), 8178– 8211. 

https://doi.org/10.1002/anie.201201471

 

Gao, F. G., & Bard, A. J. (2000). Solid-State Organic Light-Emitting Diodes Based On Tris  

(2,2′-Bipyridine  )  Ruthenium  (II)  Complexes.  Journal  of  the  American Chemical Society, 

122(Ii), 7426–7427. https://doi.org/10.1021/ja000666t

 

Goldstein, D. C., Peterson, J. R., Cheng, Y. Y., Clady, R. G. C., Schmidt, T. W., & Thordarson,  P. 

 (2013).  Synthesis  And  Luminescence  Properties  Of  Iridium(III) Azide-         And         

Triazole-Bisterpyridine         Complexes,         8959–8975. 

https://doi.org/10.3390/molecules18088959

 

Henwood, A. F., Bansal, A. K., Cordes, D. B., Slawin, A. M. Z., Samuel, I. D. W., & Zysman-Colman, 

E. (2016). Solubilised Bright Blue-Emitting Iridium Complexes For   Solution   Processed   OLEDs.   

J.   Mater.   Chem.   C,   4,   3726–3737. https://doi.org/10.1039/C6TC00151C

 

Henwood, A. F., & Zysman-Colman, E. (2016). Luminescent Iridium Complexes Used In Light-Emitting 

Electrochemical Cells (LEECs). Current Chemistry, 374(4), 1– 41. 

https://doi.org/10.1007/s41061-016-0036-0

 

Herrmann, W. A. (2015). N-Heterocyclic Carbenes: A New Concept In Organometallic Catalysis.   

Angewandte   Chemie   International   Edition,   41(8),   1290–1309. 

https://doi.org/10.1002/1521-3773(20020415)41:8<1290::AID- ANIE1290>3.0.CO;2-Y

 

Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An Overview Of N- Heterocyclic   

         Carbenes.            Nature,            510(7506),            485–496. 

https://doi.org/10.1038/nature13384

 

Huo,  S.,  Deaton,  J.  C.,  Rajeswaran,  M.,  &  Lenhart,  W.  C.  (2006).  Highly  Efficient, 

Selective, And General Method For The Preparation Of Meridional Homo- And Heteroleptic 

Tris-Cyclometalated Iridium Complexes. Inorganic Chemistry, 45(8), 3155–3157. 

https://doi.org/10.1021/ic060089v

 

Idrees,    K.    B.,    Astashkin,    A.    V.,    &    Rajaseelan,    E.    (2017).        [Μ-1,4- 

Bis(Diphenylphosphanyl)Butane-2]Bis[(4-Benzyl-2-Neopentyl-1,2,4-Triazol-3- 

Ylidene)[(1,2,5,6-Η)-Cycloocta-1,5-Diene]Iridium(I)],Bis(Tetrafluoroborate) Dichloromethane         

      Disolvate               .               IUCrData,               2(7). 

https://doi.org/10.1107/s2414314617010811

 

Jean,  Y.  (2005).  Molecular  Orbital  of  Transistion  Metal  Complexes.  In  Oxford University 

Press. https://doi.org/10.1192/bjp.112.483.211-a

 

Jones, P. G., Debeaux, M., Weinkauf, A., & Hopf, H. (2010). Mer-Bis[3,5-Difluoro-2- 

(2-Pyridyl)Phenyl[3-(4-Vinyl-Benzyloxy)Phenyl]-1,2,4-Triazol-1-Ido]-Iridium(III) Methanol      

Solvate.      metal-organic      compounds      Experimental.      5368. 

https://doi.org/10.1107/S1600536809052726

 

Kalinowski,  J.,  Fattori,  V.,  Cocchi,  M.,  &  Williams,  J.  A.  G.  (2011).  Light-Emitting 

Devices    Based    On    Organometallic    Platinum    Complexes    As    Emitters. Coordination   

       Chemistry          Reviews,          255(21–22),          2401–2425. 

https://doi.org/10.1016/j.ccr.2011.01.049

 

Kappaun,  S.,  Slugovc,  C.,  &  List,  E.  J.  W.  (2008).  Phosphorescent  Organic  Light- 

Emitting  Devices:   Working   Principle   And  Iridium   Based  Emitter  Materials. International  

    Journal      of      Molecular      Sciences,      9(8),      1527–1547. 

https://doi.org/10.3390/ijms9081527

 

Karmis, R. E., Carrara, S., Baxter, A. A., Hogan, C. F., Hulett, M. D., & Barnard, P. J. (2019). 

Luminescent Iridium(Iii) Complexes Of N-Heterocyclic Carbene Ligands Prepared Using The “Click 

Reaction.” Dalton Transactions, 48(27), 9998–10010. https://doi.org/10.1039/c9dt01362h

 

Kim,  J.-B., Han, S.-H., Yang, K., Kwon, S.-K., Kim,  J.,  & Kim, Y.-H. (2015). Highly

Efficient   Deep-Blue   Phosphorescence   From   Heptafluoropropyl-Substituted Iridium      

Complexes.      Royal      Society      of      Chemistry,      51,      58–61. 

https://doi.org/10.1039/C4CC07768G

 

Klubek, K. P. (2014a). Investigation of Blue Phosphorescent Organic Light-Emitting Diode

 

Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C., Thompson,  M.  

E.  (2001).  Highly  Phosphorescent  Bis-Cyclometalated  Iridium Complexes: Synthesis, 

Photophysical Characterization, And Use In Organic Light Emitting Diodes. Journal of the American 

Chemical Society, 123(18), 4304–4312. https://doi.org/10.1021/ja003693s

 

Lee, M. T., Liao, C. H., Tsai, C. H., & Chen, C. H. (2005). Highly Efficient, Deep-Blue Doped 

Organic Light-Emitting Devices. Advanced Materials, 17(20), 2493–2497. 

https://doi.org/10.1002/adma.200501169

 

Li, H., Yin, Y. M., Cao, H. T., Sun, H. Z., Wang, L., Shan, G. G., … Xie, W. F. (2014).

Efficient   Greenish-Blue   Phosphorescent   Iridium(III)   Complexes   Containing Carbene And 

Triazole Chromophores For Organic Light-Emitting Diodes. Journal of               Organometallic    

           Chemistry,               753(Iii),               55–62. 

https://doi.org/10.1016/j.jorganchem.2013.11.036

 

Li,  J.,  Djurovich,  P.  I.,  Alleyne,  B.  D.,  Yousufuddin,  M.,  Ho,  N.  N.,  Thomas,  J.  C., 

Thompson,  M.  E.  (2005).  Synthetic  Control  Of  Excited-State  Properties  In Cyclometalated 

Ir(III) Complexes Using Ancillary Ligands. Inorganic Chemistry, 44(6), 1713–1727. 

https://doi.org/10.1021/ic048599h

 

Li, Y., Liu, Y., & Zhou, M. (2012). Synthesis And Properties Of A Dendritic FRET Donor- Acceptor   

System   With   Cationic   Iridium(Iii)   Complex   Core   And   Carbazolyl Periphery.             

Dalton             Transactions,             41(9),             2582–2591. 

https://doi.org/10.1039/c1dt11716e

 

Lo,   K.   K.-W.   (2016).   Luminescent   Iridium(III)   And   Rhenium(I)   Complexes   As 

Biomolecular  Probes  And  Imaging  Reagents.  In  Insights  from  Imaging  in Bioinorganic         

     Chemistry              (1st              ed.,              Vol.              68). 

https://doi.org/10.1016/bs.adioch.2015.09.006

 

Lo, S., Shipley, C. P., Bera, R. N., Harding, R. E., Cowley, A. R., Burn, P. L., July, V. (2006).   

 Blue    Phosphorescence    From    Iridium(III)    Complexes    At    Room Temperature.         

Chemistry         Of         Materials,         18,         5119–5129. 

https://doi.org/10.1021/cm061173b

 

Lo, W., Chung, C. K., Lee, T. K. M., Lui, L. H., Tsang, K. H. K., & Zhu, N. (2013). New

Luminescent   Cyclometalated   Iridium(III)   Diimine   Complexes   As   Biological Labeling       

Reagents.       Inorganic       Chemistry,       42(21),       6886–6897. 

https://doi.org/10.1021/ic0346984

 

Lu, J., Tao, Y., Chi, Y., & Tung, Y. (2005). High-Efficiency Red Electrophosphorescent Devices 

Based On New Osmium(II) Complexes. Synthetic Metals, 155(1), 56–62. 

https://doi.org/10.1016/j.synthmet.2005.05.024

 

Manual, S. R. (1997). Software Reference Manual. (November).

 

Maro?, A. M., & Ma?ecki, J. G. (2014). Spectroscopic Characterization Of Chloride And Pseudohalide  

   Ruthenium(II)     Complexes     With     4-(4-Nitrobenzyl)Pyridine. Transition Metal Chemistry, 

39(7), 831–841. https://doi.org/10.1007/s11243-014-

9865-2

 

Meier,  S.  B.,  Sarfert,  W.,  Junquera-hernández,  J.  M.  M.  D.,  Enrique  Ortí,  Henk  J. 

Bolink,  Florian  Kessler,  Etienne,  B.  (2012).  Deep-Blue  Emitting  Charged  Bis- 

Cyclometallated  Iridium(III)  Complex  For  Light-Emitting  Electrochemical  Cells. Royal Society 

of Chemistry, (III), 1–7.

 

Mercs,   L.,   &   Albrecht,   M.   (2010).   Beyond   Catalysis:   N-Heterocyclic   Carbene 

Complexes   As   Components   For   Medicinal,   Luminescent,   And   Functional Materials    

Applications.    Chemical    Society    Reviews,    39(6),    1903–1912.

https://doi.org/10.1039/b902238b

 

Monti, F., Kessler, F., Delgado, M., Frey, J., Bazzanini, F., Accorsi, G., Baranoff, E. (2013). 

Charged Bis-Cyclometalated Iridium(III) Complexes with Carbene Based Ancillary Ligands. Inorganic 

Chemistry, 52(III), 10292–10305.

 

Nazeeruddin,  M.  K.,  Humphry-Baker,  R.,  Berner,  S.,  Rivier,  S.,  Zuppiroli,  L.,  & 

Graetzel,  M.  (2003).  Highly  Phosphorescence  Iridium  Complexes  and  Their Application in 

Organic Light-Emitting Devices. J. Am. Chem. Soc., 125(29), 8790– 8797. 

https://doi.org/10.1021/ja021413y

 

Nelson, D. J., & Nolan, S. P. (2013). Quantifying And Understanding The Electronic Properties  Of  

N-Heterocyclic  Carbenes.  Chemical  Society  Reviews,  42(16), 6723–6753. 

https://doi.org/10.1039/c3cs60146c

 

Omae, I. (2016). Application Of The Five-Membered Ring Blue Light-Emitting Iridium Products  Of  

Cyclometalation  Reactions  As  OLEDs.  Coordination  Chemistry Reviews, 310, 154–169. 

https://doi.org/10.1016/j.ccr.2015.08.009

 

Orselli, E., Kottas, G. S., Konradsson, A. E., Coppo, P., Fro, R., Cola, L. De, … V, B.

U.  (2007).  Blue-Emitting  Iridium Complexes with Substituted 1 ,  2 ,  4-Triazole Ligands : 

Synthesis , Photophysics , and Devices. Inorganic Chemistry, 46(26), 1441–1448.

 

Park, H. R., Yi, Y. Y., & Ha, Y. (2012). The Blue Phosphorescent Iridium Complexes Containing   the 

  Pyridyltriazole   Derivatives   as   a   Main   Ligand   The   Blue Phosphorescent Iridium 

Complexes Containing the Pyridyltriazole Derivatives as a   Main   Ligand.   Molecular   Crystals   

and   Liquid   Crystals,   567,   156–162. https://doi.org/10.1080/15421406.2012.703439

 

Partl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., & Peringer, P. (2019). Crystal Structures  Of 

 Two  PCN  Pincer  Iridium  Complexes  And  One  PCP  Pincer Carbodiphosphorane   Iridium   

Intermediate :   Substitution   Of   One   Phosphine Moiety    Of    A    Carbodiphosphorane    By  

  An    Organic    Azide.    research communications. https://doi.org/10.1107/S2056989018017644

 

Pell, T. P., Wilson, D. J. D., Skelton, B. W., Dutton, J.  L., & Barnard, P. J. (2016). 

Heterobimetallic      N-Heterocyclic      Carbene      Complexes:      A      Synthetic, 

Spectroscopic, and Theoretical Study. Inorganic Chemistry, 55(14), 6882–6891. 

https://doi.org/10.1021/acs.inorgchem.6b00222

 

Pell TP, Wilsin JD, Skelton BW,  et al. (2016). Heterobimetallic N-Heterocyclic Carbene Complexes:  

 A   Synthetic,   Spectroscopic,   And   Theoretical   Study.   Inorganic Chemistry, 55, 6882–6891. 

https://doi.org/10.1021/acs.inorgchem.6b00222

 

Pla, P., Junquera-Hernández, J. M., Bolink, H. J., & Ortí, E. (2015). Emission Energy Of   

Azole-Based   Ionic   Iridium(III)   Complexes:   A   Theoretical   Study.   Dalton Transactions, 

44(18), 8497–8505. https://doi.org/10.1039/c4dt03046j

 

Poater,  A.  (2016).  Versatile  Deprotonated  Nhc:  C,N-Bridged  Dinuclear  Iridium  And Rhodium  

Complexes.  Beilstein  Journal  of  Organic  Chemistry,  12,  117–124. 

https://doi.org/10.3762/bjoc.12.13

 

Poethig, A., & Strassner,  T. (2011). Neutral Dinuclear Silver(I) − NHC Complexes : Synthesis   and 

  Photophysics.   Organometallics,   30,(24)   6674–6684.   https:/

/doi/abs/10.1021/om200860y

 

Robert MS, Francis XW and David JK 2005 Spectrometric Identification Of Organic Compounds, (John 

Wiley & Sons, Inc) p 107-108

 

Sajoto, T. (2008). Synthesis And Photophysical Characterization Of Phosphorescent Cyclometalated 

Iridium(III) Complexes And Their Use In Organic Light Emitting Devices.           University        

   of           Southern           California,           (May). 

https://doi.org/10.1017/CBO9781107415324.004

 

Sajoto, T., Djurovich, P. I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M. E.,

…  Forrest,  S.  R.  (2005).  Blue  And  Near-UV  Phosphorescence  From  Iridium Complexes With 

Cyclometalated Pyrazolyl Or N-Heterocyclic Carbene Ligands. Inorganic Chemistry, 44(22), 7992–8003. 

https://doi.org/10.1021/ic051296i

 

Sanner,  R.  D.,  Cherepy,  N.  J.,  &  Young,  V.  G.  (2016).  Blue  Light  Emission  From 

Cyclometallated  Iridium(III)  Cyano  Complexes:  Syntheses,  Crystal  Structures, And  

Photophysical  Properties.  Inorganica  Chimica  Acta,  440(III),  165–171. 

https://doi.org/10.1016/j.ica.2015.10.030

 

Sarada, G., Maheshwaran, A., Cho, W., Lee, T., Hyun, S., Yeob, J., & Jin, S. (2018). Pure  Blue  

Phosphorescence  By  New  N-  Heterocyclic  Carbene-Based  Ir(Iii) Complexes For Organic 

Light-Emitting Diode Application.  Dyes and Pigments, 150(November 2017), 1–8. 

https://doi.org/10.1016/j.dyepig.2017.11.011

 

Schuster,  O.,  Yang,  L.,  Raubenheimer,  H.  G.,  &  Albrecht,  M.  (2009).  Beyond Conventional 

N -Heterocyclic Carbenes : Abnormal , Remote , And Other Classes Of  NHC  Ligands  With  Reduced  

Heteroatom  Stabilization.  American  Chemical Society, 109(8). 

https://doi.org/https://doi.org/10.1021/cr8005087

 

Shang,  C.,  Jiang,  H.,  Wei,  Y.,  Zhang,  L.,  &  Luo,  R.  (2019).  Investigation  On  The 

Photophysical Properties Of A Series Of Promising Phosphorescent Iridium(III) Complexes With 

Modified Cyclometalating Ligands. Polyhedron, 157, 170–176. 

https://doi.org/10.1016/j.poly.2018.09.071

 

Sun, R. W. Y., Chow, A. L. F., Li, X. H., Yan, J. J., Chui, S. S. Y., & Che, C. M. (2011).

Luminescent Cyclometalated Platinum(II) Complexes Containing N-Heterocyclic Carbene  Ligands  With  

Potent  In  Vitro  And  In  Vivo  Anti-Cancer  Properties Accumulate In Cytoplasmic Structures Of 

Cancer Cells. Chemical Science, 2(4), 728–736. https://doi.org/10.1039/c0sc00593b

 

Suzuri,  Y.,  Oshiyama,  T.,  Ito,  H.,  Hiyama,  K.,  &  Kita,  H.  (2014).  Phosphorescent 

Cyclometalated  Complexes  For  Efficient  Blue  Organic  Light-Emitting  Diodes. Science        

and        Technology        of        Advanced        Materials,        15(5). 

https://doi.org/10.1088/1468-6996/15/5/054202

 

Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Thompson,   M. 

  E.   (2013).   Synthesis   And   Characterization   Of   Facial   And Meridional  

Tris-Cyclometalated  Iridium(III)  Complexes.  Journal  of  American Chemical Society, (125), 

7377–7387.

 

Tung  YL,  Wu  PC,  Liu  WCH,    et  al.  (2004).  Highly  Efficient  Red  Phosphorescent 

Osmium(II) Complexes For OLED Applications. Organometallics, 23(15), 3745– 3748. 

https://doi.org/10.1021/om0498246

 

Uesugi,  H.,  Tsukuda,  T.,  Takao,  K.,  &  Tsubomura,  T.  (2013).  Highly  Emissive Platinum(Ii) 

 Complexes Bearing  Carbene And Cyclometalated Ligands.  Dalton Transactions, 42(20), 7396–7403. 

https://doi.org/10.1039/c3dt32866j

 

Visbal,   R.,   &   Concepcion   Gimeno,   M.   (2014).   N-Heterocyclic   Carbene   Metal 

Complexes:  Photoluminescence  And  Applications.  Chemical  Society  Reviews, 43(10), 3551–3574. 

https://doi.org/10.1039/c3cs60466g

 

Wang, Z., He, L., Duan, L., Yan, J., Tang, R., Pan, C., & Song, X. (2015). Blue-Green Emitting  

Cationic  Iridium  Complexes  With  1,3,4-Oxadiazole  Cyclometallating Ligands: Synthesis, 

Photophysical And Electrochemical Properties, Theoretical Investigation  And  Electroluminescent  

Devices.  Dalton  Transactions  (Vol.  44). https://doi.org/10.1039/c5dt02083b

 

Welby, C. E., Gilmartin, L., Marriot, R. R., Zahid, A., Rice, C. R., Gibson, E. A., & Elliott,

P.  (2013).  Luminescent  Biscyclometalated  Arylpyridine  Iridium(III)  Complexes With 

4,4’-Bi-1,2,3-Triazolyl Ancillary Ligands. Dalton Transactions, 42(207890), 13527–13536. 

https://doi.org/10.1039/b000000x

 

Wong, M., Xie, G., Tourbillion, C., Sandroni, M., Cordes, D. B., & Slawin, A. M. Z. (2015).   

Formylated   Chloro-Bridged  Iridium(III)  Dimers   as   OLED  Materials: Opening   Up   New   

Possibilities.   Royal   Society   of   Chemistry,   1,   38–42. https://doi.org/10.1039/C4DT03127J

 

Yang, J., & Gordon, K. C. (2005). Organic Light-Emitting Devices Using Ruthenium(II) 

(4,7-diphenyl-1,10-phenanthroline)³ as Dopant. Synthetic Metals, 152(1–3), 213– 216. 

https://doi.org/10.1016/j.synthmet.2005.07.223

 

Yanling, S., Shuai, Z., Godefroid, G., Jinghai, Y., & Zhijian, W. (2015). Modification Of The  

Emission  Colour  And  Quantum  Efficiency  For  Oxazoline  And  Thiazoline Containing Iridium 

Complexes Via Different N^O. The Royal Society of Chemistry. https://doi.org/10.1039/b000000x

 

You, Y., & Nam, W. (2012). Photofunctional Triplet Excited States of Cyclometalated Ir(III)  

Complexes:  Beyond  Electroluminescence.  Chemical  Society  Reviews,

41(21), 7061–7084. https://doi.org/10.1039/c2cs35171d

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.